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1

Introduction

Neutrino oscillations were hypothesized by Bruno Pontecorvo long ango [1, 2].
The first compelling evidence for this phenomenon was observed in the context
of atmospheric neutrinos (Super-Kamiokande, SK, 1998 [3]), followed a few years
later by the unambiguous discovery of solar neutrino flavor transitions (Sudbury
Neutrino Observatory, SNO, 2002 [4]) and by other observations which eventually
led to the new paradigm of massive and mixed neutrinos [5]. The leaders of the
foundational results, Takaaki Kajita (for SK) and Arthur McDonald (for SNO),
have been recently awarded the Nobel Prize in Physics 2015 “for the discovery of
neutrino oscillations, which shows that neutrinos have mass” [6].

Since 1998, important experimental and theoretical developments in neutrino
oscillation physics have been achieved, leading to a “standard” three-neutrino
framework, where the neutrino flavor states (νe, νµ, ντ ) are mixed with the massive
states (ν1, ν2, ν3) separated by two squared mass gaps (δm2, ∆m2), via three
mixing angles (θ12, θ13, θ23) [5]. Although the latter five mass-mixing parameters
have been measured with a precision better than 10%, the picture is not complete:
oscillations may be sensitive to a CP-violating phase δ and can test the ordering
(hierarchy) of the neutrino masses, which are still unknown. Furthermore, flavor
oscillations do not probe the fundamental nature of the neutrino fields (Dirac
or Majorana) and their absolute masses, which are also unknown. Finally, one
cannot exclude that further (so-called sterile) neutrino state exist and can account
for a few anomalous results beyond the standard 3ν framework [5].

A vibrant research program is being pursued worldwide, in order to complete
the understanding of the three-neutrino mass-mixing framework, and to find or
constrain possible deviations from this scenario. This program received new im-
petus from the recent (2012) discovery of a relatively large value for the mixing
angle θ13 [7, 8, 9], which opens the door to the observation of subleading oscil-
lation effects sensitive to the mass hierarchy (the sign of ∆m2), to leptonic CP
violation (the phase δ), and to the still unknown octant of the mixing angle θ23
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(octant ambiguity). Large experimental facilities are being constructed or pro-
posed to reach these objectives, and an intense theoretical and phenomenological
activity is taking place to explore the implications of possible outcomes (see, e.g.,
[10, 11] for recent reviews).

In this context, the determination of the neutrino mass hierarchy plays a spe-
cial role, being at the juncture of neutrino oscillation and non-oscillation physics
(see, e.g., [12]). This PhD thesis focuses on the current status of the neutrino mass
hierarchy in the wider scenario of global neutrino data analyses, and on the fu-
ture perspectives for its determination in oscillation searches via medium-baseline
reactor experiments and large volume, high-statistics atmospheric neutrino detec-
tors. By means of a systematic and rigorous phenomenological analysis of either
current or prospective neutrino data, this work tries to convey the challenges and
the opportunities of the mass hierarchy determination in oscillation searches, as
well as its implications for non- oscillation observables.

The thesis is organized as follows. The remaining part of this Introduction
(Chapter 1) presents the basic aspects of neutrino masses and mixing and of the
standard three-neutrino framework, with an overview of neutrino oscillations and
of non-oscillation observables, and their relation to the mass hierarchy. Chapter
2 presents in detail the state of the art for both known and unknown oscillation
parameters, via a global analysis of world neutrino data [13], highlighting the
specific contribution of the author in this context.

Chapter 3 and 4, which largely represent the author’s original work for the
PhD thesis, deal with the hierarchy determination in medium baseline reactors
[14, 15] and in large volume atmospheric experiments [16] respectively. In particu-
lar, refined estimates for the hierarchy sensitivity are studied in reference projects
such as JUNO in China (Chapter 3) and PINGU at the South Pole (Chapter 4).
Chapter 5 describe ongoing research work of the author, where the mass hier-
archy and other neutrino properties are studied in the context of core-collapse
supernova neutrinos. The thesis work is summarized and further discussed in
Chapter 6.

1.1 Neutrino masses and mixings

The Standard Model (SM) of particle physics [17, 18, 19] is a quantum field
theory based on the gauge symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , where
the subscripts C, L and Y refer to the color charge, left-handed chirality and
hypercharge respectively. In the original version of the SM it was assumed, con-
sistently with data available at the time, that neutrinos were massless chiral
(Weyl) fermions, including only νL and νR states, where L and R refer to left-
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handed and right-handed components the standard notation1. The νL states form
doublets of SU(2)L,

LeL =

(
νeL
eL

)
, LµL =

(
νµL
µL

)
, LτL =

(
ντL
τL

)
, (1.1)

which couple to the gauge bosons W± via charged currents (CC), described by

j+
µ,` = 2

∑
α=e,µ,τ

ναLγµ`αL and j−µ,` = 2
∑

α=e,µ,τ

`αLγµναL. (1.2)

Charged current interactions allow to define a neutrino of a definite flavor α as the
one that takes part in a CC process with the charged lepton `α, where α = e, µ, τ .
We recall that the three neutrinos νe, νµ, ντ also couple to the Z boson via neutral
currents (NC), and that the number of the Z-coupled light neutrino families has
been precisely determined to be Nν = 2.9840± 0.0082 [21, 22, 23, 24].

In the SM, the masses of charged fermions and of the W,Z gauge bosons arise
as a result of the Higgs symmetry breaking mechanism [25, 26, 27]. In particular,
fermion masses are generated via Yukawa couplings of the Higgs field with L
and R components of the fermion fields. In order to account for the compelling
evidence for neutrino masses [3, 4], one can enlarge the original version of the
SM by adding νR (and νL) singlets for each family. In particular, given the Higgs
field

Φ = (φ+, φ0)T , (1.3)

the Yukawa Lagrangian for leptons has the form

LH−` = −
∑

α,β=e,µ,τ

(
Y `
αβLαLΦ `βR + Y ν

αβLαLΦ̃νβR

)
+ h.c. , (1.4)

where Φ̃ = ıσ2Φ∗, while Y `
αβ and Y ν

αβ are 3× 3 Yukawa matrices, whose diagonal-
ization can be performed through bi-unitary transformations

V `†
LY

`V `
R = diag(y`e, y

`
µ, y

`
τ ) , and V ν†

L Y
νV ν

R = diag(yν1 , y
ν
2 , y

ν
3 ), (1.5)

where V `
L,V `

R, V ν
L and V ν

R are unitary matrices. In particular, it is useful to
represent Φ in the unitary gauge,

Φ(x) =
1√
2

(
0

v +H(x)

)
, v = 246 GeV , (1.6)

1For consistency, we adopt the same notation as in a recent textbook on neutrino physics
[20].
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where H(x) is the observable Higgs field and v is the vacuum expectation value
(VEV) of φ0. Then Eqs. (1.4) and (1.5) lead to lepton masses

m`
α =

y`αv√
2

and mν
k =

yνkv√
2
, (1.7)

for charged leptons and neutrinos, respectively (see e.g. [20]).
The above mechanism generates Dirac masses terms for all fermions, includ-

ing neutrinos (LD = −mννLνR). However, a peculiar possibility (forbidden for
charged leptons) arises for neutrinos which, being neutral particles, may be their
own antiparticles. More precisely, for a massive neutral fermion ψ it may occur
that

ψR = CψL
T
, (1.8)

where C is the charge-conjugation operator (up to a possible phase). In this case,
the fermion field has only two independent components and is said to be of “Ma-
jorana” nature [28], in contrast with Dirac fermion fields with four independent
components. In the simplest case of a single neutrino family, the most general
mass term for a Majorana neutrino is of the form [20] (see also [10, 11, 29] for
reviews)

LD+M = −mDνLνR +
1

2
mRν

T
RC
†νR +

1

2
mLν

T
LC
†νL + h.c. (1.9)

where the first contribution corresponds to a Dirac mass term, the second to a
Majorana mass term for νR and the third to a Majorana mass term for νL. If we
define the following matrices,

NL =

(
νL

CνR
T

)
, M =

(
mL mD

mD mR

)
, (1.10)

then Eq. (1.9) can be cast in the form

LD+M =
1

2
NT
LC
†MNL + h.c. (1.11)

Note that, being not invariant under SU(2) ⊗ U(1)Y , the Majorana mass term
for νL is not allowed in the SM because (although it can be generated by physic
beyond the SM [20]). On the contrary, a right-handed neutrinos, being a singlet of
SU(3)C⊗SU(2)L⊗U(1)Y , can induce the Majorana mass term without violating
any symmetry, except global lepton number conservation. Therefore, Eq. (1.11)
is not forbidden if we consider mL = 0 and add νR in the SM. It is legitimate to
posit that, while the mD mass scale is linked to the SM scale v, the mR mass scale
is different and, possibly, much higher (mR � mD). In this case, diagonalization
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of the mass matrix in LD+M generally leads to two Majorana eigenstates with
very different (light and heavy) masses:

mlight '
m2
D

mR

, mheavy ' mR. (1.12)

This is the celebrated “see-saw” mechanism [30, 31, 32, 33] which may provide
an elegant explanation to the smallness of neutrino masses, suppressed by large
mR. For recent reviews on this topic see [10, 11, 34].

Equation (1.11) can be extended from the case of one family to the most gen-
eral case with three families of active neutrinos plus Ns right-handed neutrinos,
where NL has N=3+Ns components and

MD+M =

(
0 MT

D

MD MR

)
, (1.13)

MD being a Ns × 3 matrix and MR a Ns × Ns matrix. MD+M can also be
diagonalized with a bi-unitary transformation, analogously to Eq. (1.5), but with
V ν
L of dimension N×N . Considering this general case, one can define the neutrino

mixing matrix as [20]

Uαk =
∑

β=e,µ,τ

(V `
L)αβ(V ν

L )βk, with k = 1, . . . , N , (1.14)

where the subscript α indicates the flavor eigenstates, while with k ≥ 3 denotes
the mass eigenstates. The physical effect of the mixing matrix is observable via
charged currents, whose expression becomes (see, e.g., [20])

j+
µ,` = 2

∑
α=e,µ,τ

∑
k

U∗αkνkLγ
µ`αL. (1.15)

Equation (1.15) implies that neutrino flavor fields produced in CC processes are
a superposition of fields with definite masses, with complex coefficients given by
the mixing matrix. In several cases of interest (e.g. in the propagation of ultra-
relativistic neutrinos) one can use a simpler description in terms of wavefunctions
rather than fields (see, e.g., [20]). In this case, the mixing of neutrino states is
described as

|να〉 =
∑
k

U∗αk|νk〉, (1.16)

where U∗ appears since the field containing the creation operator for particles is
νL. Similarly, the mixing of antineutrinos states is described as

|να〉 =
∑
k

Uαk|νk〉. (1.17)
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1.2 The standard three-neutrino framework

In nature there are three active neutrinos participating in weak interactions,
but the number of right handed (singlet) neutrinos, also called steriles, is not
bounded a priori. As we have seen, adding three ναR states allows a minimal
realization of Dirac neutrino masses via the Higgs mechanism. Furthermore, if
Majorana mass terms are added in connection with a high scale mR, then the
smallness of the light neutrino masses can be explained via the see-saw mecha-
nism, while the heavy Majorana states are basically decoupled from low-energy
neutrino phenomenology. However, scenarios cases with light sterile neutrinos are
not excluded, and are possibly supported by some anomalous results [35, 36, 37].
We shall not consider this possibility in the current thesis, where we focus on
three neutrinos only, either in terms of flavor (να, α = e, µ, τ) or masses mi (νi,
i = 1, 2, 3).

In the standard 3ν case, the 3× 3 matrix U is usually called the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [38, 39]. In general, a 3 × 3 unitary
matrix can be parametrized in terms of three Euler (rotation) angles and six
complex phases. However, not all the phases are physical observables. For Dirac
neutrinos, the SM Lagrangian is invariant under global phase transformations
of each of the six lepton fields, leaving all phases as unphysical, except for an
overall one corresponding to the total lepton number conservation. For Majorana
neutrinos, the mass terms are not invariant under phase transformations and the
constants reduce from 5 (Dirac) to 3 (Majorana). In the latter and more general
case, a common parametrization for U takes the form [5]

U = UDUM , with (1.18)

UD =

 c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23s13 e

i δ c23 c13

(1.19)

UM =

1 0 0
0 eıλ1 0
0 0 eıλ2

 , (1.20)

where UD has the same form of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
for quarks, including three mixing angles θ12, θ13, θ23 and one (Dirac) CP-violating
phase δ, while UM can only occur for Majorana neutrinos, in terms of two further
(Majorana) CP-violating phases, λ1 and λ2. In the above equation, cij = cos θij
and sij = sin θij.

The neutrino mass spectrum is characterized by two independent differences
of squared masses, which will be relevant in the description of neutrino oscillations
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in section 1.3. Assuming m2 > m1, we choose them to be [40]

δm2 = m2
2 −m2

1 > 0 (1.21)

∆m2 =

∣∣∣∣m2
3 −

m2
1 +m2

2

2

∣∣∣∣ . (1.22)

Historically, δm2 is often known as the “solar” mass difference, while ∆m2 as
the “atmospheric” mass difference. Depending on the sign of ∆m2, there are two
possible mass orderings, also called hierarchies: normal (NH) and inverted (IH).
The first corresponds to the positive sign of ∆m2 (m2

1,2 < m2
3) and it is reported

graphically in the left part of Fig. 1.1, whereas the latter refers to the negative
sign of ∆m2 (m2

3 < m2
1,2) and it is shown on the right part of Fig. 1.1. The

diagonal squared mass matrix can thus be written as

M2 = diag(m2
1, m

2
2, m

2
3) =

m2
1 +m2

2

2
1+diag

(
−δm

2

2
, +

δm2

2
, ±∆m2

)
, (1.23)

where the upper (lower) sign refers to NH (IH). The term proportional to the
unit matrix 1 is irrelevant for neutrino oscillations (see next Section).

This parametrization can also be recast in a different form, in terms of the
lightest neutrino mass mmin, which is either mmin = m1 (NH) or m3 (IH):

(
m2

1, m
2
2, m

2
3

)
NH

=

(
m2

min, m
2
min + δm2, m2

min + ∆m2 − δm2

2

)
, (1.24)

(
m2

1, m
2
2, m

2
3

)
IH

=

(
m2

min + ∆m2 − δm2

2
, m2

min + ∆m2 +
δm2

2
, m2

min

)
.(1.25)

The value of mmin, i.e., the absolute neutrino mass scale, is not known at
present. Three important sources of information on the mass scale are provided
by β decay, by neutrinoless double beta decay (0νββ if neutrinos are Majorana)
and by precision cosmology. The related observables are not the single masses
mi, but particular combinations of them, as described below.

Beta (β) decay in nuclei involve either the transition n→ p+ e−+ ν̄e (β−) or
p → n + e+ + νe (β+). If the single ν mass states cannot be spectrally resolved
within the experimental energy resolution (as it is the case, in practice), then the
final state is represented by an incoherent sum of the three possible decay modes
into ν1, ν2, ν3, weighted by amplitudes |Uei|2. The β-spectrum endpoint is then
sensitive to an average mass mβ given by

m2
β =

∑
k

|Uek|2m2
k, (1.26)
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1ν
2ν

3ν

2mδ

2m∆

3ν

1ν
2ν 2mδ

2m∆­

ν
2m ν

2m

Normal Hierarchy Inverted Hierarchy

Figure 1.1: Graphical representation of the two mass orderings (or hierarchies):
normal and inverted hierarchy. The two mass differences are not in scale (in nature,
δm2/∆m2 ∼ 1/30). The colored boxes indicate the flavor content of each mass
eigenstate, for the best fit values of oscillation parameters reported in the text.
According to our notation, inverting the hierarchy amounts to changing the sign
of ∆m2.
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which would reduce to mβ = m(νe) in the absence of νe mixing with νi. In our
parametrization it is

m2
β,NH = m2

min + s2
12c

2
13δm

2 + s2
13

(
∆m2 +

δm2

2

)
, (1.27)

m2
β,IH = m2

min + c2
12c

2
13

(
∆m2 − δm2

2

)
+ s2

12c
2
13

(
∆m2 +

δm2

2

)
. (1.28)

Neutrinoless double beta (0νββ) decay consists in two simultaneous β decays
in the same nucleus without the emission of neutrinos. This process violates
lepton number by two units and is thus possible if and only if neutrinos have a
light Majorana nature [20, 41, 42]. The process can be mediated by a Majorana
neutrino νk with mass mk, with a probability amplitude weighted by Uek in each
of the two weak decay vertices. The amplitudes for different light Majorana
neutrinos νk add coherently, yielding as a result a dominant sensitivity to the so
called effective Majorana neutrino mass mββ.

mββ =

∣∣∣∣∣∑
k

U2
ekmk

∣∣∣∣∣ . (1.29)

In our parametrization, it can also be expressed as

mββ,NH =

∣∣∣∣c212c213mmin + eıα1s212c
2
13

√
m2

min + δm2 + eıα2s213

√
m2

min + ∆m2 +
δm2

2

∣∣∣∣, (1.30)

mββ,IH =

∣∣∣∣c212c213
√
m2

min + ∆m2 − δm2

2
+ eıα1s212c

2
13

√
m2

min + ∆m2 +
δm2

2
+ eıα2s213mmin

∣∣∣∣,
(1.31)

where α1 = 2λ1 and α2 = 2(λ2 − δ). Notice that the effective mass for double
β decay depends on all complex phases, both Dirac and Majorana, and this
dependence may even make the value of mββ vanish in NH [5].

Finally, being massive, neutrinos take part in gravitational interactions and
thus have an influence on the Universe evolution, in particular on the anisotropies
of the cosmic microwave background and on the formation of large scale struc-
tures. In this context, the relevant parameter is the “total gravitational charge”
of the neutrinos, i.e., the sum of their masses,

Σ = m1 +m2 +m3. (1.32)

A phenomenological overview of current constraints on (mβ,mββ,Σ) will be given
in section 2.8.
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1.3 Neutrino oscillations in vacuum and matter

The difference between flavor and mass eigenstates implies, in general, that
flavor is not a constant of motion during neutrino propagation. The phenomenon
of flavor transformation να → νβ is often referred to as “neutrino oscillations”,
although this term is more appropriate in the specific case of propagation in vac-
uum (or in constant-density matter), where the flavor change pattern is periodic.
One may also distinguish between “disappearance” (να → να) and “appearance”
(να → νβ, β 6= α) modes of flavor change.

The probability Pαβ = P (να → νβ) for a neutrino flavor transformation is
usually calculated under the simplifying assumptions of ultrarelativistic neutrinos
(mi � E, where E is the ν energy) and of a common momentum p for the
neutrino beam. The same results are obtained with common-E prescriptions and
by taking into account wave-packet and other subtleties (see, e.g., [20]), as far
as typical phenomenological conditions are considered. Under such conditions,
one can also use the time t and the pathlength L interchangeably (in natural
units), and discard the ν spinorial properties at O(m/E), so as to use a simple
Schroedinger description in terms of wavefunction.

In vacuum, the flavor evolution equation for neutrinos takes the simple form:

ı
d

dt
|να(t)〉 = H0|να(t)〉, (1.33)

where the vacuum hamiltonian H0 has the following eigenvalues and eigenstates:

H0|νk〉 = Ek|νk〉, (1.34)

Ek =
√
m2
k + p2 ' p+

m2
k

2p
. (1.35)

The equation is solved by passing from the flavor basis |να〉 to the mass basis
|νi〉 where the Hamiltonian is diagonal and easily exponentiated. The well known
result is [5, 20]

Pνα→νβ(E,L) =
3∑

k,j=1

U∗αkUαjUβkU
∗
βje
−ı

∆m2
kjL

2E , (1.36)

which reduces to the celebrated Pontecorvo formula (below) in the subcase of two
neutrino oscillations driven by one squared mass ∆m2 and one mixing angle θ,

Pαβ =

sin2 2θ sin2
(

∆m2L
4E

)
(α 6= β) ,

1− sin2 2θ sin2
(

∆m2L
4E

)
(α = β) .

(1.37)
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The above equation shows that the amplitude of the oscillation probability in
vacuum is governed by the mixing angle θ, whereas the oscillation phase Φosc is
governed by the squared mass difference times a L/E factor,

Φosc =
∆m2L

4E
' 1.27

(
∆m2

10−3 eV2

)(
L

1000 km

)(
E

1 GeV

)−1

. (1.38)

The experimental sensitivity to oscillations is highest when Φ ∼ O(1), while for
Φ� 1 the oscillation have not developed, and for Φ� 1 they are averaged away.

In the general three-neutrino case, the probability in Eq. 1.36 depends only
on the matrix U in Eq. 1.19 and not on the Majorana phase matrix in Eq. (1.20),
presented in section 1.2. In other words, neutrino oscillations are insensitive to
the Majorana phases, but may be sensitive to the Dirac phase δ which leads
to U 6= U ∗ for δ 6= 0, π. In particular, since the oscillation probability for
antineutrinos Pαβ is obtained by U ↔ U ∗ in Pαβ, it is useful to define a CP-odd
asymmetry as:

ACPαβ = Pνα→νβ − Pνα→νβ = 16Jαβ sin
∆m2

21L

4E
sin

∆m2
31L

4E
sin

∆m2
32L

4E
, (1.39)

where

Jαβ = Im[U∗α1Uβ2Uα1U
∗
β2] = ±J, (1.40)

J = c12s12c23s23c
2
13s13 sin δ, (1.41)

where J is the so-called Jarlskog invariant [43], parametrizing the size of CP-odd
effects1. Equation (1.39) reveals that CP violation is a genuine 3ν effect, vanishing
when one of the mixing angles or mass differences reduces to zero. It also requires
sin δ 6= 0, i.e., δ 6= 0, π. The search for CP-violating effects in neutrinos is an open
area of research which, in some cases, has a direct connection with mass-hierarchy
searches (e.g., in accelerator experiments, as we shall see).

In the presence of background fermions, the neutrino flavor evolution can be
profoundly modified, as first emphasized by Wolfenstein [44] and by Mykheev and
Smirnov [45, 46] (the “MSW” effect); see also [47, 48] for reviews. In particular,
for ordinary matter background, the hamiltonian H0 in Eq. (1.33) receives an
additional contribution (a so-called “potential” V ) from both CC and NC coher-
ent forward scattering. While the NC contribution is equal for all flavors with
size VNC = −1

2

√
2GFNn (where Nn is the neutron density), the CC contribution

acts only on νe (since e−, but not µ− or τ−, are present in ordinary matter) with
size

VCC =
√

2GFNe, (1.42)

1The positive (negative) sign for J is for (anti-)cyclic permutation of the flavor indices e, µ
and τ .
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where Ne is the electron number density. Discarding VNC (which provides only
an overall energy shift), the hamiltonian in matter H is thus defined as H =
H0 + HI with

HI |να〉 = δαeVCC |να〉. (1.43)

The evolution equation in flavor basis can thus be written as

ı
d

dx
S =

1

2E

(
UM 2U † +A

)
S, (1.44)

where S is the evolutuion operator and A = diag (ACC , 0, 0), with

ACC = 2
√

2GFNeE, (1.45)

and ACC → −ACC for ν → ν [48]. In this formalism the oscillation probability
is obtained by

Pαβ(E,L) = |Sαβ(E,L)|2 (1.46)

In constant matter density (Ne=const), the total hamiltonian can be easily
diagonalized, yielding results formally similar to the vacuum case, but with ap-
propriate replacements in terms of mass-mixing parameters “in matter”, ∆m2

ij →
∆m̃2

ij and Uαi → Ũαi. Within the current phenomenology, one can anticipate that

θ̃23 ' θ23, while the pair (∆m2, θ13) receives corrections of the form

∆m̃2 = ∆m2

√(
cos 2θ13 −

ACC
∆m2

)2

+ sin2 2θ13 , (1.47)

sin 2θ̃13 =
∆m2 sin 2θ13

∆m̃2
, (1.48)

and similarly for the pair (δm2, θ12). Matter effects are thus expected to provide
strong effects when ACC is comparable to ∆m2 (or to δm2), so it is useful to work
out the ratio ACC/∆m

2 in appropriate units:

ACC
∆m2

= 1.526× 10−1

(
Ne

mol/cm3

)(
E

GeV

)(
10−3 eV2

∆m2

)
. (1.49)

Note that in the Earth Ne ranges from ∼ 1.5 to ∼ 6 mol/cm3 when passing from
the external crust and mantle layer to the inner core.

Matter effects are also very important in the context of mass hierarchy de-
termination, since the ratio ACC/∆m

2 changes sign either by changing from ν
to ν (ACC → −ACC) or by swapping hierarchy (+∆m2 → −∆m2). Appropriate
comments on these features will be made later when needed.
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Table 1.1: Results of the global 3ν oscillation analysis, in terms of best-fit values
and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. See also Fig. 3
for a graphical representation of the results. We remind that ∆m2 is defined herein
as m2

3 − (m2
1 +m2

2)/2, with +∆m2 for NH and −∆m2 for IH. The CP violating
phase is taken in the (cyclic) interval δ/π ∈ [0, 2]. The overall χ2 difference between
IH and NH is insignificant (∆χ2

I−N = −0.3).

Parameter Best fit 1σ range 2σ range 3σ range
δm2/10−5 eV2 (NH or IH) 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18
sin2 θ12/10−1 (NH or IH) 3.08 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59
∆m2/10−3 eV2 (NH) 2.46 2.40 – 2.51 2.35 – 2.56 2.3 – 2.61
∆m2/10−3 eV2 (IH) 2.42 2.37 – 2.47 2.32 – 2.52 2.27 – 2.57
sin2 θ13/10−2 (NH) 2.19 2.04 – 2.29 1.91 – 2.42 1.79 – 2.54
sin2 θ13/10−2 (IH) 2.19 2.05 – 2.30 1.92 – 2.43 1.80 – 2.56
sin2 θ23/10−1 (NH) 4.37 4.12 – 4.71 3.91 – 5.76 3.71 – 6.32
sin2 θ23/10−1 (IH) 5.69 4.26 – 6.01 3.99 – 6.25 3.77 – 6.46
δ/π (NH) 1.43 1.18 – 1.76 0.00 – 0.08 ⊕ 0.94 – 2.00 —
δ/π (IH) 1.27 1.00 – 1.58 0.76 – 1.98 —

Finally, we mention that explicit analytic solutions for Eq. (1.44) exist only
for very special functional dependencies of Ne = Ne(x) and/or under simplify-
ing assumptions on the mass-mixing parameters. We will refer to some specific
solutions when needed in the context of the thesis. In the most general cases,
Eq. (1.44) must be solved numerically with great care, to avoid artifacts due to
fast oscillatory terms.

1.4 Known and unknown oscillation parameters

Concerning the status of known and unknown oscillation parameters, it is
useful to anticipate some results obtained within this thesis [13], which will be
discussed in more details in Chapter 2. Table 1.1 shows the nσ ranges (n=1, 2,
3) for the 3ν oscillation parameters, as derived from a global analysis of world
neutrino oscillation data. Let us first comment about the mass spectrum. The
ranges are slightly different for NH and IH, except for the mass-mixing pair
(δm2, θ12), whose phenomenological constraints are not yet sensitive to hierarchy
effects (see, e.g., [40]). The data analyzed in [13] do not show any significant
preference for an hierarchy over the other (χ2

IH − χ2
NH) ' −0.3, although future

data might lift such a degeneracy, as discussed later on.
Concerning the squared mass differences, they are significantly different from

one another (δm2/∆m2 ' 1/30), implying that typical experiments are domi-
nantly sensitive to only one of them, either via vacuum oscillations (when ei-
ther δm2L/4E ∼ O(1) or ∆m2L/4E ∼ O(1)) or via matter effects (when either
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δm2/ACC ∼ O(1) or ∆m2/ACC ∼ O(1)). In the following, one-mass scale approx-
imations for the oscillation probabilities Pαβ will be used to understand the main
features of current phenomenology, but it should be remarked that the results in
Table 1.1 are obtained with full 3ν probabilities, as required by the typical (few
%) accuracy reached by most experiments. In particular, notice that both δm2

and ∆m2 are determined with fractional uncertainties below 3% at 1σ.
Concerning the mixing angles in Table 1.1, the most striking feature is that

they are “large”, as compared with the analogous mixing angles in the quark sec-
tor. The value of θ23 is close to π/4 (so called “maximal mixing”, sin2 θ23 ' 1),
and it is an open issue if θ23 < π/4 (first octant) or θ23 > π/4 (second octant).
The θ23 octant ambiguity [13] reflects, in general, the difficulty to determine θ23

in atmospheric or accelerator experiments dominated by the νµ disappearance
channel where, approximately, Pµµ ∼ 1 − sin2 2θ23 sin2(∆m2L/4E). The ambi-
guity can be solved, in principle, in combination with other oscillation channels
[13] but, in practice, it represents a hard problem which affects the accuracy of
θ23. Indeed, the value of sin2 2θ23 is affected by a typical 1σ uncertainty as large
as 10% in Table 1.1. The angle θ12 is also large but much more accurately de-
termined (at ∼ 5.4%, 1σ). Finally the smallest neutrino mixing angle θ13 is of
size comparable to the largest quark mixing (Cabibbo) angle θC , which might not
be accidental in some theoretical models with quark-lepton unification or com-
plementarity ([49, 50]). The relatively “large” value of θ13 is also important to
avoid a vanishing of the Jarlskog invariant in Eq. (1.41), thus opening the door
to leptonic CP violation searches in global analyses [51, 52, 53].

The status of the CP-violating phase δ is also reported in Table 1.1. There
is an intriguing indication in favor of δ ∼ 3π/2, corresponding to sin δ ∼ −1
and thus to a case of maximal CP violation (the other case sin δ ∼ +1 being
disfavored). However, the whole range δ ∈ [0, 2π] is still allowed at ±3σ. It is
thus extremely important to follow the evolution of oscillation data, in order to
understand if this hint for leptonic CP violation receives further confirmation and
can exceed the 3σ level in the future. We remind the reader that any fundamental
source of CP violation, including (but not limited to) the δ phase in the neutrino
sector, can contribute to the matter-antimatter asymmetry via the celebrated
Sakharov conditions [54]. It is well known that CP violation in the quark sector
alone cannot account for the observed baryonic asymmetry of the Universe (BAU)
[55]. In this context, leptonic CP violation, even if limited to low energies, can
provide a possible solution to the BAU via the leptogenesis mechanism, see e.g.
[56, 57, 58].

We conclude this overview of known and unknown oscillation parameters with
a few remarks. The Majorana phases λ1 and λ2 decouple from oscillations and
are accessible only via mββ [Eq. (1.29)] in 0νββ decay; at present, these phases
are completely unconstrained. The absolute neutrino mass scale mmin is bounded
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from above at sub-eV level, as discussed later in section 2.8). These variables
complete the mass-mixing parameters space in the standard 3ν framework. Non-
standard neutrino interactions or new (sterile) neutrino states might be invoked
to enlarge such space, especially in the presence of anomalous results, possibly
suggested by the current phenomenology. This possibility, however, is beyond the
scope of the present work.

In the following Chapters, we shall discuss in detail the status and perspective
of known and unknown mass mixing parameters, with emphasis on the mass
hierarchy and its interplay with other unknowns (the phase δ, the octant of
θ23, the absolute mass scale). A general overview of the methods to attack the
hierarchy problem is given in the next section.

1.5 How to determine the neutrino mass hier-

archy

The sign of ±∆m2 can be probed by either oscillation or non-oscillation ob-
servables. In the first case, one looks at interference effects between oscillations
driven by ±∆m2 and those driven by another quantity Q with known sign (and
with the dimensions of a mass). Within the standard 3ν framework, there are
three phenomenologically viable possibilities for Q, namely:

• Q = δm2 > 0,

• Q = ACC = 2
√

2GFNeE (>0 for ν and <0 for ν),

• Q ∼ GFNνE.

The first case is relevant for subleading effects in current global data analyses
(Chapter 2), as well as for future reactor experiments sensitive to both ±∆m2−
and δm2−driven oscillations in vacuum (Chapter 3). The second case is relevant
for global analyses and for future atmospheric (or accelerator) experiments sen-
sitive to matter effects in the Earth (Chapter 4). Finally, the third case involves
±∆m2-driven oscillations in a peculiar background: the high-density neutrino
gas in core-collapse supernovae (Chapter 5).

The first two cases, involving δm2 − ∆m2 interference in vacuum, and ∆m2

oscillations in matter respectively, represent the most promising handles to de-
termine the neutrino mass hierarchy in next generation oscillation experiments,
and their analysis represents most of the original work in this thesis.

Non-oscillation observables also provide some sensitivity to the hierarchy. Fig-
ure. 1.2 shows the functional dependence of mββ, mβ and Σ versus mmin, for the
two cases of NH and IH, using the best fit and ±2σ ranges in Table 1.1. The
allowed bands coincide at large mmin (“degenerate” masses) but branch out at
small mmin, where there is the possibility to distinguish NH and IH in principle,



16 Introduction

-410 -310 -210 -110 1
-410

-310

-210

-110

1

-410 -310 -210 -110 1
-310

-210

-110

1

-410 -310 -210 -110 1
-210

-110

1

 [eV]minm

 [
e
V

]
β

β
m

 [eV]minm

 [
e
V

]
β

m

 [eV]minm

 [
e
V

]
Σ

IH

NH

Figure 1.2: mβ, mββ and Σ as a function of mmin for both NH (blue) and IH
(red). The colored bands are obtained by varying the mass-mixing parameters in
the 2σ current limits around their best fit values.

especially by combining two or all the measurements among (mβ,mββ,Σ). The
related phenomenology will be discussed in section 2.8.

Summarizing, we shall next discuss the status and prospects for the neutrino
mass hierarchy determination in the context of: global analysis of oscillation and
non-oscillation data (Chapter 2); medium baseline reactor projects (Chapter 3);
high-statistics atmospheric neutrino oscillations (Chapter 4); collective effects in
core- collapse SNe (Chapter 5). We shall conclude our work with an overview of
expectations for the next decade (Chapter 6).



2

Global analysis of neutrino
masses and mixings

Neutrino oscillation phenomena or experiments are typically sensitive only
to a subset of the oscillation parameter space spanned by (δm2,±∆m2, θ12, θ13,
θ23, δ). In the simplest case, the sensitivity is reduced to a single pair of mass-
mixing parameters, say, (∆m2, θ). Within this approximation, Fig. 2.1 [59]
shows a compilation of results from different experiments, yielding either positive
evidence for oscillations (colored regions) or negative results (empty contours).
It can be seen that many different oscillation searches have probed no less than
14 orders of magnitude in ∆m2 and 6 orders of magnitude in tan2 θ1. Of course,
the (∆m2, θ) parameters are not necessarily the same in the different να → νβ
channels probed, and a combination of results is not obvious a priori. The purpose
of global analyses is to perform such combinations in a meaningful and systematic
way, so as to squeeze as much information as possible from the precious data on
neutrino oscillations.

In this chapter we present the results of a recent global analysis of oscillation
data (as of 2014 [13]) in the three-neutrino framework. The main original contri-
bution to this analysis has been the refined treatment of long-baseline accelerator
data in both appearance and disappearance channels. Indeed, this class of oscilla-
tion searches is becoming of increasing importance for constraining (and possibly
determining in the future) three unknowns: the mass hierarchy, the phase δ and
the θ23 octant.

1The variable tan2 θ in log scale provide octant-symmetric contours (θ → π/2 − θ) if the
oscillation probability depends mainly on sin2 2θ. In linear scale, the appropriate variable would
be sin2 θ (see [60]). In Fig. 2.1 [59] note octant-asymmetric contours for matter-dominated solar
experiments.
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2.1 Neutrino oscillation: experiments and sen-

sitivities

The fact that the two independent squared mass differences are widely dif-
ferent (δm2/∆m2 ∼ 1/30) and that different oscillation channels να → νβ probe
different mixing angles θij, can help to understand the main features of the ex-
perimental sensitivities to the oscillation parameters.

Concerning the ∆m2
ij parameters, in general, their effects scale as ∆m2L/4E

in vacuum and ∆m2
ij/2
√

2GFNeE in matter. The ∆m2
ij/E dependence implies

that “large” (“small”) values of ∆m2
ij are typically probed by means of “high-

energy” (“low-energy”) neutrino beams. In particular, atmospheric and long-
baseline accelerator experiments (e.g., SK and T2K in Fig. 2.1) probe ∆m2 with
relatively high neutrino energies of O(GeV). On the other hand, solar and long-
baseline reactor experiments (e.g., Cl, Ga, SK, SNO and KamLAND in Fig. 2.1)
probe δm2 with relatively low neutrino energies of O(MeV). By tuning L in the
L/E phase factor, reactor experiments can also probe ∆m2 at short baseline,
despite the low νe energy (e.g., Daya Bay in Fig. 2.1).

Concerning the mixing angles θij, the PMNS matrix parametrization intro-
duced before,νeνµ

ντ

 =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−ıδ

0 1 0
−s13e

ıδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

ν1

ν2

ν3

 ,

(2.1)
is particularly useful to break down the main θij sensitivities. Low-energy exper-
iments observing νe from the Sun or νe from reactors are below threshold for CC
production of µ and τ via νe → νµ,τ oscillations, and can only probe the disap-
pearance channel νe → νe. In this case, the θ23 rotation on the left of Eq. (2.1)
is ineffective, since νµ and ντ are not distinguishable and can be lumped into
a single “non-νe” flavor νx. Moreover, the phase δ is also ineffective in disap-
pearance channels. The solar and KamLAND experiments are thus sensitive to
(δm2, θ12, θ13) only (see, e.g., [47]), with a functional dependence of the kind:

P 3ν
ee (δm2, θ12, θ13) ' c4

13P
2ν
ee (δm2, θ12) + s4

13, (2.2)

where P 2ν
ee is the θ13 → 0 limit of P 3ν

ee , either in vacuum or in matter.
In high-energy experiments, which are mainly sensitive to ∆m2, one may set

δm2 ∼ 0 in first approximation, so that ν1 and ν2 can be considered as almost
degenerate in mass. The θ12 angle on the right of Eq. (2.1) is then ineffective
(as well as the phase δ) and the dominant parameters are (∆m2, θ23, θ13). In
vacuum, this one-dominant-mass-scale approximation leads to simple oscillation
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probabilities which resemble the Pontecorvo formula,

P 3ν
αβ ' 4 |Uα3|2 |Uβ3|2 sin2

(
∆m2L

4E

)
, (α 6= β) , (2.3)

P 3ν
αα ' 1− 4 |Uα3|2 (1− |Uα3|2) sin2

(
∆m2L

4E

)
, (2.4)

for the appearance and disappearance channel, respectively, where

|Ue3|2 = s2
13 , (2.5)

|Uµ3|2 = c2
13s

2
23 , (2.6)

|Uτ3|2 = c2
13c

2
23. (2.7)

Of course, these approximations are not employed in the actual analysis, where
the full-fledged 3ν probabilities including matter effects are computed. This
is particularly important for CP-violation searches in accelerator experiments,
where the (δm2, θ12)-dependence of Pαβ must be necessarily accounted for.

We conclude this section by discussing some general features of the observ-
ables which are included in global oscillation data analyses. Data are typically
expressed in terms of event rates R (i.e., number of events per unit of target mass
and time), possibly with an energy distribution R(E) for a flavor β:

Rβ(E) = Φα(E)⊗ Pνα→νβ(L,E)⊗ σβ(E)⊗ rβ(E) , (2.8)

where Φα is the initial να flux, Pαβ is the oscillation probability να → νβ, σβ is
the νβ cross section, and rβ is the detection response (e.g., in terms of energy
resolution or reconstruction efficiency for νβ). The ⊗ indicates that, in general,
the observable rates come from a multi-dimensional integration over the neutrino
kinematical parameters, which leaves out the observable lepton final-state kine-
matics. The systematic comparison of experimental data and theoretical predic-
tions for many (possibly binned) R’s allows to effectively constrain the oscillation
parameters.

In the previous equation, the flux Φα is determined by the characteristics of
the source and by its distance from the detector. For solar neutrinos, the Sun
emits O(1011) νe/cm2/sec with E ∼O(MeV) at a distance L =1 a.u. A typical
reactor with a power of 1 GW emits O(1020) νe/sec. Atmospheric neutrinos are
also a diffuse source of νµ, νµ, νe and νe with a wide energy range (from sub-GeV
to TeV energies and above), and a flux as large as O(107) ν/cm2/sec/steradian.
Accelerator neutrinos offer the great advantage of a controlled beam: protons
hit on a target and produce pions π± which can be focused, decaying mostly
into νµ or νµ with limited angular spread, small νe,νe contamination and well-
known kinematics. The relatively low ν flux (as compared to the previous natural
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sources) can be partly compensated by choosing L and E in appropriate ranges
to maximize the oscillation effects. Other interesting sources are the inner Earth
(geoneutrinos) and core-collapse supernovae (as the SN 1987A event [61, 62, 63].

The oscillation probability Pαβ must be precisely calculated to account for
subleading effects, which are not negligible at current level of accuracy. The
calculation can be quite demanding in the presence of matter effects with non-
constant density profiles (solar and atmospheric neutrinos). The case of constant
density will be discussed in some detail for accelerator and reactor neutrinos,
more related to the original part of this thesis.

Cross sections and their energy dependence are also an important ingredient
of global ν data analyses, which range from sub-MeV solar ν interactions to
TeV atmospheric ν absorption, see [64] for a recent review. We have devoted
particular care to the treatment of accelerator νµ,e and νµ,e interactions and their
uncertainties, in order to interpret the data from long-baseline experiments such
as T2K.

Finally, the detection response rβ(E) is also relevant to understand the fine
structure of the oscillation signals. For instance, it is well known that the rel-
atively coarse energy and angular resolution of atmospheric neutrinos detectors
prevents the emergence of a clear oscillation pattern beyond the first half-cycle
of the νµ → ντ transition: subleading features become potentially observable
only with high statistics and refined analyses. On the other hand, the very good
energy resolution of reactor neutrino experiments has already allowed the obser-
vation of a full δm2 oscillation cycle in KamLAND, and may be further improved
to observe both δm2 and ∆m2 oscillations at the same time in medium-baseline
reactor experiments (see Chapter 3).

2.2 Solar and long-baseline reactor (KamLAND)

data

For δm2 values comparable to those in Table 1.1, the solar neutrino disappear-
ance probability in Eq. (2.2) is dominated by matter effects for E & few MeV
(e.g. for neutrinos produced in the decay of 8B), giving asymptotically

Pmatter
ee ' c4

13s
2
12 + s4

13. (2.9)

For E . few×(0.1 MeV), e.g. neutrinos produced in the pp chain, the probability
tends to reduce to the vacuum case,

P vacuum
ee ' c4

13

(
1− 1

2
sin2 2θ12

)
+ s4

13. (2.10)
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In any case, the oscillations driven by δm2 are too fast to be observed and can
be averaged away. For intermediate energies, Pee smoothly varies between the
two asymptotic regimes through the ratio ACC/δm

2, which modifies the effective

mixing angle in matter θ̃12 (see, e.g., [66]). Current data are consistent with
a transition from the vacuum to the matter-dominated limit, as shown in the
right panel of Fig. 2.2, where the gray band represents the expectations for P solar

ee

according to current uncertainties on (δm2, θ12), while the colored points are the
data. In particular, for SNO [68] and Super-Kamiokande [69] data, sensitive to
8B neutrinos, the matter dominated limit in Eq. (2.9) is largely realized, with the
possibility of probing directly sin2 θ12 with high precision (especially by SNO and
Super-Kamiokande), as shown in the left panel of Fig. 2.3.

Lower-energy neutrinos are detected by the Chlorine [70], Gallium [71, 72, 73]
and Borexino [74, 75] experiments. These data, in combination with those at
higher energy, are particularly useful to constrain θ13 [76], since an increase of θ13

can be compensated by a decrease (increase) of θ12 in the low-energy (high-energy)
limit of P solar

ee , implied by Eqs. (2.9) and (2.10). These different correlations allow
to put an upper bound sin2 θ13 < 0.07 at 2σ from solar neutrino data alone, as
reported in the right panel of Fig. 2.3 [78].

The relatively large uncertainties on δm2 from solar data are reduced in com-
bination with the long baseline reactor experiment KamLAND (KL) [65], which



2.2.2 Solar and long-baseline reactor (KamLAND) data 23

-110 1

-410

KamLAND

95% C.L.

99% C.L.

99.73% C.L.

best fit

Solar

95% C.L.

99% C.L.

99.73% C.L.

best fit

 10 20 30 40

σ1 σ2 σ3 σ4 σ5 σ6

 

5

10

15

20

σ1

σ2

σ3

σ4

12
θ2tan 2χ∆

)2
 (

eV
2
1

2
m

∆
2

χ
∆

Figure 2.3: (Left) Allowed regions by KamLAND (colored) and solar experiments
in the plane (tan2 θ12, δm

2), taken from [65]. Also shown are the one-dimensional
projections of the confidence levels on the two parameters. (Right) Confidence
levels at 1σ and 2σ from solar experiments (red line) and KamLAND (blue line)
in the plane (sin2 θ12, sin

2 θ13), together with their combination, which disfavors
θ13 = 0 at 90% confidence level (taken from [78]).

observe νe from 53 commercial nuclear reactors producing νe, at a flux-weighted
distance of about 180 km. For such a reactor-detector distance, the oscillations
driven by ∆m2 are fast and can be averaged away. In the vacuum approximation,
Eq. (2.2) becomes

P (νe → νe) ' c4
13

[
1− 4s2

12c
2
12 sin2

(
δm2L

4E

)]
+ s4

13 , (2.11)

with δm2L/4E∼O(1) which allows (if the energy resolution is good enough) to
measure precisely δm2 through the direct observation of an oscillation cycle.

The detailed analyses of solar and KamLAND data are performed through
the “pull method” [77], which will be discussed in section 2.6. This method is
particularly useful when numerous observables and systematic parameters require
a detailed check of possible deviations (pulls) from some of these quantities in the
fit. The results of the analysis show agreement between the solar and KamLAND
data sets, as reported in Fig. 2.3, with the following constraints on the (ν1, ν2)
parameters

δm2 = (7.54± 0.2)× 10−5 eV2, (2.12)

sin2 θ12 = 0.308± 0.016, (2.13)

where the 1σ error is given here as 1/6 of the ±3σ range. Concerning θ13, solar
and KamLAND data alone put an upper bound sin2 θ13 < 0.055 at 2σ confidence
level while their combination provides a hint of nonzero θ13 [78],

sin2 θ13 = 0.021± 0.017. (2.14)



24 Global analysis of neutrino masses and mixings

In conclusion, the above bounds on (δm2, θ12) provide an important input for the
analysis of precise long-baseline accelerator data. To some extent, also the hint
for s2

13 ∼ 0.02 plays a role in combining all such data sets, even in the absence of
precise measurements of θ13 at reactors.

2.3 Long-baseline accelerator data

Long baseline accelerator (LBL. Acc.) experiments can study both the νµ
disappearance (νµ → νµ) and the appearance (νµ → νe) channels for ν and ν,
with baselines L ∼ 100 − 1000 km and energies of O(GeV). Such L/E values
make LBL experiments mostly sensitive to ∆m2-driven oscillations, but with an
accuracy which requires the inclusion of subleading δm2 effects, which have a fun-
damental importance in probing genuine 3ν effects such as those induced by the
CP-violating phase δ. Moreover, the propagation in the Earth crust (Ne ' 1.7
mol/cm3) makes them also sensitive to the mass hierarchy through matter ef-
fects. Before discussing current data, it is useful to present approximate oscil-
lation probabilities, which may help to understand the main challenges and the
interpretation of the analysis results.

In the following discussion we consider only the case of ν (the case of ν can be
easily recovered by the transformation δ → −δ andACC → −ACC) and we assume
to be dominated by ∆m2-driven oscillation, i.e. ∆m2L/(4E)∼O(1). In this case
the appearance oscillation probability for Ne =const can be approximated [79]
by (see Appendix A for the derivation)

PLBL
µe ' X sin2 2θ13 + Y sin 2θ13 cos

(
δ ∓ ∆m2L

4E

)
+ Z, (2.15)

where

X = s2
23

(
∆m2

ACC ∓∆m2

)2

sin2

(
ACC ∓∆m2

4E
L

)
, (2.16)

Y = 4c12s12c23s23
δm2

ACC

±∆m2

ACC ∓∆m2
sin

(
ACCL

4E

)
sin

(
ACC ∓∆m2

4E
L

)
,(2.17)

Z = 4c2
23c

2
12s

2
12

(
δm2

ACC

)2

sin2

(
ACCL

4E

)
, (2.18)

and the upper (lower) sign refers to NH (IH). Z represents a δm2-driven oscil-
lation term, contributing O(1%) to the total probability. The first term is the
dominant one and is enhanced (suppressed) in NH (IH) with respect to the vac-
uum case by the matter term ACC . The resulting hierarchy sensitivity is more
pronounced for longer baselines, because P LBL

µe peaks at a higher energy, where
ACC is larger. Since X is modulated by sin2 θ23, the current uncertainty on the
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θ23 octant may affect the hierarchy determination. Concerning θ13, its relatively
small error can still be used to compensate hierarchy differences only to a limited
extent. Moreover, we expect a slight anticorrelation between sin2 θ23 and sin2 θ13

in LBL data, since an increase in one of them must be compensated by a decrease
in the other, in order to keep constant the term X sin2 2θ13.

The second term, proportional to Y , represents the interference between δm2

and ∆m2-driven oscillations. Its contribution depends on the value of δ. If δ is
0 or π, then Y vanishes at the oscillation maximum, where P LBL

µe reduces to the
dominant X-term. On the other hand, if δ = 3π/2 then Y is maximized and
positive, while for δ = π/2 the sign of Y is reversed, minimizing the probability.
This behaviour makes the hierarchy sensitivity strongly dependent on the value
of δ, since the differences introduced by inverting the mass ordering may be
compensated by changing the value of δ, which is still unknown to a large extent
(Table 1.1).

This brief discussion on the appearance channel has shown the presence of
possible degeneracies, implying that various combination of parameters values
may produce (almost) the same oscillation probability. For instance, a continu-
ous eightfold degeneracy connects δ, θ23 and θ13 [80, 81, 82] as well as hierarchy
effects at fixed energy, within current uncertainties. Breaking such degeneracy
represents one of the main challenges for determining δ, the hierarchy and the
octant of θ23. However, as we shall see in next sections, the combination with
data coming from SBL reactor or solar and KamLAND experiments may partly
lift the degeneracy by constraining the value of θ13. Another important issue is
represented by backgrounds from νe contamination of the initial flux and from
NC events (mis-identified π0) in accelerator experiments, which can alter the
reconstruction of appearance spectra and thus, indirectly, also of θ13 and δ.

The disappearance channel νµ → νµ is not significantly perturbed by matter
effects and its oscillation probability can be understood by means of Eq. (2.4).
For s2

13 → 0, the symmetry θ23 → π/2 − θ23 is almost exact for P LBL
µµ , making

νµ → νµ oscillations largely insensitive to θ23 octant, apart from subleading ef-
fects that may emerge at a high level of precision. This channel allows for a
precise measurement of ∆m2 and θ23, but the latter is strongly affected by the
octant degeneracy if θ23 6= π/4. Furthermore, as shown in [83, 84], P LBL

µµ has
some sensitivity to the hierarchy which may emerge as a small difference in the
best-fit values of ∆m2 for NH and IH. The uncertainties on the cross sections
represent an increasingly important issue for this channel, since they may modify
the reconstructed values of ∆m2, as shown in [85].

The data that we have studied in our global analysis include both the appear-
ance and disappearance channels of Tokai-to-Kamioka (T2K) [86, 87, 88, 89] and
Main Injector Neutrino Oscillation Search (MINOS) [90, 91, 92, 93]. The first has
a baseline of 295 km and its detector is designed to be 2.5◦ off-axis with respect
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to the neutrino beam. The off-axis technique [94] produces a sharp peak in the
neutrino spectrum, which can be tuned to cover the first oscillation maximum
(E ' 0.6 GeV) and allows for an improved signal-to-background ratio. T2K uses
a near detector at 280 meters from the source in order to reduce the systemat-
ics connected to the neutrino flux and uncertainties on cross sections. The data
adopted in the global analysis refer to 6.57×1020 protons on target (pot) in both
appearance and disappearance, collected between January 2010 and May 2013
[89].

MINOS uses the on-axis technique at a baseline of 730 km. The data used
herein refer to an exposure of 10.71×1020 pot for the ν mode and 3.36×1020 for
the ν mode [93]. MINOS has larger background with respect to T2K, affecting
significantly the precision on the appearance channel: for instance in MINOS
only 33 out of 152 events are expected to come from νµ → νe-CC interactions
[90], while for T2K the 28 observed events have a background of only ∼ 5 events
[86].

The analysis method used for both data sets is described in Appendix B, in
which we considered the full 3ν oscillation probability with floating oscillation
parameters. In both T2K and MINOS the analyses are dominated by statistical
errors, especially in the appearance channels, since the near detectors allow to
partly cancel the systematic uncertainties.

Let us first consider the parameters (sin2 θ23,∆m
2), whose allowed regions are

shown in Fig. 2.4 and Fig. 2.5 for T2K and MINOS, respectively. Concerning
θ23, both experiments are affected by the octant degeneracy, as discussed for the
disappearance probability. While T2K prefers nearly maximal mixing, MINOS
disfavors it at ∼ 1σ (∆χ2 = 1), although it cannot discriminate between the
octants. The precision on the θ23 parameter is dominated by T2K, which still
gives the most stringent limits in the global analysis. On the other hand, the
precision on ∆m2 is comparable in T2K and MINOS (∼ 4%) and their best-fit
values are compatible at about 1σ level.

Regarding the pair (sin2 θ13, δ), neither T2K or MINOS are able, at the mo-
ment, to put significant constraints on δ without any external input on θ13. For
this reason, in Fig. 2.4, which refers to T2K, for each value of δ in [0,2π] we have
calculated a one-dimensional allowed regions for sin2 θ13, which is the same proce-
dure adopted by the collaboration in Fig. 32 in [89]. We note that there is a T2K
preference for a relatively high value of sin2 θ13 if compared to the one from solar
and KamLAND or from SBL reactor data (as we shall see in next section). This
trend is more pronounced for IH, since higher values for θ13 can compensate the
decrease of P LBL

µe due to matter effects. However, there is still compatibility with
the θ13 values coming from solar and KamLAND data s2

13 ∼ 0.02, and from SBL
reactors. For MINOS the information on θ13 and δ (not shown) is less significant,
and results of the (δ, θ13) analysis are compatible with all the others within large



28 Global analysis of neutrino masses and mixings

uncertainties.

Neither T2K nor MINOS, by themselves, show any significant preference for
NH or IH. Their combination with δ-independent measurements of θ13, like those
from solar and KamLAND, and especially from SBL reactors, may help (in prin-
ciple, at least) to constrain δ and to get hints on the mass hierarchy.

2.4 Short-baseline reactor data

Short-baseline reactor experiments are characterized by L ∼ O(1 km) which,
for E ∼few MeV, allows to probe ∆m2 via the vacuum oscillation phase ∆m2L/4E
∼ O(1). The oscillation probability can be approximated by Eq. (2.4), where
the oscillation amplitude is given by sin2 2θ13. Because of the high statistics
(∼ 70 events/day at each of the 20 ton far detectors for Daya Bay [95]) these
experiments can reach O(few %) precision on sin2 2θ13 through the observation
of a neutrino deficit with respect to the expectations without oscillations. Previ-
ously, the Palo Verde [96] and Chooz [97] experiments found no evidence for νe
disappearance, and they could only put an upper bound sin2 2θ13 < 0.15. The
proposals of Daya Bay [98], Double Chooz [99] and RENO [100] included a near
detector with baselines L ≤400 m, where the oscillation is still small. Since both
near and far detectors have a similar structure, most of the systematic uncertain-
ties are canceled out in the near/far ratio, and more precise measurements of νe
disappearance became possible, as first envisaged in [101].

As shown in the latest data sets [95, 102, 103], which we have included in our
global analysis, all three experiments have reported evidence for νe disappearance
since 2012. An example is given in the left panel of Fig. 2.6, showing on top
the expected and observed spectra of events/day for Daya Bay [95] with (red)
and without (blue) oscillations. The bottom part reports, instead, the far/near
spectral ratio. The position of the dip in this ratio depends on ∆m2 and can
be extracted by a shape analysis of the event spectrum. Taking these results as
reference, the right panel of Fig. 2.6 displays the allowed regions in the plane
(sin2 2θ13,∆m

2), where the 1σ error on ∆m2 is comparable to the one coming
from LBL, and the precision on θ13 is the best to date. Because the νe →
νe disappearance channel is insensitive to the δ phase, the combination of SBL
reactor data with long baseline experiments in the appearance mode νµ → νe
can give some insight on δ, taking advantage of the strong limits available on θ13

and the contribution of the δ-term to the appearance probability for LBL. The
analysis method for this data set has been performed as in [104].

Apart from the fundamental measurement of θ13, SBL reactor experiments
have shown an event excess at E ∼ 5 − 7 MeV (sometimes called “bump”
or “shoulder”), with respect to the expectations from current reactor models
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[105, 106]. Current data sets disfavor local backgrounds or detector details as pos-
sible origins for the discrepancy, which should be caused by new nuclear-physics
components in the reactor νe flux. This finding underlines the importance of a
revaluation of the flux shape uncertainties proposed in [105, 106] and of the use
of a near detector in future reactor experiments. The relevance of flux shape
uncertainties will be discussed in more detail in Chapter 3.

2.5 Atmospheric neutrino data

Atmospheric neutrinos are the decay product of secondary particles (pions,
muons, kaons) produced by interactions of primary cosmic rays with nuclei in the
atmosphere. The accessible wide range of L/E and the possibility of studying
both νµ, νµ disappearance and νe, νe appearance create a rich phenomenology,
which is sensitive mostly to (∆m2, θ23)-driven oscillations and subdominantly to
effects driven by (δm2, θ12) and by θ13 and δ. Although the subdominant effects
have not been isolated so far, they must be taken into account at the current level
of accuracy in atmospheric ν experiments.

The experimental data included in the global analysis refer to 15 years of data
taking of Super Kamiokande (SK) [107, 108, 109]. SK is equipped with a 50 kton



30 Global analysis of neutrino masses and mixings

0

1

2

3

4

5

0

0.005

0.01

0.015

sub
GeV

multi
GeV

stopping
muons

through-going
muons

10 10 10 10 10 10 10-1 0 1 2 3 4 5

E , GeV

d
N

/d
ln

E
, 
(K

t.
y
r)

-1

(m
 
.y

r.s
te

r)
2

-1

ν
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Super-Kamiokande [110].

water-Cherenkov detector, which allows to discriminate µ-like events from e-like
events by studying the ring pattern produced in photomultipliers by the light
emitted from charged leptons. On the other hand, for such a detection technique
is not possible to distinguish ν and ν events, with a consequent dilution of the
oscillation effects in matter. The data provided by SK are divided into subsets,
each having a different parent neutrino energy and zenith distribution, as reported
in Fig. 2.7 [110] (where, however, only some of them are shown). Sub-GeV and
multi-GeV events form the so-called “fully contained” (FC) event sample, where
both the vertex and the lepton track are located inside the detector. Stopping and
through-going muon events refer to muons which, produced outside the detector,
either stop inside it or cross it, respectively. The correspondent observed events
distributions as a function of the zenith angle, which determines the baseline, are
shown in Fig. 2.81, where red dashed lines indicate the unoscillated prediction,
while the blue lines refer to the best fit, with oscillations included. Focusing
on multi-GeV events in Fig. 2.8 we note that the no-oscillation case shows an
up-down symmetry θ ↔ π − θ (θ = zenith angle) inherited from the primary

1Note that in Fig. 2.8 the expression “non-showering” refers to through-going events. More-
over multi-GeV and sub-GeV events can be further classified according to other properties of
the events. See [109] for a more complete description of the data set.
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Figure 2.8: Zenith distribution of events for different classes in Super Kamiokande
[109]. The red dashed line indicates the predictions for the no oscillation hypothesis,
while the blue one refers to the best fit distributions with oscillations. Data points
are shown in black. Note that e-like events are compatible with the no oscillation
hypothesis, while µ-like events show clearly oscillation effects for a zenith angle
> π/2 (upward directions).

cosmic rays flux [111].), up to geomagnetic effects at low energy. However, this
property is not present in the observed zenith distributions of µ-like events, which
show a clear deficit in up-going directions. Since e-like events are compatible
with oscillations, these observations can be understood in terms of dominant
oscillations νµ → ντ with a large mixing angle θ23 (sin2 2θ23 ' 1) and ∆m2 '
2−3×10−3 eV2, also in agreement with the LBL data set. Atmospheric neutrinos
are compatible with sub-dominant oscillations νµ → νe for the relatively small
value of θ13 found in SBL reactor and LBL accelerator experiments. The L/E
dependence of the oscillation phase is confirmed by the decrease of oscillation
effects in the µ-like event sample for increasing E (e.g., stopping and through-
going muons in Fig. 2.8).

The analysis method used herein follows the one reported in [40], which in-
dicated a preference for the first octant of θ23 for both mass hierarchies. The
difference with the SK collaboration results on θ23 [107, 108, 109] is partly under-
standable by the lack of detailed public information on SK data and systematics,
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which are available only within the collaboration itself. For this reason, the in-
terpretation of subleading effects at the ∼1σ level in SK, such as those related to
(non)maximal mixing, should be taken with caution. In any case, as discussed in
[40], our slight preference for θ23 < π/4 in atmospheric data stems from a small
but persisting overall excess of low-energy electron-like events in the SK data.

Concerning the CP phase δ, hints from atmospheric neutrinos alone are still
fragile. In [40], an analysis for real U (sin δ = 0 ⇐⇒ δ = 0, π) showed some
preference for cos δ ' −1 as compared with cos δ ' +1. More recently, for
unconstrained δ ∈ [0, 2π], it has been shown that atmospheric neutrino data
corroborate current indications in favor of sin δ ' −1 (δ ' 3π/2), although
they tend to change slightly the central value with respect to LBL data (towards
δ ∼ 1.4π) [112].

SK is sensitive to the mass hierarchy through matter effects for θ13 6= 0, af-
fecting mainly upward-going neutrinos. However, the relatively large systematic
uncertainties, the impossibility to distinguish ν from ν and the current statistics
prevent hierarchy effects to emerge with high significance. In [107, 109] the in-
verted hierarchy is slightly favoured with χ2(IH) − χ2(NH) ' −1.2, while more
recent results (not included herein) presented a χ2(IH)−χ2(NH) ' 3 [112], which
is consistent with the combination of SBL reactor and LBL accelerator data. De-
spite the significance is still low to draw a conclusion, this result shows that the
newly developed νe- and νe-enriched samples in SK may improve the sensitivity
on the mass hierarchy and can represent a complementary approach to LBL ac-
celerator experiments. As we shall see in chapter 4, a longer exposure time or
a larger detector size, both giving higher statistics, would help to constrain the
mass hierarchy in atmospheric ν oscillation searches.

2.6 Methodological and statistical approach

As discussed in Chapter 1, the 3ν oscillation framework is described by six pa-
rameters (θ13, θ12, θ23, δ, δm

2,∆m2) and by the neutrino mass hierarchy sign(±∆m2).
Depending on the regime considered, some parameters may be more or less rel-
evant in the oscillation probability. However, in general, all of them are free to
float in our analysis and are constrained by a global χ2 fit to the data. For the
sake of brevity, here we report only general information on the χ2 analysis of
the various data sets; for more details see the references reported in the previous
sections.

Our analysis method is based on a χ2 minimization approach. For a fixed hier-
archy we scan the parameter space p=(θ12, θ13, θ23, δm

2,∆m2, δ) over a dense grid
of sampling points. For each point we compare the prediction on the observable
number of events N theo

n (n = 1, . . . ,M , with M depending on the experiment)
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with the experimental observation N exp
n by calculating the χ2(p), whose value

must be minimized over K systematic parameters. Whenever possible, we use
the “pull” method [77], where the minimization process reduces to the inversion
of a K×K matrix, and gives extra information on the χ2 contribution from each
single systematic parameter. This method is based on the assumption that the
k-th systematic parameter affects linearly N theo:

N theo
n (p)→ N theo

n (p) +
K∑
k=1

cknξk, (2.19)

where ξk represents the shift (in units of standard deviations) of the k-th system-
atic parameter from its central value, and ckn is the first derivative of N theo

n with
respect to such parameter. The χ2 is then given by

χ2(p) = min
ξk

 M∑
n=1

(
N exp
n (p)−N theo

n (p)−
∑K

k=1 c
k
nξk

un

)2

+
K∑
k=1

ξ2
k

 , (2.20)

where un are the uncorrelated errors, equal to
√
N exp
n (p) if we consider only the

statistical component. From χ2(p) we extract one dimensional projections on
each oscillation parameter, for the separate NH and IH cases. Projections are
obtained by marginalizing over the all the other parameters, and are defined in
terms of number of σ, where

Nσ =
√

∆χ2(p) =
√
χ2(p)− χ2

min (2.21)

and

χ2
min = min

p
χ2(p). (2.22)

Analogous procedures are used for two-dimensional projections which are useful
to study in detail parameter correlations.

As far as the hierarchy determination is involved we still use ∆χ2 as a measure
of the NH/IH difference,

∆χ2
I-N = χ2

min(IH)− χ2
min(NH). (2.23)

In principle, the value of
√

∆χ2
I-N cannot be considered as the Nσ value for the

exclusion of a specific hierarchy, since ∆χ2 follows a χ2 distribution only for
continuous variables, while Eq. (2.23) is calculated for a discrete (binary) option.
This issue has been discussed in literature in [14, 113, 114], with different proposal
for appropriate definitions of the hierarchy sensitivity. However, as shown in [114],
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it appears that Eq. (2.23) represents a good approximation and can be safely used
in this context. Unfortunately, as shown in the next Section, the numerical values
of ∆χ2

I-N are not yet significant enough to warrant a refined discussion.
After analyzing each data set we can perform combinations by adding the

correspondent grid χ2(p). In order to have more insights on the global scenario,
we perform a sequential addition of new data sets, starting from the combination
of long baseline accelerator with solar and KamLAND experiments (“LBL Acc. +
Solar + KL”). The reason for this choice is that precision LBL oscillation searches
in both the appearance and the disappearance channels require the inclusion of
subdominant terms driven by (δm2, θ12). The (δm2, θ12) values are provided by
Solar+KL data, which also introduce constraints on θ13, in terms of a preference
for s2

13 ∼ 0.02. This preference slightly breaks the degeneracy (anticorrelation)
between s2

13 and s2
23 induced by the dominant LBL accelerator dependence on

|Uµ3Ue3|2 in the appearance channel.
It is then important to add to the previous combination the independent and

stringent constraints on θ13 coming from SBL reactor experiments, which probe
dominantly the ∆m2-driven oscillations. The relevance of such a combination
derives from the relation linking θ13, δ and the mass hierarchy in the LBL ap-
pearance channel. Because θ13 limits from SBL reactors are independent from δ,
when they are superimposed to the typical wavy shape of the allowed regions in
(θ13, δ) from LBL accelerator they can give useful information on both the CP
phase and the mass hierarchy.

After combining the “LBL Acc. + Solar + KL” and “SBL reactor” datasets,
we finally add the Super-Kamiokande atmospheric neutrino data (“SK Atm”).
We have seen that they entail, in principle, an extremely rich 3ν oscillation
physics, which, however, is manifest mainly via the dominant parameters (∆m2, θ23).
Subdominant oscillation effects are often smeared out over wide energy-angle
spectra of events, and can be partly mimicked by systematic effects. For this
reason, “hints” coming from current atmospheric data (e.g. on the θ23 octant
and δ) should be considered with caution, and preferably in combination with
other independent data sets.

We conclude this section with a remark. Our global analysis can give useful
information regarding the neutrino oscillation phenomenology, but should not be
considered as a substitute for the official oscillation analyses performed by the
experimental collaborations. Therefore, our estimated parameter ranges may be
slightly shifted with respect to those coming from the official analyses. We expect
possible offsets at < 1σ at present, and often much lower, but since the interest
is mainly on the mass hierarchy and on δ (whose knowledge is at the few σ level
in the best case), even small deviations may matter. However, the successful
indication of θ13 > 0 from a previous global analysis [78] shows that informed
discussions of subleading effects may still have a significant interest.
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2.7 Constraints on oscillation parameters

We start the discussion on the results of the global analysis by considering the
one dimensional projections of ∆χ2 on each parameter. The results are reported
for each data set in Figs. 2.9, 2.10 and 2.11 respectively, showing the confidence
intervals, in terms of Nσ, for each oscillation parameter and for both NH (blue)
and IH (red). Note that for the solar parameters, there is essentially no difference
between the mass orderings, because the tiny effects related to NH-IH differences
are unobservable in the fit. In this case only the curve for NH is reported. Let
us first consider the “LBL Acc. + Solar + KL” data set (Fig. 2.9). In this
combination, an important role is played by T2K appearance data, which set the
lower bound on θ13 and induce a the preference for δ ' 1.5π. Concerning θ23,
MINOS disappearance data prefers non-maximal θ23, as compared with nearly
maximal θ23 in the T2K data fit. The slight preference for the second θ23 octant
is due to the interplay of LBL accelerator and Solar + KL data, as discussed in
the next Section.

The inclusion of “SBL Reactors” data set (Fig. 2.10) has three effects. One is
the strong reduction in the sin2 θ13 uncertainty around the best fit sin2 θ13 ' 0.022.
The second is a more pronounced preference for δ ' 1.5π and sin δ < 0. The last
is a slightly different preference for the two octants, coming from the interplay
with LBL accelerator data.

The combination with “SK Atm” completes the data set with all kind of
experiments available at present (Fig. 2.11). The best fit values for this general
scenario, together with the 1,2,3 σ ranges of each parameter, have been previously
reported in Table 1.1. Atmospheric data enhance the significance of sin δ < 0,
but all the range [0,2π] remains still allowed at 3σ, so it is still premature to
claim a hint of CP violation in the lepton sector. In this context, the appearance
channel of LBL experiments will provide crucial data to confirm or disprove these
indications. The global analysis shows still a preference for non-maximal θ23

mixing, although with an octant flip with the hierarchy. The instability in θ23

shows that the current information on the octant is fragile. New data from LBL
and atmospheric experiments will hopefully shed some light on this issue.

The statistical difference between normal and inverted hierarchy is ∆χ2
I−N =

−1.4 for LBL acc. + solar + KL data, decreases to −1.1 by adding SBL reactor
data, and is as small as −0.3 with all data included. Such values do not provide us
with significant indications about the hierarchy, unfortunately. LBL experiments
may reach a higher sensitivity in the near future, but this achievement is strongly
dependent on the true value of δ and θ23. Nevertheless, other approaches have
been proposed to tackle this measurement, which will be the main topic of the
next chapters.

Let us now consider some parameter covariances. Figure. 2.12 displays the
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Figure 2.10: As in Fig. 2.9, but with the inclusion of “SBL Reactors” data set.
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Figure 2.11: As in Fig. 2.10, but with the inclusion of “SK Atm.” data set.
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Figure 2.12: Allowed regions in the plane (sin2 θ23,∆m
2). From left to right

increasingly rich data set are considered, as specified by the label on the top of
each column. The top row refers to NH and the bottom one to IH.



38 Global analysis of neutrino masses and mixings

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

LBL Acc + Solar + KL + SBL Reactors + SK Atm

23
θ

2sin
23

θ
2sin

23
θ

2sin

23
θ

2sin
23

θ
2sin

23
θ

2sin

1
3

θ
2

s
in

1
3

θ
2

s
in

σ1 

σ2 

σ3 

N
o
rm

a
l H

ie
ra

rc
h
y

In
v
e
rte

d
 H

ie
ra

rc
h
y

Figure 2.13: As in Fig. 2.12, but in the plane (sin2 θ23, sin
2 θ13).

1σ, 2σ, and 3σ contours in the plane (sin2 θ23,∆m
2), where all other parameters

have been marginalized away. The top (bottom) row refers to the case of normal
(inverted) hierarchy. From left to right, the panels refer to increasingly rich data
sets. The octant instability discussed in the previous section emerges at a glance.
It is important to note that the less maximal θ23, the larger the uncertainty on
∆m2. In this context, future constraints on ∆m2 from SBL reactors might play
an important role, because of their independence from θ23.

Figure 2.13 is the analogue of Fig. 2.12, but in the plane (sin2 θ23, sin2 θ13).
In the leftmost panels, one can notice a negative correlation between the mixing
angles, as already highlighted in section 2.3. Therefore, for large values of θ23

(second octant) there is a general preference for low θ13. The solar and KL
experiments, which prefer a relatively low best fit for θ13, introduce thus a weak
preference for the second octant in both hierarchies. Notice that, in IH the allowed
regions of “LBL Acc + Solar + KL” data set are shifted upwards along the sin2 θ13

axis with respect to NH, as an effect of T2K appearance data. Thus, the addition
of the strong constraint on θ13 from SBL reactor, with a correspondent lower best
fit, enhances the preference for the second octant via the θ23−θ13 anticorrelation.
However, the addition of SK atmospheric data changes again the overall octant
preference, at least for the NH case.

It is useful to compare the left and middle panels of Fig. 2.13 with the analo-
gous ones of Fig. 1 from the previous analysis in [53]: the local minima in the two
θ23 octants are now closer and more degenerate. This fact is mainly due to the per-
sisting preference of T2K disappearance data for nearly maximal mixing, which
is gradually diluting the MINOS preference for nonmaximal mixing. Moreover,
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Figure 2.14: As in Fig. 2.13, but in the plane (sin2 θ13, δ).
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Figure 2.15: As in Fig. 2.13, but in the plane (sin2 θ23, δ).
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accelerator data are becoming increasingly competitive with atmospheric data in
constraining θ23. Therefore, although we still find that atmospheric data alone
prefer θ23 < π/4, the overall combination with current non-atmospheric data
(right panels of Fig. 2.13) makes this indication less significant than in previous
fits (compare, e.g., with Fig. 1 in [53]), especially in IH where non-atmospheric
data now prefer the opposite case θ23 > π/4.

Figure 2.14 shows the allowed regions in the plane (sin2 θ13, δ), which is at the
focus of current research in neutrino physics. In the left panels, with respect to
previous results in the same plane [53], there is now a more marked preference for
δ ' 1.5π, where a compromise is reached between the relatively high θ13 values
preferred by the T2K appearance signal, and the relatively low value preferred
by solar + KL data. In the middle panel, SBL reactor data strengthen this trend
by reducing the covariance between θ13 and δ. It is quite clear that we can still
learn much from the combination of accelerator and reactor data in the next few
years. Finally, the inclusion of SK atmospheric data in the right panels also adds
some statistical significance to the constraints on δ, with a slight lowering of its
best-fit value.

Our discussion is completed by the covariances in the plane (sin2 θ23, δ), as
reported in Fig. 2.15. The shapes of the allowed regions are rather asymmetrical
in the two θ23 octants, which are physically inequivalent in the flavor appearance
phenomenology of accelerator and atmospheric neutrinos. Therefore, reducing
the octant degeneracy will also help, indirectly, our knowledge of δ. Eventually,
more subtle covariances may be studied in this plane [115], but we are still far
from the required accuracy.

2.8 Implications for absolute neutrino mass ob-

servables

In Chapter 1 we have introduced the absolute mass observables (mβ,mββ,Σ).
Even in the absence of other information, these observables are constrained by
oscillation data. Figure 2.16 reports, from left to right, the regions allowed at 2σ
by the global analysis of neutrino oscillation data in the planes (Σ,mββ), (Σ,mβ)
and (mβ,mββ) respectively. The blue (red) bands represent the case of normal
(inverted) hierarchy. In each of the three coordinate planes, we note a strong
correlation between the observables, especially in inverted hierarchy, that can be
understood by distinguishing the following three cases:

a) mmin �
√

∆m2,

b) mmin &
√

∆m2,

c) mmin <
√

∆m2,
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Figure 2.16: From left to right: 2σ allowed bands in the pairs of absolute mass
observables (mββ , Σ), (mβ, Σ) and (mββ , mβ). The bands (blue for NH and red for
IH) have been obtained by propagating the 2σ error of oscillation parameters, and
unconstrained Majorana phases. Vertical and horizontal lines (or bands) represent
current laboratory limits on mβ [116, 117], mββ [118] and Σ [119, 120].

where
√

∆m2 ' 0.05 eV.

In the case a) the mass eigenstates form a degenerate spectrum, since mmin '
m1 ' m2 ' m3, and the absolute mass observables are [121]

Σ ' 3mβ, (2.24)

mββ ' mβf, (2.25)

mββ '
Σ

3
, (2.26)

where

f =
∣∣c2

12 + eıα1s2
12

∣∣ . (2.27)

Equation 2.24 explains the correlation in the (mβ,Σ) plane of Fig. 2.16, where, for
degenerate masses, the colored bands reduce to a “line” in both hierarchies. The
correlation is less strong in the (mβ,mββ) and (Σ,mββ) planes, where, because of
our ignorance on the Majorana phases, the allowed regions are thicker.

If condition b) is satisfied, then the spectrum is partially degenerate and
becomes sensitive to ∆m2, while δm2 cannot still be resolved. In this case, the
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absolute mass scale observables are related by the following equations [121]

Σ ' 2mβ +
√
m2
β ±∆m2, (2.28)

mββ ' mβf, (2.29)

Σ '
2mββ +

√
m2
ββ ± f∆m2

f
, (2.30)

where the upper (lower) sign refers to NH (IH) and we have neglected terms
proportional to s2

13, which is a good approximation for mmin &
√

∆m2. Equation
(2.29) indicates that in the plane (mβ,mββ) the bands for NH and IH are still
overlapping and they present the same linear trend obtained in the degenerate
case. On the other hand, Eqs. (2.28) and (2.30) show that in the spaces (Σ,mβ)
and (mββ,mβ) the allowed regions for IH (NH) bend upward (downward) and,
thus, they eventually branch out. For IH, both mβ and Σ reach their lowest value

at mIH
β,min '

√
∆m2 and ΣIH

min2
√

∆m2 respectively.

The last regime, identified by the condition mmin <
√

∆m2, refers to the
normal hierarchy spectrum (mmin = m1 ' m2 � m3), where the absolute mass
scale is sensitive to both mass differences. In this limit, the relations connecting
each pair are more difficult to interpret and we just give a few comments. The
variables mβ and Σ have the minimum value for mNH

β,min '
√
s2

12δm
2 + s2

13∆m2

and ΣNH
min '

√
δm2 +

√
∆m2 respectively, while our ignorance on the Majorana

phases adds to the uncertainty of mββ and can, in principle, induce a vanishing
value for this observable. Note that, the ∼6% precision on θ13, due mainly to
the SBL reactor data, reduce the spread of the allowed regions for small values
of the three parameters with respect to what found in [53], especially in the
plane (mβ,Σ), where no effect from Majorana phases is present. For more refined
discussions of the allowed bands see also [122, 123, 124].

In the final part of this section we describe briefly the current status of non-
oscillation searches on the absolute mass scale of neutrinos. Concerning cosmo-
logical observations, recent data from the Planck satellite [119] reported

Σ < 0.2 eV, (2.31)

at 95% confidence level, which is represented by a vertical dashed line in Fig. 2.16.
Note that current precision in cosmological data allows to probe the partially de-
generate zone of the spectrum, where the bands for NH and IH start to separate
from each other. In the near future, the information on Σ from cosmology may
give the opportunity to probe the inverted hierarchy region, hopefully in combi-
nation with mβ or mββ. However, the bounds on Σ must be treated with care,
because they depend on the cosmological model on which the data analysis is
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performed. The limit we have reported here is obtained under the assumption
of the so-called minimal ΛCDM model, but, allowing extra parameters in the fit,
the constraint on neutrino mass would become less stringent, as shown in [120].

Being based on kinematics, the measurements performed in β decay exper-
iments are model independent. The best limits on mβ come from the Mainzk
[116] and Troitsk [117] collaborations:

mβ < 2.3 eV (Mainz),

mβ < 2.5 eV (Troitsk),
(2.32)

at 95% confidence level, represented by an horizontal dashed line in Fig. 2.16,
which belongs to the degenerate region of the spectrum.

Finally, the determination of mββ through neutrinoless double beta decay is
affected by large uncertainties on the nuclear matrix elements, leading to de-
generacies [125], which make the measurement of mββ particularly challenging.
Therefore, the upper bounds are usually reported as a band, as the one presented
by a recent global analysis [118]:

mββ < 0.13− 0.31 eV, (2.33)

at 90% confidence level, which is in the degenerate region of the mass spectrum
(see Fig. 2.16). We remark that such bounds on mββ apply only if neutrinos
are Majorana, and if 0νββ decay is assumed to be induced by light Majorana
neutrinos without new physics mechanisms.

2.9 Summary of results and open problems

In this chapter we have presented the results of the global analysis in [13].
With respect to a previous one [53], we have included the full ν data set of T2K for
both appearance and disappearance [86, 87, 88, 89], the latest results from MINOS
including both neutrinos and antineutrinos oscillation analysis [90, 91, 92, 93], and
new data coming from SBL reactors [95, 102, 103]. Concerning sin2 θ23 and ∆m2,
LBL acc. experiments are now providing the most stringent limits through νµ
disappearance, leading to a ∼3% and ∼10% precision, respectively. In particular,
the relatively large uncertainty on θ23 is related to the octant degeneracy, which
remains an open issue, since no significant indication is available yet. Despite
the best fit value of θ23 is still non-maximal, as already found in [53], it is closer
to π/4 in both hierarchies because of strong impact of T2K disappearance data,
which prefers nearly maximal mixing. Furthermore, the covariance between δ and
θ23 is assuming some relevance, as discussed also in [81], and can, in principle,
affect δ determination in the future, if the octant degeneracy is not solved.
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Probably the most intriguing feature of the current data analysis is the emer-
gence of an overall preference for nonzero CP violation around δ ' 1.4π (with
sin δ < 1) at & 1σ level, while some ranges with sin δ > 1 are disfavored at
& 2σ. Such a result originates mainly from the combination of T2K and SBL
reactor data, where the former is directly sensitive to δ and the latter, being δ
independent, lift the degeneracy with θ13. However, this hint is still statistically
weak, since each value of δ ∈[0,2π] is allowed at 3σ confidence level. In the next
few years, joint 3ν analyses of LBL accelerator data and SBL reactor data have
the potential to bring interesting new results on δ and, possibly, on the mass
hierarchy.

Although not included in this thesis, new data have become available in 2015.
First, T2K is running with an antineutrino beam [126], in order to enhance the
sensitivity to possible CP violation. Despite the low statistics (3 νe candidate
events so far), the results are in agreement with the hypothesis of maximally
violated CP, for current best fit values of θ13. Super-Kamiokande has also updated
its data sample [112]. The analysis performed by the SK collaboration still favors
θ23 > π/4 at 1σ level and presents a hint in favor of NH (∆χ2

I-N ' 3) and
CP-violating values of δ (δ/π ∼ 1.3π), consistent with the information from
T2K and SBL reactors. Moreover, another long baseline accelerator experiment
(NOνA [127], L = 810 km) has just released the first oscillation results for both
appearance and disappearance [128, 129]. The collaboration decided to show
the results obtained in the νµ → νe channel with two different event selection
procedures (so-called LID and LEM). The first is considered the primary method
and selects 6 events over an estimated background of 0.94. In this case, no
relevant modification is introduced for both δ and θ13 in the context of the global
analysis. On the other hand, the LEM selector identifies 11 events with ∼1 event
of background, which can be interpreted in terms of a relatively large sin2 θ13, thus
introducing a tension with the current SBL reactor best-fit for θ13, especially in
IH. Consequently, as our preliminary results presented have shown [130], for LEM
selector the global fit has a ∼ 2σ preference for NH and δ = 1.5π, which is more
pronounced than what reported in Fig. 2.11 or in Table 1.1. A full analysis of
2015 data is in progress.

In a five-year time scale, an important role in the determination of δ and
the mass hierarchy will be played by LBL Acc. and SBL reactor data, and,
to a lesser extent, by Super-Kamiokande. Atmospheric neutrinos are affected by
larger systematic uncertainties and a slowly growing statistics, which do not allow
hierarchy effects to emerge with high significance. In order to achieve this goal,
larger (megaton) detectors are needed, see Chapter 4. On the other hand, the
combination of T2K and NOνA may reach a 3σ hierarchy sensitivity only in the
optimal scenario of maximally violating CP value of δ (an enhancement is possible
for θ23 > π/4) [131, 132, 133]. These and other new generation experiments will
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face challenging issues, arising from the unprecedented accuracy required from
both the theoretical and experimental point of view. In the next chapters these
issues will be discussed, with a focus on the mass hierarchy determination in
oscillation experiments with reactor and atmospheric neutrinos.



46 Global analysis of neutrino masses and mixings



3

Neutrino oscillations at medium
baseline (MBL) reactors

3.1 Towards precision physics at MBL reactors

So far, reactor neutrino experiments have been performed either at “short”
baseline L∼O(1) km where ∆m2L/4E∼O(1), or at “long” baselines L∼O(100)
km where δm2L/4E∼O(1). In these two limiting cases, the dominant oscillation
parameters are (|∆m2|, θ13) and (δm2, θ12, θ13), respectively, with no sensitivity
to the mass hierarchy. A tiny sensitivity to ±∆m2 is recovered in short-baseline
experiments, by including subleading oscillation terms depending on the full Pee
parameters space (δm2,±∆m2, θ12, θ13) [134], but the effect is phenomenologically
negligible.

A more promising path forward is represented by reactor oscillation searches
at intermediate baselines L ∼ few×10 km where, in principle, one can be sensitive
to both δm2- and ∆m2-driven oscillations, provided that the energy resolution is
at least as good as δE/E∼ δm2/∆m2 ∼ few %. This possibility, first envisaged
in [135], has now become realistic after the 2012 discovery of a relatively large
value of θ13 and in view of technological advances in reactor ν detection. Besides
probing the hierarchy (±∆m2), another advantage of medium-baseline (MBL)
reactor experiments is the possibility of measuring very accurately the “solar”
parameters (δm2, θ12), as noted in early papers [135, 136] and further developed in
the recent literature. See [137, 138, 139] for reviews and for further bibliography.

The stringent conditions needed to probe sign(±∆m2) and precisely measure
(δm2, θ12) at MBL reactor experiments have been explored with increasing degree
of refinement, revealing many interesting subtleties and challenges. From the
experimental viewpoint, the transition from SBL to MBL reactor experiments
implies a strong reduction of the neutrino flux, which must be compensated by



48 Neutrino oscillations at medium baseline (MBL) reactors

an increase in the detector volume, as well as in the collection efficiency (to
improve the energy resolution). At present, only two MBL projects are being
realistically pursued near powerful reactor plants: the Jiangmen Underground
Neutrino Observatory (JUNO) in China [140, 141, 142] (in construction) and
RENO-50 in Korea [143] (proposed).

From the theoretical and phenomenological viewpoint, the prospective opti-
mization of the ±∆m2 and (δm2, θ12) signals has led to a number of interesting
results. Detailed analyses [144, 145] have shown that the optimal baseline for
both purposes is around 50±10 km, and that the energy resolution must be at
least as good as σE/E ∼ 3%

√
E/MeV. The reactor cores in the nuclear power

plant must be close enough to each other (δL�1 km) to avoid destructive inter-
ference of the δm2-driven oscillations [146, 147]. The statistics must be enough
to allow sensible χ2 or Fourier-transform analyses [148, 149, 150, 151, 152], which
typically require O(105) events and thus exposures of at least 200 GW·kton·year.
Statistical issues related to the interpretation of χ2 differences between NH and
IH, which represent discrete (not continuously connected) hypotheses, have been
extensively studied in recent papers [145, 153, 154, 155]. The net result is that
the usual measure Nσ '

√
∆χ2 continues to hold, to a good approximation, also

for hierarchy tests [153].
However, high statistic event spectra may not be enough to discriminate the

hierarchy, if systematic uncertainties are not kept under control. The known
sources of backgrounds, including geoneutrinos, do not represent a real threat
since they cannot mimic oscillation features [156, 157]. Real challenges to precise
studies of the oscillation parameters, most notably of |∆m2| [84, 158, 159], are
represented by energy-scale uncertainties E → E + δE [140, 160, 161, 162, 163],
and by flux-shape uncertainties Φ → Φ + δΦ [14, 15]. In particular, non-linear
energy-scale deviations at the sub-percent level can be engineered to reduce signif-
icantly the NH-IH differences [161, 163]. Flux-shape uncertainties at few percent
level may also be dangerous, and cannot be excluded after the recent discovery
of an unexpected “bump” feature in the unoscillated reactor νe spectrum, which
points toward unknown or poorly understood nuclear effects [102, 164, 165].

In this context, we have performed detailed analyses of the precision physics
program at MBL reactors, assuming for definiteness a JUNO-like setting [140].
Most of our results could be applied to RENO-50 [143] where, however, detailed
specifications of the proposed experiment are still lacking. In particular, we have
studied a number of refinements which are needed to maximize the physics goals
of JUNO, including: (1) the analytical inclusion of nucleon recoil effects in the
detection process; (2) the analytical inclusion of matter and multiple reactor core
effects in the oscillation probability; (3) the inclusion of oscillation and normaliza-
tion systematics in the statistical analysis; (4) the analysis of non-linear energy
scale and flux-shape systematics on both the hierarchy determination and the
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precision physics program. These original results have been published in [14, 15]
and will be discussed in detail below.

We conclude this section by introducing the notation to be used in this chap-
ter. First, we define the oscillation phases as

∆ =
∆m2L

4E
, (3.1)

δ21 =
δm2L

4E
. (3.2)

Taking into account that the detection process for a MBL reactor experiment is
the inverse beta decay (IBD) νe + p → e+ + n, we define the most important
observable in MBL experiments, namely, the event spectrum S(E), as

S(Evis) = ε(Evis)

∫ ∞
me

dEe

∫ ∞
ET

dE

(∑
i

Ni Φi(E)Pi(E)

)
dσ(E, Ee)

dEe
r(Ee +me, Evis) ,

(3.3)

where

S(Evis) = spectrum of events per unit of energy, (3.4)

E = νe energy, (3.5)

ET = E threshold for IBD, (3.6)

Ee = true positron energy (total), (3.7)

me = positron mass (3.8)

dσ(E, Ee)/dEe = IBD differential cross section, (3.9)

Ee +me = true visible energy of the event, (3.10)

Evis = observed visible energy of the event, (3.11)

r(Ee +me, Evis) = energy resolution function, (3.12)

ε(Evis) = detector efficiency, (3.13)

i = νe source index, (3.14)

Φi(E) = νe flux (per unit of energy, area and time), (3.15)

Pi(E) = νe survival probability, (3.16)

Ni = normalization and conversion factor. (3.17)

In the above equations, integration over time is implicit: the source fluxes Φi

or the detector efficiency ε should be understood either as constants or as time
averages, unless otherwise stated. Further details on these and related ingredients
of the analysis are described in the following sections.
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3.2 Analysis of recoil effects in inverse β decay

(IBD)

The kinematics and dynamics of IBD cross section have been thoroughly stud-
ied in [166, 167, 168]. Here we revisit nucleon recoil effects on reactor spectra,
which are not entirely negligible (as it is often assumed) in the context of high-
precision experiments. We show that such effects can be included in the calcula-
tion of (un)binned reactor neutrino event spectra, through appropriate modifica-
tions of the energy resolution function.

The IBD kinematical threshold is given by

E ≥ ET =
[
(mn +me)

2 −m2
p

]
/2mp = 1.806 MeV , (3.18)

where mp and mn are the proton and neutron masses, respectively. In the pop-
ular “recoilless” approximation, the positron energy Ee is directly linked to the
neutrino energy E via E − Ee ' ∆np (where ∆np = mn − mp = 1.293 MeV).
However, since a small fraction of energy [of O(E/mp)] is carried by the recoiling
nucleon, this estimate provides only an approximate upper bound to Ee. More
precisely, Ee falls within a well-defined kinematical range,

Ee ∈ [E1, E2] , (3.19)

where explicit expressions for E1,2 can be found, e.g., in [168]. For E largely above
threshold, the boundaries of the neutrino-positron energy difference E − Ee are
approximately given by

E − E2 ' ∆np , (3.20)

E − E1 ' ∆np + 2(E −∆np)E/mp . (3.21)

Figure 3.1 reports the exact kinematical boundaries (with no approximation)
as a function of E. From this figure and from the above expressions it appears
that, in the high-energy tail of the reactor spectrum (E ' 6–8 MeV), recoil
corrections can reach the percent level, comparable to the prospective energy
scale accuracy and resolution width [140, 163] in the same range. We emphasize
that the correction to the recoilless approximation is twofold: at any given E,
the typical Ee energy is displaced at O(E/mp) and it also acquires a spread of
O(E/mp). Both effects can be taken into account as follows.

Within the narrow range [E1, E2], the IBD dynamics governs the spectral
distribution of Ee, i.e., the normalized differential cross section σ−1dσ/dEe. Fig-
ure 3.2 shows this distribution in terms of deviations of Ee from its mid-value,
∆Ee = Ee − (E1 + E2)/2, for selected values of the neutrino energy E. For
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Figure 3.1: Inverse beta decay: Range of the difference between the νe energy
(E) and the e+ energy (Ee), as a function of E. The extrema are indicated as
E − E1 and E − E2. See the text for details.

definiteness, we have used the cross section as taken from [168]. At small ener-
gies, the distributions in Fig. 3.2 approach the “Dirac deltas” expected in the
recoilless approximation, while at high energies there is a noticeable spread. For
our purposes each distribution can be approximated by a “top hat” function for
Ee ∈ [E1, E2]:

1

σ(E)

dσ(E,Ee)

dEe
' 1

E2 − E1

, (3.22)

where σ(E) =
∫
dEe(dσ/dEe). We have verified that further corrections related

to the slight slopes in Fig. 3.2 are completely negligible in the calculation of
observable event spectra.

For any detected IBD event, the observed visible energy Evis may differ from
the true visible energy Ee + me, due to intrinsic fluctuations in the collected
photon statistics and other possible uncertainties. We assume a gaussian form
for the corresponding energy resolution function r,

r(Ee +me, Evis) =
1

σe(Ee)
√

2π
exp

[
−1

2

(
Evis − Ee −me

σe(Ee)

)2
]
, (3.23)

with a prospective width [169]

σe(Ee)

Ee +me

=
2.57× 10−2√

(Ee +me)/MeV
+ 0.18× 10−2 . (3.24)
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Figure 3.2: Inverse beta decay: shape of the e+ energy spectrum for representa-
tive values of the νe energy E. The spectra are aligned to their median value for
graphical convenience.

Various assumptions and empirical parametrizations for the width σe have
been studies elsewhere (see, e.g., [140, 144, 145, 163, 170, 171] for recent exam-
ples), showing that it is imperative to have σe as small as possible, i.e., close to
the ideal limit of full light collection. The empirical form of σe in a real detector is
actually determined by a combination of calibration experiments and light-yield
MonteCarlo simulations, which fix at the same time the energy scale and the
energy resolution, as well as their correlated uncertainties [172]. Here, we focus
only on the inclusion of recoil effects of O(E/mp) which, as noted, can be as large
as O(σe/E) for E ' 8 MeV.

In the approximation of Eq. (3.22) and for a gaussian resolution function as
in Eq. (3.23), the inner integral of the continuous (unbinned) spectrum S in Eq.
(3.3) can be performed analytically, yielding:

S(Evis) = ε(Evis)

∫ ∞
ET

dE

(∑
i

NiΦi(E)Pi(E)

)
σ(E)

E2 − E1

∫ E2

E1

dEer(Ee +me, Evis)

= ε(Evis)

∫ ∞
ET

dE

(∑
i

NiΦi(E)Pi(E)

)
σ(E)R(E,Evis), (3.25)

where R is the recoil-corrected energy resolution function,

R(E, Evis) =
1

2(E2 − E1)

[
erf

(
E2 +me − Evis√

2σe

)
− erf

(
E1 +me − Evis√

2σe

)]
,

(3.26)
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Figure 3.3: Energy resolution function without (solid) and with (dashed) the
inclusion of nucleon recoil effects, for the same representative values of the neu-
trino energy E as in Fig. 3.2. The functions are aligned to their median value for
graphical convenience.

with erf(x) defined as

erf(x) =
2√
π

∫ x

0

dt e−t
2

. (3.27)

The function R in Eq. (3.26) reduces to the function r in Eq. (3.23) in the recoilless
limit.

Figure 3.3 compares the energy resolution functions with recoil (R) and with-
out recoil (r), as solid and dotted lines, respectively, for different neutrino energies
E. All functions are aligned to their average visible energy, which is also the ori-
gin of the x-axis scale ∆Evis. The alignment removes one of the recoil effects [the
relative displacement of centroids at O(E/mp)] in order to emphasize the other
effect, namely, the widening of the energy resolution tails.

Summarizing, nucleon recoil effects can be implemented in the unbinned spec-
trum S by using the modified energy resolution function R in Eq. (3.26), instead
of the usual function r in Eq. (3.23). Similar results hold for a binned spectrum
as described in [14].
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3.3 Oscillation probability in vacuum and mat-

ter: analytical approach

In the notation of Eqs. (3.1) and (3.2), the 3ν vacuum survival probability
P (νe → νe) can be written as

P 3ν
vac = 1−4c4

13s
2
12c

2
12 sin2 δ21−4s2

13c
2
13c

2
12 sin2

(
α∆ +

δ21

2

)
−4s2

13c
2
13s

2
12 sin2

(
−α∆ +

δ21

2

)
,

(3.28)

where

α =

{
+1, Normal hierarchy ,

−1, Inverted hierarchy .
(3.29)

As observed in [134], the above expression is not invariant under a change of hier-
archy (α→ −α), except for the case c2

12 = s2
12 which is experimentally excluded.

It is tempting to separate α-odd terms in the oscillation amplitudes. How-
ever, these terms carry a spurious dependence on the conventional squared mass
parameter which is kept fixed while its sign is flipped. For instance, α-odd terms
at fixed ∆m2 in Eq. (3.28) are proportional to sin δ21,

P 3ν
odd = 2α s2

13c
2
13(s2

12 − c2
12) sin(2∆) sin δ21 , (3.30)

while α-even terms at fixed ∆m2
31 [145] or fixed ∆m2

32 [173] are proportional
to sin 2δ21. Convention-independent effects should not impose that the largest
squared mass difference (be it ∆m2

31, or ∆m2
32, or a combination such as ∆m2) is

the same in NH and IH. It is thus incorrect to claim, on this basis, that sin 2δ21 = 1
is an optimal condition to observe hierarchy effects in reactor experiments [173].

In order to circumvent this drawback, one may separate α-odd terms in the
oscillation phase without fixing the squared mass parameter, as proposed in [83,
174] and revisited in [163, 171]. In particular, the probability P 3ν

vac in Eq. (3.28)
can be exactly rewritten as [174]:

P 3ν
vac = c4

13P
2ν
vac + s4

13 + 2s2
13c

2
13

√
P 2ν

vac cos(2∆ee + αϕ) , (3.31)

in terms of the 2ν limit

P 2ν
vac = lim

θ13→0
P 3ν

vac = 1− 4s2
12c

2
12 sin2 δ21 , (3.32)

and of an effective squared mass parameter [83, 84, 174],

∆m2
ee = ∆m2 +

α

2
(c2

12 − s2
12)δm2 , (3.33)
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Figure 3.4: Comparison of exact and approximate values (in units of π) of the
phase contribution ϕ embedding hierarchy effects, as a function of neutrino energy
E, for s2

12 = 0.308, δ21m
2 = 7.54 × 10−5 eV2, and L = 52.5 km. See the text for

details.

with

∆ee =
∆m2

eeL

4E
= ∆ +

α

2
(c2

12 − s2
12)δ21 , (3.34)

while the phase ϕ in Eq. (3.31) is parametrically defined as [174, 175]

cosϕ =
c2

12 cos(2s2
12δ21) + s2

12 cos(2c2
12δ21)√

P 2ν
vac

, (3.35)

sinϕ =
c2

12 sin(2s2
12δ21)− s2

12 sin(2c2
12δ21)√

P 2ν
vac

. (3.36)

Equation (3.31) also allows a clear separation between “fast” (∆ee-driven) oscil-
lations and “slow” (δ21-driven) modulations in P 2ν

vac and ϕ.
Expressing ϕ via an arctan function [from the ratio of Eqs. (3.36) and (3.35)]

is not particularly convenient as it leads to a quadrant ambiguity. We have found
a useful empirical approximation to ϕ in closed form,

ϕ ' 2s2
12δ21

(
1− sin δ21

2δ21

√
P 2ν

vac

)
, (3.37)

which will be used hereafter. Figure 3.4 shows a comparison of exact and ap-
proximate values of ϕ as a function of neutrino energy E, calculated for reference
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values s2
12 = 0.308, δm2 = 7.54× 10−5 eV2, and L = 52.5 km. The numerical dif-

ferences are negligible for any practical purpose. Similar results (not shown) hold
for s2

12 and δm2 taken in their ±3σ phenomenological range [53]. In addition, the
approximate expression for ϕ [Eq. (3.37)] shares two analytical properties of the
exact parametric definition of ϕ [Eqs. (3.35) and (3.36)], namely: it periodically
increases with δ21 as ϕ(δ21 + π) = ϕ(δ21) + 2πs2

12 [174], and it starts with a cubic
term (δ3

21) in a power expansion [171].

As it was emphasized in [174] and later in [163, 171], the hierarchy depen-
dence of P 3ν

vac is physically manifest in the odd term ±ϕ, which induces either
an observable advancement (+ϕ) or a retardation (−ϕ) of the oscillation phase,
with a peculiar energy dependence not proportional to L/E (see Fig. 3.4). Con-
versely, hierarchy-odd effect which are proportional to L/E [as in Eq. (3.34)] are
immaterial, as far as they can be absorbed into a redefinition of ∆m2 within
experimental uncertainties. Determining the hierarchy with reactor experiments
thus amounts to finding evidence for an extra, non-L/E oscillation phase with
definite sign (either +ϕ or −ϕ), for unconstrained values of ∆m2

ee. This require-
ment places the focus of the measurement on the low-energy part of the spectrum
where ϕ is large, while the high-energy part acts as a calibration.

Given the high precision required in hierarchy determination, Eq. (3.32) must
be modified through the inclusion of the propagation in matter of νe and, as in
the case of JUNO, the effects of multiple reactors, which may create destructive
interference. Let us first consider the former. In the presence of n = 1, . . . , N
reactor cores (placed at slightly different distances Ln and contributing with dif-
ferent fluxes Φn), damping effects arise on the fast oscillating terms, while being
negligible on the slow ones [140, 147]. Such effects can be taken into account
analytically as follows.

Let us define the flux weights wn, the flux-weighted baseline L, and the frac-
tional baseline differences λn as

wn =
Φn∑
n Φn

, (3.38)

L =
∑
n

wn Ln , (3.39)

λn =
Ln − L
L

, (3.40)

where
∑

nwn = 1 and
∑

n λn = 0. The fast oscillating term in P 3ν
vac is obtained

by summing up the weighted contributions from different cores,

P 3ν
vac ' c4

13P
2ν
vac + s4

13 + 2s2
13c

2
13

√
P 2ν

vac

∑
n

wn cos

(
∆m2

eeLn
2E

+ αϕ

)
, (3.41)
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and by reducing it via the trigonometric identity∑
n

wn cos(x+ ξn) = w cos(x+ ξ) , (3.42)

where

w2 =
∑
n,m

wnwm cos(ξn − ξm) , (3.43)

tan ξ =

∑
nwn sin ξn∑
nwn cos ξn

. (3.44)

In our case, x = (∆m2
eeL/2E) +αϕ and ξn = ∆m2

eeLλn/2E. By keeping the first
nontrivial terms in a ξ and ξn power expansion, the final result can be cast in the
form

P 3ν
vac ' c4

13P
2ν
vac + s4

13 + 2s2
13c

2
13

√
P 2ν

vacw cos(2∆ee + αϕ) , (3.45)

where the damping factor w reads

w ' 1− 2(∆ee)
2
∑
n

wnλ
2
n . (3.46)

Let us consider the specific JUNO setting, characterized by N = 10 reactor
cores (6 being located at Yangjiang and 4 at Taishan) with average power Pn [140].
Assuming fluxes Φn ∝ Pn/L

2
n, we obtain a flux-weigthed distance L = 52.474 km

and a damping coefficient
∑

nwnλ
2
n = 2.16× 10−5. In this case, the amplitude of

the hierarchy-sensitive cosine term in Eq. (3.45) is reduced by as much as 28% at
low energy (E ' 2 MeV).

We remark that damping effects may acquire a slight time dependence via
reactor power variations, Pn = Pn(t). This dependence may be effectively em-
bedded in time-dependent weights wn = wn(t), baseline L = L(t) and damping
factor w = w(t). For the sake of simplicity, we shall only consider stationary
conditions (constant L and w) hereafter.

Concerning propagation in matter, if we assume a constant crust density Ne '
1.3 mol/cm3, Eq. (1.49) shows that the only non-negligible matter corrections are
for θ12 and δm2. Correspondingly, the (ν1, ν2) mass-mixing parameters in matter

(δm̃2, θ̃12) [176] read, at first order in ACC/δm
2 and for νe oscillations,

sin 2θ̃12 ' sin 2θ12

(
1− ACC

δm2
cos 2θ12

)
, (3.47)

δm̃2 ' δm2

(
1 +

ACC
δm2

cos 2θ12

)
. (3.48)
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Note that, for E ∼ 8 MeV, the fractional matter correction to mass-mixing
parameters is ∼ 8× 10−3, which is definitely not negligible as compared with the
prospective fit accuracy on the same parameters (see below).

We implement matter effects via the replacement (δm2, θ12) → (δm̃2, θ̃12)
from Eqs. (3.47,3.48) into P 2ν

vac, obtaining as a final result

P 3ν
mat ' c4

13P
2ν
mat + s4

13 + 2s2
13c

2
13

√
P 2ν

matw cos(2∆ee + αϕ) , (3.49)

where
P 2ν

mat = 1− 4s̃2
12c̃

2
12 sin2 δ̃21 . (3.50)

These two equations provide our “master formula” for the oscillation probability
in either NH (α = +1) or IH (α = −1), including matter effects in the crust and
damping effects of multiple reactor cores.

A remark is in order. We have omitted the replacement (δm2, θ12)→ (δm̃2, θ̃12)
into ϕ, since it leads to insignificant numerical variations of P 3ν

mat. We have also
compared the above P 3ν

mat with the exact probability derived from numerical flavor
evolution in matter of νe’s from each single reactor source,

P 3ν
exact =

∑
n

wn P
3ν
exact(Ln, E, Ne, δm

2, ∆m2
ee, θ12, θ13, α) , (3.51)

for α = ±1, obtaining permill-level differences (|P 3ν
mat − P 3ν

exact| < 2 × 10−3 for
E ≥ ET ) which can be safely neglected in the data analysis. In conclusion,
Eq. (3.49) is a very good approximation to the exact oscillation probability.

In general, medium-baseline reactor experiments designed to probe the hier-
archy at L ∼ O(50) km suffer from irreducible backgrounds from farther reactors
at L� 50 km [140, 171] (insensitive to ∆m2) and from geoneutrinos [152] (insen-
sitive to both ∆m2 and δm2). For the “far” and “geo” background components
we shall take the oscillation probability as

P 3ν
far ' c4

13P
2ν
mat + s4

13 , (3.52)

with P 2ν
mat as in Eq. (3.50), and

P 3ν
geo ' c4

13(1− 2s2
12c

2
12) + s4

13 , (3.53)

respectively.
We remark that the geoneutrino background may acquire a slight δm2 depen-

dence through non-averaged oscillation effects in the local crust. These effects,
not considered herein, may be estimated or at least constrained by constructing
detailed geological models for the local distribution of Th and U geoneutrino
sources [177].
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3.4 The JUNO project as a reference case of

study

In this section we describe further ingredients which refer to the specific JUNO
experimental setting described in [140] and to other choices made in our numerical
and statistical analysis. First, we assume the following reasonable priors (central
values and ±1σ errors) for the oscillation parameters, at the start of a JUNO-like
experiment:

s2
12 = (3.08± 0.17)× 10−1 , (3.54)

δm2 = (7.54± 0.20)× 10−5 eV2 , (3.55)

s2
13 = (2.20± 0.08)× 10−2 , (3.56)

∆m2
ee = (2.40± 0.05)× 10−3 eV2 . (3.57)

The (s2
12, δm

2) priors—unlikely to change significantly in the near future—are
taken from the Table 1.1, with errors defined as 1/6 of the ±3σ range. The
error on s2

13 is representative of the final accuracy expected in Daya Bay [169].
Finally, the ∆m2

ee central value is also in ballpark of the current global fits,
but with a somewhat smaller fractional error as it can be expected from near-
future improvements in short-baseline reactor [169] and long-baseline accelerator
experiments [131].

We fix the fluxes and normalization factors in the integrand of Eq. (3.3),
namely,

NMBΦMBP
3ν
mat + NfarΦfarP

3ν
far + NgeoΦgeoP

3ν
geo, (3.58)

where, in the context of JUNO, the three terms refer to the contributions from the
10 medium-baseline reactors (MB) [140], the two dominant far-reactor complexes
(far) [140], and geoneutrinos (geo) [178], respectively.

The reactor fluxes depend, in general, on the (time-dependent) relative U and
Pu fuel components. For our prospective data analysis, we assume typical average
values from Fig. 21 in [179],

235U : 239Pu : 238U : 241Pu ' 0.60 : 0.27 : 0.07 : 0.06 , (3.59)

for both medium-baseline and far reactors. The corresponding fluxes are taken
from [105], but we alter the energy profile to include the newly discovered spec-
tral feature at E ∼ 5–7 MeV [102, 164, 165]. In particular, we multiply the
unoscillated spectrum by a smoothed version of the bin- to-bin ratio (Daya
Bay)/(Huber+Mueller) reported in [169], which effectively accounts for the spec-
tral “bump” feature as observed in Daya Bay [165].

Concerning the reactor event normalization, from the information reported in
[179] we derive the following rough estimate for the number of unoscillated events,
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expected for a detector of mass M at distance L from a reactor complex of thermal
power P in typical conditions at Daya Bay (including detection efficiencies and
reactor duty cycles):

unoscillated events

year
' 2.65× 105

(
M

kT

)(
P

GW

)(
km

L

)2

. (3.60)

For our numerical analysis of JUNO, we assume M = 20 kT and P = 35.8 GW
from [140], L = 52.474 km from section 3.3, and an exposure of 5 years, yielding
a total of 3.4 × 105 events expected for no oscillations; these numbers fix the
normalization of the term NMBΦMB after energy integration. Oscillations typ-
ically reduce the expectations to ∼ 105 events for oscillation parameters as in
Eq. (3.54)–(3.57). Such an oscillated rate corresponds to ∼ 55 events per day in
typical conditions.1

By repeating the previous exercise for the two far reactors with power P =
17.4 GW at L = 215 km and 265 km [140], we obtain 104 and 6.5×103 unoscillated
events in five years, respectively. These estimates fix the normalizations of the
two far-reactor subterms in NfarΦfar.

Concerning the normalization of geoneutrino events, we assume from [178]
the following unoscillated flux estimates near the Daya Bay site (central values):
Φ(U) = 4.32 × 106/cm2/s and Φ(Th) = 4.05 × 106/cm2/s, which correspond to
unoscillated event rates R(U) = 55.3 TNU and R(Th) = 16.35 TNU, where one
terrestrial neutrino unit (TNU) corresponds to 10−32 events per target proton
per year [180]. Assuming a liquid scintillator detector of 20 kT mass and proton
fraction ∼ 11%, operating for five years with typical low-energy efficiency ε ' 0.8,
we estimate ∼ 2.9× 103 (U) and ∼ 0.9× 103 (Th) unoscillated events, fixing the
geoneutrino normalization in our analysis. Concerning the geoneutrino fluxes, we
use the same spectral shape as in [177].

Notice that, in the above estimates, typical efficiency factors are already em-
bedded in the normalization factors N. Therefore, we take ε(Evis) = 1 in Eq. (3.3).
With all the ingredients described so far, the absolute event spectrum can be cal-
culated for any value of the parameters (δm2, ∆m2

ee, θ12, θ13, α).2

Figure 3.5 shows the total absolute spectrum of oscillated events and its break-
down into three main components (medium-baseline reactors, far reactors, and
geoneutrinos), in terms of the measured visible energy Evis. The calculation refers
to normal hierarchy (α = +1) and to the central values in Eqs. (3.54)–(3.57). Al-
though the far-reactor component is small, its modulation over the whole energy

1Our estimate seems more optimistic than the rate of ∼ 40 events/day quoted in [142]. We
are unable to trace the source(s) of this difference which, if confirmed, could be compensated by
rescaling our assumed lifetime from 5 to 6.8 years in order to collect the same event statistics.

2In this study we have ignored further oscillation-independent backgrounds, see [170] for a
recent evaluation in the context of JUNO.
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Figure 3.5: Absolute energy spectrum of events expected in JUNO for normal
hierarchy (α = +1) and assuming the central values of the oscillation parameters
defined in the text. The breakdown of the total spectrum in its three components
(medium baseline reactors, far reactors, geoneutrinos) is also shown.
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Figure 3.6: Comparison of absolute energy spectra of events expected in JUNO
for normal hierarchy (α = +1) and inverted hierarchy (α = −1), assuming in both
cases the same oscillation parameters as in Fig. 3.5.
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spectrum affects the determination of the (δm2, θ12) parameters which govern
the “slow” oscillations. In addition, the small geoneutrino component adds some
“noise” at low energy, where most of the hierarchy information is confined via
the phase ϕ of Eq. (3.31).

For the sake of completeness, Fig. 3.6 compares the total absolute spectra
of oscillated events in the two cases of normal hierarchy (α = +1) and inverted
hierarchy (α = −1). In this figure we have used the same oscillation parameters
for both hierarchies, hence the NH and IH spectra merge at high energy where
ϕ→ 0. The ratio between the two spectra is generally very small and it is max-
imum at low-energy SIH/SNH ' 4%, and may become even smaller for floating
mass-mixing parameters, making a detailed statistical analysis mandatory.

3.5 Prospective constraints with a limited set of

systematics

Following the statistical analysis performed in [14], in this section we consider
α as hypothetically continuous parameter. In [14] this choice was connected to the
statistical interpretation of ∆χ2, which, in general, is an appropriate statistical
measure for continuous parameter estimation tests, but not necessarily for discrete
hypotheses tests as discussed in section 2.6. However, we shall not enter into these
subtleties hereafter.

We assume that the “true” spectrum S∗(Evis) is the one calculated for the
central values of the oscillation parameters in Eq. (3.54)–(3.57) and for either
normal hierarchy (α = +1) or inverted hierarchy (α = −1). The “true” spectrum
S∗ is then compared with a family of spectra S(Evis) obtained by varying the
continuous parameters (δm2, ∆m2

ee, θ12, θ13, α), in terms of a χ2 function which
contains statistical, parametric, and systematic components,

χ2 = χ2
stat + χ2

par + χ2
sys . (3.61)

Following [145], we define the statistical component χ2
stat in the limit of “infi-

nite bins,”

χ2
stat =

∫ 9 MeV

0 MeV

dEvis
dχ2

stat

dEvis

=

∫ 9 MeV

0 MeV

dEvis

(
S∗(Evis)− S(Evis)√

S∗(Evis)

)2

. (3.62)

We have verified that this limit is already realized numerically by using & 250
energy bins, irrespective of linear or logarithmic binning in Evis.

The parametric component χ2
par is a quadratic penalty for the priors on the
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four oscillation parameters pi = pi ± σi in Eqs. (3.54)–(3.57),

χ2
par =

4∑
i=1

(
pi − pi
σi

)2

. (3.63)

The continuous parameter α, which interpolates between normal hierarchy (α =
+1) and inverted hierarchy (α = −1) is left free in the fit.

Finally, we assume three systematic normalization factors fj = 1 with 1σ
errors ±sj (j = R, U, Th). The factor fR multiplies all (medium-baseline and
far) reactor spectra with an assumed error sR = 0.023. The factors fu and fTh

multiply the U and Th geoneutrino spectra, respectively, with tentative errors
sTh = 0.27 and sU = 0.2. The systematic χ2 component is then

χ2
sys =

∑
j=R,U,Th

(
fj − 1

sj

)2

. (3.64)

The total χ2 used in this section is a function of eight parameters, including
the fj’s,

χ2 = χ2(δm2, ∆m2
ee, θ12, θ13, α, fR, fU, fTh) . (3.65)

Numerically, the minimization procedure and the identification of isolines of
∆χ2 = χ2−χ2

min is performed through a Markov Chain MonteCarlo method [181].
By construction, minimization yields χ2

min = 0 when the spectrum S equals the
“true” one S∗. We shall typically show iso-Nσ contours, where Nσ =

√
∆χ2.

Projections of such contours over a single parameter provide the bounds at Nσ

standard deviations on such parameter [5]. It is understood that undisplayed
parameters are marginalized away.

We surmise that, when real data will be available, the most powerful statisti-
cal analysis will involve maximization of unbinned (or finely binned) likelihood in
both energy and time domain, as already performed in the context of KamLAND
results [182, 183]. Such an analysis allows to include any kind of systematic er-
rors via pulls, and helps to separate, on a statistical basis, stationary backgrounds
(e.g., geoneutrinos) from time-evolving reactor fluxes, thus enhancing the statis-
tical significance of the relevant signals [182, 183]. However, a refined time-energy
analysis will probably be restricted only to the experimental collaboration owning
the data, since the detailed reactor core evolution information is generally either
classified or averaged over long (yearly or monthly) time periods.

The left panel of Fig. 3.7 shows the results of the fit in the plane (∆m2
ee, α) for

true NH, in terms of Nσ = 1, 2, 3 contours for one parameter (∆χ2 = 1, 4, 9), all
other parameters being marginalized away. The errors are rather linear on both
parameters, and appear to be significantly anti-correlated. The anti-correlation
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Figure 3.7: (Left) Constraints in the plane (∆m2
ee, α) at 1, 2 and 3σ (∆χ2 = 1, 4,

9) from a fit to prospective JUNO data assuming true normal hierarchy (α = +1).
The inverted hierarchy case (α = −1) is disfavored ∼3.6σ. (Right) Density and
cumulative distribution functions for χ2 stat in the case of α = −1, assuming “true”
α = +1. The cumulative function is in dimensionless units.

stems from the tendency of the fit to keep constant the oscillation phase 2∆ee+αϕ
in Eq. (3.49) for typical neutrino energies E ' 3–5 MeV: an increase of ∆m2

ee is
then compensated by a decrease in α. Thus, if the hierarchy discrimination is not
successfull, then the best fit of ∆m2

ee will be higher (lower) than the central value
if the true hierarchy is normal (inverted). Note that in the left panel of Fig. 3.7
the case of wrong hierarchy (α = −1) is formally reached at

χ2
min(α = −1)− χ2

min(α = +1) = 13.2 , (3.66)

which, in the usual definition of hierarchy sensitivity
√
χ2

min(IH)− χ2
min(NH)

[114], corresponds to 3.6σ.
It is instructive to discuss the contributions to the statistical component of the

χ2 in Eq. (3.66), which turns out to be the dominant one (χ2
stat = 13.0). The right

panel of Figure 3.7 shows the corresponding χ2
stat density, namely, the integrand

of Eq. (3.62), as function of the visible energy Evis, together with its cumulative
distribution (i.e., the integral of the density with running upper limit). It can
be seen that 80% of the contribution to the χ2 comes from the spectral fit in a
very small range at low energy, Evis ∈ [1.5, 3.5] MeV. In this range, the vertical
mismatch between the true and wrong spectra changes sign many times, leading
to a wavy pattern of the χ2 density, also visible with smaller amplitude at higher
energies. Intuitively, one can recognize that this wavy pattern is very fragile under
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small relative changes of the horizontal scale between the true and wrong spectra,
due to possible energy scale uncertainties which, in the worst cases, might largely
erase the pattern itself, at least at low energy. The next Section is devoted to a
discussion of this issue, whose relevance was pointed out in [163].

Assuming that the mass ordering is known, the statistical analysis allows to
study prospective JUNO constraints on the parameters. The reduction of the
prior uncertainty can be as large as one order of magnitude for (∆m2

ee, δm
2, s2

12),
a factor ∼4 for fR, and 30% for (fTh, fU), while no substantial improvement is
obtained for sin2 θ13. Such a prospective accuracy makes it evident, a posteriori,
the importance of including sub-percent effects due to propagation in matter
(which affect both s2

12 and δm2, see section 3.3) and to nucleon recoil (which affects
δm2 via the energy reconstruction and the δm2/E dependence, see section 3.2).
We have verified [14] that the far-reactor background does not affect significantly
any fit parameter, while the geoneutrino background and its uncertainties tend
to degrade slightly the final accuracy of the mass-mixing parameters (δm2, s2

12),
whose observable oscillation cycle mainly falls in the geoneutrino energy region.
More details about the precision physics program in JUNO will be given in section
3.7.

3.6 Functional uncertainties: energy scale and

flux shape

It was observed in [163] that changes in energy scale (E → E ′) at percent
level can flip the sign of the hierarchy-dependent phase ϕ in Eq. (3.49) (namely,
α = ±1→ α = ∓1), provided that

∆m2
ee L

2E
± ϕ(E) =

∆m2 ′
ee L

2E ′
∓ ϕ(E ′) , (3.67)

where ∆m2
ee 6= ∆m2 ′

ee in general. Even if the E → E ′ transformations in Eq. (3.67)
do not lead to a complete degeneracy, it has been shown that they can compromise
the hierarchy determination [162, 163, 170]. For instance, as shown in [14], if we
consider the solution of Eq. (3.67) corresponding to ∆m2

ee = ∆m2 ′
ee and repeat

the statistical analysis, the final best fit occurs for the wrong hierarchy, but is
characterized by χ2 ∼ O(100). The reason is that, as also recently observed in
[162, 170], the degeneracy induced by the transformation E → E ′ is never exact,
since it also changes other spectral ingredients besides the oscillation phase ϕ. In
particular, in our numerical experiment, it leads to a noticeable energy shift of
' 2.2% close to the energy threshold. As a result, the rapidly rising part of the
spectrum just above threshold moves by the same amount, and the agreement
between expected and observed spectra at low energy is compromised. Therefore,
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the low-energy part of the observed spectrum may act as a self-calibrating tool
[140] to diagnose energy scale shifts at percent level near the known IBD threshold
(ET = 1.806 MeV).

However, specific combinations of energy variations E → E ′(E) and spectral
deviations Φ(E)→ Φ′(E) might represent a more subtle threat to the hierarchy
discrimination. In general, delicate statistical aspects—related to the treatment
of admissible spectral deformations—are now emerging in neutrino oscillation
searches, mirroring the evolution of other fields of physics from the discovery
phase to the precision era, as remarked later in Chapter 4.

For a systematic analysis of the combined effects of energy-scale nonlinear-
ities and flux-shape uncertainties we assume a JUNO energy-scale uncertainty
comparable to the Daya Bay one. For current Daya Bay data, the 1σ error band
of admissible deviations in the reconstructed/true visible energy ratio has been
shown in [95] and (with slightly smaller width) in [184, 185]. We have translated
the bands in [184, 185] into relative deviations E ′/E for the neutrino energy via
E ' Evis + 0.78 MeV). Asymmetric 1σ uncertainties have been symmetrized to
the largest between +1σ and −1σ. Figure 3.8 (top panel) shows, in color, the
resulting energy-scale error band (at ±1σ in E ′/E), as a function of the parent
neutrino energy E. Besides this “default” band, we shall also consider a more op-
timistic case with “halved” errors (dot-dashed lines in the top panel of Fig. 3.8),
in view of dedicated energy calibration campaigns expected in JUNO.

Concerning the flux-shape uncertainties of the unoscillated reactor spectrum
Φ(E), we assume that Φ′(E)/Φ(E) deviations are constrained by the ±1σ error
bands estimated in [186]. We have smoothed out and symmetrized the bands
in [186], as reported in Fig. 3.8 (bottom panel) in terms of the neutrino energy
E. Since the issue of reactor spectral shapes is still highly debated, the Φ′/Φ
error band should be taken as merely indicative of the current level of theoretical
uncertainties. The high statistics accumulated in the present generation of short-
baseline reactor experiments will certainly help to constrain any model of reactor
spectra and, indeed, the current size of systematic shape uncertainties estimated
in Daya Bay [95] seems to be already a factor of two smaller than in [186], although
a detailed assessment has not been published yet. For this reason, also in the
analysis for flux-shape uncertainties, we shall consider the more optimistic case
of “halved” theoretical errors (dot-dashed lines in the bottom panel of Fig. 3.8).

In the absence of a detailed characterization of the 1σ error bands in Fig. 3.8,
we simply assume that they scale linearly with nσ. We also neglect, for lack of
published information, possible error correlations at different energies. Although
some correlations are known to exist, as a result of underlying models for both
the energy scale nonlinearities [95, 184, 185] and the reactor spectra [105, 106,
186, 187], their impact should not be overemphasized at this stage. Indeed,
the recently observed, localized “bump” feature largely exceeds the estimated
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Figure 3.8: 1σ error bands for energy scale (top panel) and flux shape uncertain-
ties (bottom panel), extracted from [95, 184, 185, 186].

errors and covariances that where thought to characterize the spectra a few years
ago [105, 106]. In this sense, neglecting possible covariances in Fig. 3.8 should
lead to conservative results. A more refined analysis will be possible when such
error bands will be determined more precisely, and endowed with point-to-point
correlation functions.

In order to perform the statistical analysis with energy scale and flux shape
uncertainties, we need to supplement χ2

syst in Eq. (3.64) by appropriate penal-
ties for energy-scale and flux-shape deformations. To this purpose, we consider
smooth deformations of the energy scale E → E ′(E) (that we assume to act
upon the “experimental spectrum” S∗) and of the flux shape Φ(E) → Φ′(E)
(that we assume to act upon the “theoretical spectrum” S), in terms of generic
polynomials in E (in MeV),

E ′

E
= 1 +

k∑
i=0

αiE
i = 1 + δE(E) , (3.68)

Φ′(E)

Φ(E)
= 1 +

h∑
j=0

βjE
j = 1 + δΦ(E) , (3.69)
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with h and k increasing until stable results are reached1. Note that the trivial
cases h = 0 and k = 0 correspond, respectively, to an overall renormalization of
the energy scale [E ′ = (1 + α0)E] and of the reactor spectrum [Φ′ = (1 + β0)Φ].

With reference to Fig. 3.8, let us denote the boundaries of the 1σ error bands
in Fig. 3.8 as 1 ± SE(E) for the upper panel, and as 1 ± SΦ(E) for the lower
panel. Then we define two new systematic penalties, in terms of the largest
relative deviation associated to each polynomial:

χ2
E = max

E

∣∣∣∣ δE(E)

SE(E)

∣∣∣∣2 , (3.70)

χ2
Φ = max

E

∣∣∣∣ δΦ(E)

SΦ(E)

∣∣∣∣2 . (3.71)

In other words, if the polynomial function δE(E) “touches” the nσ error band
boundary n × SE(E), its contribution to the χ2

sys term is assumed to be n2,
and similarly for δΦ(E) and SΦ(E). Equivalently, the ±1σ bands in Fig.3.8 are
assumed to be the envelope of all possible systematic deviations at the 1σ level,
and similarly for nσ. Therefore χ2

sys assumes now the form

χ2
sys =

∑
j=U,Th

(
fj − 1

sj

)2

+ χ2
E + χ2

Φ , (3.72)

where we have removed the penalty on fR, which is now contained in χ2
Φ. Such a

χ2 characterization of energy-scale and spectral-shape errors is both intuitive and
conservative, as appropriate to an exploratory analysis. As previously remarked,
more refined definitions of χ2

sys will be possible in the future, in terms of energy-
dependent cross-correlations.

We have found that our results, to be discussed in the section 3.7, become nu-
merically stable already for fifth-order polynomials, which are taken as a default
choice for all the following figures. Therefore, in general, the χ2 minimization
requires scanning a 18-dimensional parameter space, including four oscillation
parameters (s2

12, s
2
13, δm

2, ∆m2
ee), two geoneutrino flux normalizations (fU, fTh),

and twelve polynomial coefficients (α0, . . . , α5) and (β0, . . . , β5). [We have also
cross-checked the numerical results by using different and independent minimiza-
tion methods.]

1In our opinion, it is appropriate to attach flux-shape uncertainties to the “theoretical
spectrum” S and energy-scale uncertainties to the “experimental spectrum” S∗. However, we
have verified that our results are basically unchanged, if both uncertainties are assumed to
act only on S or on S∗. In such cases, in principle, one must also specify the ordering of the
non-commutative operations E → E′ and Φ→ Φ′. We have also verified that commuting such
operations (on either S or S∗) induces negligible numerical changes in our results.
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For the sake of the discussion, we shall also consider cases with reduced dimen-
sionality, as obtained by setting to zero the coefficients αi or βj. However, in our
analysis, the specific coefficient β0 is never zeroed a priori, since it parametrizes a
floating normalization for the reactor flux, Φ→ Φ(1+β0). In particular, we shall
consider the following cases, in order of increasing number of free parameters:

• oscillation + normalizations: (s2
12, s

2
13, δm

2, ∆m2
ee) + (fU, fTh) + (β0) = 7

parameters;

• osc. + norm. + energy scale: as above + (α0, . . . , α5) = 13 parameters;

• osc. + norm. + energy scale + flux shape: as above + (β1, . . . , β5) = 18
parameters.

In the first two cases, from the definition of χ2
Φ, the 1σ error associated to β0

coincides to the smallest error band width in Fig. 3.8 (bottom panel), i.e. to
∼ 2.3%, which is a typical value for the reactor flux normalization uncertainty.

Note that in the previous list of floating parameter we have not included α
(α = ±1 for NH/IH). In the following section we keep α equal to the wrong
hierarchy case for the calculation of the theoretical spectrum S.

3.7 Improved approach to hierarchy tests and

precision physics

Figure 3.9 is similar to Fig. 3.6, but with “osc. + norm. + energy scale”
uncertainties included in the fit. In this case, the NH and IH spectra are barely
distinguishable by eye, their relative mismatch being lower than ∼ 2% at any
energy. This trend is even more pronounced in Fig. 3.10, where flux-shape un-
certainties have been included in the fit: the NH and IH spectra appear to be
almost indistinguishable, except for percent-level differences in the oscillation
peaks around 2 MeV.

In section 3.6 we have seen that the IBD threshold acts as a “self-calibrating”
point for the event spectrum and this observation is confirmed by an analysis
of the best-fit energy profiles (fifth-degree polynomials) for the energy-scale and
flux-shape deviations. Figure 3.11 shows such profiles (solid curves) superimposed
to the default error bands (in color) for E ′/E (top panels) and Φ′/Φ (bottom
panels). The leftmost panels of Fig. 3.11 correspond to the fit with “oscillation +
normalizations” errors. In this case, E ′/E = 1 by construction (no energy-scale
error), while Φ′/Φ = 1 + β0 can float (to account for the flux normalization), but
happens to have a best-fit value very close to unity.

The middle panels in Fig. 3.11 correspond to the fit in Fig. 3.9, which includes
also energy-scale systematics. In this case, one can observe a slight offset of
the overall ratio Φ′/Φ = 1 + β0, and a peculiar pattern for the best-fit E ′/E
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Figure 3.9: As in Fig. 3.6, but in-
cluding “osc. + norm. + energy scale”
systematics defined in section 3.5 and
3.6.
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Figure 3.10: As in Fig. 3.9, but in-
cluding flux-shape systematics.

profile. The function E ′/E is close to unity at the IBD threshold (E ' 1.8 MeV,
equivalent to Evis ' 1 MeV), because a shift between the event spectra in this
region would enhance significantly the χ2, as shown in section 3.6. Then the
function rises up by ∼ +0.6%, changes sign at E ' 4 MeV, decreases by ∼
−0.6%, and approaches unity at high energy. Finally, the rightmost panels in
Fig. 3.11 correspond to the complete fit in Fig. 3.10, which includes also flux-
shape systematics. The function E ′/E is qualitatively similar to the middle panel,
but with reduced deviations in the high-energy part of the spectrum. The best-fit
function Φ′/Φ shows sign-changing deviations at the few-percent level, well within
the ±1σ (colored) error band. In conclusion, admissible systematic deformations
of the energy scale and of the flux shape, added to the usual oscillation parameter
and normalization uncertainties, may bring the “true” and “wrong” event spectra
as close to each other as shown in Fig. 3.10.

Figure 3.12 shows the statistical significance of the wrong hierarchy rejection,
for the case of true normal hierarchy, in terms of Nσ =

√
∆χ2 as a function of

live time T in years. The abscissa scales as
√
T , thus showing at a glance any

deviation from the ideal “linear” case of purely statistical errors (Nσ ∝
√
T ).

In the fit including only oscillation parameter and normalization uncertainties,
Nσ grows steadily and almost linearly in

√
T along ten years of data taking.

However, the inclusion of energy-scale uncertainties provides some bending of
the linear rise, with a noticeable but not dramatic decrease of the statistical
significance. In particular, it appears that a 3σ rejection is achievable after about
six years of data taking. We agree with [140] that energy-scale uncertainties, by
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Figure 3.11: Energy profile of best-fit deviations E′/E (top panels) and Φ′/Φ (bottom
panels), for different sets of systematic uncertainties.

themselves, do not represent a showstopper for JUNO-like experiments. However,
Fig. 3.12 shows that the combination of energy-scale and flux-shape systematics
can be quite sizable: the solid curve for Nσ grows much more slowly than

√
T ,

and remains below 3σ even after ten years of data taking. Figure 3.13 shows a
very similar behavior, but assuming the IH as true.

Regarding the precision physics program in JUNO we adopt the same method-
ology introduced in section 3.5, i.e. the true hierarchy is assumed to be known
and, for definiteness, the accumulated statistics refers to T = 5 y. Figure 3.14
and 3.15 show the 1σ contours in the planes charted by the mass-mixing pa-
rameters (δm2, s2

12) and (∆m2, s2
13) respectively, assuming true NH. In the case

with only oscillation and normalization errors, the final accuracy of both δm2,
s2

12 and ∆m2
ee is more than an order of magnitude better than the prior errors

assumed in section 3.4. The accuracy is significantly degraded (by almost a fac-
tor of three) when including energy scale and flux-shape systematics. This is not
surprising, since these systematics can alter the pattern of both long-wavelength
and short-wavelength oscillations. The accuracy on s2

13 is essentially constant and
almost equal to the prior assignment in section 3.4, implying that a JUNO-like
experiment cannot really improve the input θ13 data from current SBL reactor
experiment. Moreover, if on the one hand the best-fit point corresponds by con-
struction with the central values defined in section 3.4 if the hierarchy is known,
on the other it would be significantly displaced if the inverse hierarchy were mis-
takenly assumed as “true,” as indicated by the green arrow both Fig. 3.14 and
3.15 (color online). A different but still sizable displacement (indicated by the
magenta arrow) would also be induced on (δm2, s2

12) by discarding matter effects
in the fit.

The fit constrains the geoneutrino normalizations (not shown, see [15]) within
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Figure 3.13: As in Fig. 7, but for
true IH and rejection of NH.
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Figure 3.16: As in Fig. 7 (true NH),
but with halved energy-scale and flux-
shape uncertainties.
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Figure 3.17: As in Fig. 14, but for
true IH.

1σ errors which are smaller (by about 30%) than their prior values as defined in
section 3.4, and are quite insensitive to different sources of systematic errors and
biases. Therefore, prospective geoneutrino results in JUNO will help to constrain
better the current geophysical and geochemical models for the radiogenic element
abundances, independently of systematic details.

Repeating the analysis with prospective halved errors on both energy-scale
and flux-shape uncertainties, we find an improvement in the statistical signifi-
cance of the wrong-hierarchy rejection, as shown in Figs. 3.16 and 3.17 in the
cases with true NH and true IH, respectively. In both cases, a 3σ rejection level
appears to be reachable in about 6 years of data taking, consistently with the
expected goal of a JUNO-like experiment [140]. Halving the energy-scale and
flux-shape uncertainties has also a significant impact on the precision program
in a JUNO-like experiment, as reportd in Table 3.1, which summarizes, for NH
true, the fit results for the oscillation and the geoneutrino parameters, in terms
of (symmetrized) 1σ errors, to be compared with their prior ±1σ ranges.

3.8 Summary of results and open problems

Medium-baseline reactor neutrino experiments can offer unprecedented op-
portunities to probe, at the same time, the mass hierarchy, the mixing angle θ12

(and partly θ13), the two squared mass differences δm2 and ∆m2, and the geoneu-
trino fluxes. These goals largely justify the currents efforts towards the construc-
tion of such experiments, as currently envisaged by the JUNO and RENO-50
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Table 3.1: Precision physics in a JUNO-like experiment, assuming known normal
hierarchy. 1st and 2nd column: oscillation or geoneutrino parameter, together with the
assumed prior value and ±1σ error. 3rd column: 1σ error from the fit to prospective 5-year
data, including only oscillation and normalization uncertainties. 4th and 5th column: 1σ
error from the fit, including also energy-scale and flux-shape uncertainties with default
error bands. 6th and 7th column: as in the previous two columns, but with halved error
bands. Similar results are obtained for the case of known inverted hierarchy (not shown).
See the text for details.

Parameter Prior ±1σ Osc. + norm. + energy scale + flux shape + energy scale + flux shape
fit error (default) (default) (halved) (halved)

s2
12/10−1 3.08± 0.17 0.015 0.021 0.040 0.017 0.026

δm2/10−5 eV2 7.54± 0.20 0.016 0.017 0.038 0.016 0.029
s2

13/10−2 2.20± 0.08 0.073 0.073 0.074 0.074 0.074
∆m2

ee/10−3 eV2 2.40± 0.05 0.0036 0.0074 0.011 0.0064 0.0074
fTh 1.00± 0.27 0.20 0.21 0.21 0.21 0.21
fU 1.00± 0.20 0.14 0.14 0.14 0.14 0.14

projects, which will try to satisfy the stringent requirements of energy resolutions
σ/E ' 3%/

√
E/MeV and of a statistics in excess of O(105) events.

In this context, we have revisited some issues raised by the need of precision
calculations and refined statistical analyses of reactor event spectra. In particu-
lar, we have shown how to include analytically IBD recoil effects in binned and
unbinned spectra, via appropriate modifications of the energy resolution function
(section 3.2). We have also generalized the oscillation probability formula by
including analytically matter propagation and multiple reactor damping effects
(section 3.3). Considering only oscillation and normalization uncertaintes, we
have found in JUNO a typical sensitivity to the hierarchy of 3.6σ according to
[153], and an improvement of approximately one order of magnitude for δm2, θ12

and ∆m2
ee priors (Table 3.1).

In principle, further systematic uncertainties associated to the energy scale
may seriously compromise the hierarchy sensitivity, by compensating the phase
difference between the event spectra. However, the overall fit is generally very
bad in such cases, since the reactor spectrum is also distorted at either low or
high energies with respect to expectations. This self-calibrating power of the event
spectrum, already investigated in [140], may be relaxed when considering possible
uncertainties on the reactor neutrino flux, Φ(E) → Φ′(E). In particular, the
recent discovery of the “bump” in the event spectrum at around 5 MeV has shown
that the flux shape uncertainties may be underestimated and in part unknown.
Therefore, we have performed a detailed analysis in a JUNO-like configuration,
assuming energy-scale and flux-shape error bands anchored to state-of-the-art
estimates (“default” case), as well as for error bands reduced by a factor of two
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(“halved” case), as shown in Fig. 3.8.
It turns out that such systematics can noticeably affect the performance of the

experiment, and that their reduction is mandatory in order to achieve statistically
significant results, both for hierarchy discrimination and for precision physics. In
particular, a > 3σ separation of NH and IH might not be reached after one
decade in the case of default systematic errors (Figs. 3.12 and 3.13), while it
can be reached after ∼ 6 years of data taking in the case of halved errors (Figs.
3.16 and 3.17). Similarly, assuming that the hierarchy is known, the energy-scale
and flux-shape systematic uncertainties can significantly affect the accuracy of
the (s2

12, δm
2, ∆m2

ee) oscillation parameters emerging from prospective data fits
(see Table 3.1).

The main message is that further constraints on the admissible shapes and
sizes of E → E ′(E) and Φ(E) → Φ′(E) variations would be highly beneficial
to the entire physics program of medium-baseline reactor projects. Moreover,
the use of a near detector in JUNO, as already done in SBL reactor experiments,
would help to reduce or in principle eliminate the impact of flux shape uncertainty,
avoiding the “sinergy” with energy-scale errors.

As side results of our analysis, we find that: (1) neglecting matter effects
may significantly bias the oscillation parameters (s2

12, δm
2); (2) taking the wrong

hierarchy may significantly bias the parameter ∆m2
ee; and (3) prospective con-

straints on Th and U geoneutrino fluxes are largely insensitive to systematic
uncertainties. In particular, since the best fit values of (s2

12, δm
2) may be biased

by using the “vacuum” approximation in the oscillation probability, in the future
one should also characterize more precisely the local matter density profile from
the geophysical and geochemical viewpoint.

Finally, we have restricted an analysis to the standard 3ν framework. New
neutrino interactions or new neutrino states might induce changes in the observ-
able spectra, which could be partly degenerate with the main signals introduced
by the mass hierarchy and by the standard oscillation parameters [188]. This
area of research will certainly receive new impetus if unexpected features will be
found when the next MBL experiment(s) will become operative.
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4

Neutrino oscillations in
high-statistics atmospheric
neutrino experiments

4.1 Towards very large-volume atmospheric de-

tectors

Atmospheric neutrinos provide natural “beams” of νµ,e and νµ,e, which probe
a wide spectrum of energies E (from sub-GeV to multi-TeV) and pathlengths L
(from O(10) km to O(104) km, depending on the zenith angle θ). The largest
atmospheric ν experiment so far, Super-Kamiokande, has successfully explored
this wide L/E range with a statistics of 4×104 events collected in ∼ 5×103 days,
finding evidence for νµ → ντ oscillations and constraining its dominant (∆m2, θ23)
parameters [189]. Oscillations are now established and the SK experiment can
even unfold their effects, so as to reconstruct the main features of the unoscillated
atmospheric νe+νe and νµ+νµ fluxes in energy and direction. Indeed, the current
SK accuracy has allowed to find evidence for the expected variations in azimuth
(due to geomagnetic cut-off) and, to a lesser extent, in time (due to the solar
activity) [190]. Despite these extraordinary achievements, the rich atmospheric
ν phenomenology remains largely unexplored, especially in terms of subleading
neutrino oscillation effects. Neutrinos coming from below the horizon can probe
the Earth electron density profile Ne(r) down to the mantle and the core via
νµ → νe oscillations. Matter effects, which are different between ν and ν and
between NH and IH, can exhibit peculiar features in the propagation through the
inner Earth layer, including interference patterns due to the step-like mantle-core
density structure, which depend sensitively on the parameters (±∆m2, θ23, θ13)
[5]. Moreover, low-energy atmospheric ν are also sensitive to (δm2, θ12), and thus
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also to genuine 3ν effects as CP violation [191]. However, all these subleading
oscillation effects are still largely hidden in the current data, as apparent from
the global analysis in Chapter 2.

Next-generation experiments can, however, explore atmospheric ν oscillations
in greater detail. Very large volume detectors are being considered in different
contexts and by using diverse technologies, see e.g. the contributions to recent
dedicated workshops in [192, 193, 194]. The Cherenkov technique is suitable to
instrument large volume of water, either underground as in Hyper-Kamiokande
[195] or in the sea as in ORCA [196], or in ice as in the PINGU option for
the IceCUBE experiment [197]. Cherenkov detectors will allow unprecedented
statistics, possibly sensitive to the mass hierarchy as we shall see below; however,
they cannot separate ν and ν (at least, not on an event-by-event basis). A
different way forward is being explored by iron-calorimeter detectors such as INO-
ICAL project [198] and by liquid argon detectors as those relevant for the DUNE
long baseline experiment [199, 200, 201], where ν/ν separation can be achieved,
respectively by magnetic fields and by statistical high-resolution imaging. In this
case, the physics reach of oscillation searches can be enhanced, see e.g. [202, 203,
204].

In this thesis, we have focused on a specific option, namely, the PINGU low-
energy extension of IceCUBE. The PINGU sensitivity to the hierarchy has been
subject to many studies [205, 206, 207, 208, 209, 210, 211], which have investi-
gated in particular the impact of uncertainties related to oscillation parameters
and to various systematics. Concerning the oscillation parameters, it has been
shown that the ∆m2 and θ23 uncertainties are the most important ones, while
those of θ13 and δ play little role [206, 207, 208, 210]. Concerning systematics,
especially those related to the neutrino fluxes and their interaction, as well as to
the detector exposure and response, it is unclear if they can be kept under con-
trol without spoiling the sensitivity to the hierarchy. In this context, our work
[16] represents an updated, state-of-the-art analysis of PINGU, which highlights
both the opportunities and the challenges that will be faced. In the following,
we shall present the results of [16], after a description of the main features of the
oscillation probabilities in the next two subsections 4.2 and 4.3.

We conclude this section by introducing the notation that will be used in this
chapter:

α = flavor index (µ, e) of ν or ν,

Nα = number of να + να events,

E ′, θ′ = true neutrino energy and zenith angle,

E, θ = reconstructed neutrino energy and zenith angle,

rαE(E,E ′) = energy resolution function,
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rαθ (θ, θ′) = angular resolution function,

T = detector livetime,

ρV α
eff(E ′) = effective detector mass at energy E ′,

d2Φα/(d cos θ′dE ′) = double differential neutrino flux (Φ for ν),

Φα/Φβ = ratio of double differential neutrino fluxes,

σαCC(E ′) = neutrino charged-current cross section (σ for ν),

Pαβ(θ′, E ′) = oscillation probability of να → νβ (P for ν),

[θi, θi+1] = range of i-th angular bin,

[Ej, Ej+1] = range of j-th energy bin.

Note that the zenith angle values θ′/π = 1 and 0.5 correspond to vertically
upgoing and horizontal neutrino directions, respectively.

Hereafter, whenever we need to fix “true” oscillation parameters to calculate
an input spectrum for subsequent fits, we assume the following representative
input values:

|∆m2|true = 2.40× 10−3 eV2 , (4.1)

δm2|true = 7.54× 10−5 eV2 , (4.2)

sin2 θ13|true = 0.0237 , (4.3)

sin2 θ12|true = 0.308 , (4.4)

δ|true = 3π/2 . (4.5)

The parameter θ23 is treated differently since, as discussed later, it induces large
variations in the PINGU sensitivity to the hierarchy. Unless stated otherwise, we
assume by default that it can take any true value in the range

sin2 θ23|true ∈ [0.4, 0.6] . (4.6)

4.2 Neutrino oscillograms in terms of energy

and direction

The oscillation probability for atmospheric neutrinos depend on both the en-
ergy E ′ and the zenith angle θ′. To understand the main features of the os-
cillation patterns and the typical phenomenology expected in an atmospheric
ν experiment, it is useful to represent the probabilities Pαβ in two-dimensional
plots in the plane (θ′, E ′). Such a representation of Pαβ is called oscillogram,
first discussed in [212, 213, 214] (see, e.g., [215] for a detailed review). Note that
accurate calculations of the oscillation probability for atmospheric neutrinos need
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to be done numerically, even if the main features can be analytically understood
under appropriate approximations [5, 215]. The calculation method used in this
thesis is described in Appendix C.

We consider an energy range between 1 and 40 GeV, the same adopted in
[216], where the relevant subrange for hierarchy determination via matter effects
is . 10 GeV. For θ′/π ∈ [0.82, 1] neutrinos cross both the Earth core and mantle,
while for θ′/π ∈ [0.5, 0.82] they cross only the mantle. Mantle-core interference
effects provide interesting features in the oscillograms, see [212, 217, 218, 219].
Although it is common to label the ν direction with cos θ′, we prefer to stick to
θ′ for three reasons. First, the angular range of the Earth core is 36.8% of the
sub-horizon range of [0.5, 1.0], while in terms of cos θ′ this fraction is reduced by
∼2. Conversely, cos θ′ expands nearly horizontal bins, which are not interesting
for matter effects. Besides, as we shall see in section 4.4, the angular resolution
function is symmetric in θ′, while it would be highly asymmetric in cos θ′.

Fig. 4.1 represents the oscillograms for the appearance νµ → νe channel (top)
and for the disappearance of νµ → νµ channel (bottom) in the case of normal
hierarchy and for the best fit values of the global analysis (except that we set θ23 =
π/4). On the left (right) the oscillation probabilities are calculated for neutrinos
(antineutrinos). Note that darker colors correspond to higher probability. To
discuss the rough shape of the oscillograms it is useful to assume δm2 → 0,
leaving as dominant parameters (∆m2, θ′23) for E ′ > 1 GeV. In such a limit, the
oscillation probabilities for the appearance and disappearance channel have the
form [215]

Pµe = sin2 θ23PA, (4.7)

Pµµ = 1− sin4 θ23PA −
1

2
sin2 2θ23

[
1−

√
1− PA cosφX

]
, (4.8)

where

PA =
∣∣∣S̃2e

∣∣∣2 , (4.9)

φX = arg(S̃33S̃
∗
22), (4.10)

and the evolution matrix in matter S̃ is defined in the Appendix A.
Let us first consider the oscillograms for the appearance channel νµ → νe in

normal hierarchy (top left panel in Fig. 4.1). For neutrinos crossing only the
mantle, i.e. θ′/π < 0.82, the shape of the oscillogram can be understood by
considering an averaged constant matter density, for which PA becomes simply

PA = sin2 2θ̃13 sin2 ∆m̃2L

4E
, (4.11)
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Figure 4.1: Oscillograms for normal hierarchy and oscillation parameters as in
Eqs. (4.1)–(4.5) (with θ23 = π/4). Upper panels: appearance channels νµ → νe
and νµ → νe. Bottom panels: disappearance channels νµ → νµ and νµ → νµ.
Darker colors correspond to higher probability (see the color scale on the right).
Note that, being in NH, matter effects are large for ν rather than ν. Also notice the
discontinuity around θ/π∼0.82, due to the mantle-core density step and associated
interference effects.
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with the effective values θ̃13 and ∆m̃2 defined in Eq. (1.47) and (1.48). If the
condition

ACC/∆m
2 = cos 2θ13 (4.12)

is satisfied, the so-called resonant MSW [44, 45, 46] effect occur, rendering the

effective value of the mixing angle in matter maximal (θ̃13 ' π/4). In NH, this
condition can occur for ν and not for ν. Because the average electron density
(N e) for mantle crossing trajectories varies in the range N e ∈ [1.7, 2.4] mol/cm3,
Eq. (4.12) is satisfied for E ∈ [6.0, 9.0] GeV. If, together with the condition in
Eq. (4.12), also the following

∆m̃2L

4E
= π/2 + kπ, with k = 0, 1, 2, . . . (4.13)

is satisfied, then PA=1 and we obtain an absolute maximum for the oscillation
probability. In our case, this occurs only for k = 0, E ' 6 GeV and θ′/π '
0.82, corresponding to the mantle-core density step, as confirmed by the darker
color in that region. The minima of the appearance probability in Eq. (4.7) are
obtained when the oscillation phase is ∆m̃2L/4E = kπ, with k = 0, 1, 2, . . . ,
which correspond to the bent curves in the (θ′, E ′) plane.

In the core region, θ′/π > 0.82, the approximation in Eq. (4.11) is effectively
applicable only for E ′ < 2 GeV, while for higher energy there can be constructive
interference between the amplitudes of the νe → νµ, ντ transitions in the Earth
mantle and in the Earth core. In this case one must take into account the multi-
layer structure of Earth. Since in the core the electron density is almost twice the
mantle one, the MSW resonance condition is satisfied for a lower energy range
2.5 < E ′ < 3 GeV. For higher energies we still observe an enhancement in the
Pµe, which, however, is not related to the MSW effect, since the effective mixing

angle θ̃13 does not become large. The origin of this behavior is the so-called
“parametric resonance” which develops when the change of the matter density
along the neutrino path is correlated with the change of the oscillation phase,
according to specific conditions [212, 217, 218, 219]. Related to the “parametric
resonance” there are three ridges in the oscillograms for Pµe, which are regions of
the plane (θ′, E ′) where the probability decreases slowly from its local maximum.
The first ridge lies between 3 and 6 GeV, from θ′/π = 0.82 (where it connects
with the resonance region from the mantle) to θ′ = π. The second and third ridge
are at E ′ &5 GeV and E ′ &11 GeV.

The νµ → νe oscillation channel for antineutrinos (top-right panel) does not
present any matter-induced resonance (either MSW or parametric), since in NH
the condition in Eq. (4.12) cannot be satisfied. In this case, being sin2 2θ13 ' 0.09,
the appearance oscillation probability is relatively small in the whole (θ′, E ′)
plane.
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Concerning Pµµ, a description in terms of PA is not possible due to the rapidly
varying phase φX , but in general matter effects are smaller than in Pµe, being
suppressed by the small value of θ13. This is confirmed by the bottom left panel
of Fig. 4.1, where the comparison between the oscillogram for ν (left) and ν
(right), for which matter effects are negligible, shows some differences only in
correspondence of both MSW and parametric resonances.

4.3 Sensitivity to the hierarchy and to the dom-

inant mixing angle

In section 4.2 we have seen that both oscillograms for Pµe and Pµµ are af-
fected by MSW and parametric resonances, when the correspondent conditions
are satisfied. However, the strongest effects are observable in the appearance
channel. For the case of normal (inverted) hierarchy, these effects occur for neu-
trinos (antineutrinos). Indeed, in the limit of δm2 → 0, exchanging neutrinos
with antineutrinos is equivalent to change the hierarchy. Atmospheric neutrino
fluxes include both ν and ν, and thus can potentially access the mass hierarchy
via matter effects in ν and ν. However, as we shall see in the following sections
hierarchy determination remains a challenging task.

Apart from the mass hierarchy, oscillograms are also strongly dependent on
the atmospheric parameters (∆m2, θ23). A change in the mass difference ∆m2

modifies the oscillation phase with a consequent shift along the ordinate (E) in
the oscillograms. On the other hand, the impact of θ23 is more relevant for the
hierarchy determination. First, θ23 is the parameter with the largest uncertain-
ties, partly associated to the octant ambiguity. Moreover, the appearance channel
probability Pµe, which is the most sensitive to the hierarchy, is dominantly pro-
portional to sin2 θ23. This behaviour of Pµe is shown in Fig. 4.2, where the top
(bottom) left panel represent the difference ∆Pµe between the oscillogram for
sin2 θ23 = 0.5 and sin2 θ23 = 0.45 (0.55). The comparison between these two
panels shows essentially a change of sign in ∆Pµe, confirming that that Pµe in-
creases with sin2 θ23. For Pµµ the previous considerations are not valid, because
it contains an octant symmetric term, proportional to sin2 2θ23, and an octant
asymmetric term, proportional to sin4 θ23, both providing negative contributions
to the probability, see Eq. (4.8). Therefore, the difference ∆Pµµ between the
oscillograms for sin2 θ23 = 0.5 and sin2 θ23 = 0.45 (top right panel in Fig. 4.2)
is negative in all the plane (θ′, E ′), because both the symmetric and asymmetric
term increases when passing from first octant to maximal mixing. However, when
comparing the cases sin2 θ23 = 0.5 and sin2 θ23 = 0.55 in the bottom right panel,
nothing can be said a priori about ∆Pµµ and the plot shows both negative and
positive differences.
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Figure 4.2: Panels on the left (right) refer to νµ appearance (disappearance). The

top (bottom) panels represent the oscillograms of the difference ∆P θ23
αβ = Pαβ(s2

23 =

0.5)−Pαβ(s2
23 = 0.45) and ∆P θ23

αβ = Pαβ(s2
23 = 0.5)−Pαβ(s2

23 = 0.55) respectively.

In each panel we are assuming normal hierarchy. Pµe (left) increases with sin2 θ23,
as shown in Eq. (4.7), and thus ∆P θ23

µe is positive in the top panel and negative

in the bottom one. ∆P θ23
µµ (right) is negative in the top panel case, while it may

change sign in the bottom one.
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Figure 4.3: Difference between the oscillogram for δ = 0 and the one for δ = 3π/2,
assuming NH. The panels on the left (right) refer to the appearance (disappearance)
channel.

If we relax the hypothesis of δm2 → 0, Eq. (4.7) acquires a dependence on δ,
which is stronger at low energy, since in this region the δm2-driven oscillations
become relevant. The difference of the oscillograms between two reference cases
with δ = 0 and δ = 3π/2 is reported in Fig. 4.3, where the left (right) panel
refer to the appearance (disappearance) channel. The maximum difference is
∆P ∼ 0.1 near E ′ = 1 GeV. However, the differences change sign when moving
along the θ′ or E ′ axes. Therefore, the impact of energy and zenith angle smearing
will significantly reduce the sensitivity to such a parameter, which affects the
hierarchy sensitivity only at the 1σ level, as already found in [206, 210].

We remind that the hierarchy sensitivity is strictly connected to matter effects
in the appearance channel, whose probability depends linearly on sin2 θ23 and
thus grows in the second octant. For this reason, the estimate of the hierarchy
sensitivity needs to be repeated for different values of sin2 θ23, which we take in the
interval [0.4,0.6], corresponding to the ∼ 2σ range from the global analysis. The
correlation between θ23 and the hierarchy sensitivity may represent a challenging
degeneracy in atmospheric experiments, especially for the IH case where matter
effects act on ν, characterized by lower cross sections and thus lower event rate
in atmospheric experiments. In such a context, it is essential to have a good
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Figure 4.4: Atmospheric neutrino flux, taken from [222] for the South Pole, as a
function of the zenith angle and for three values of neutrino energy. The blue (red)
lines refer to νµ (νe). The solid (dashed) lines indicate neutrinos (antineutrinos).
Note a decrease of the flux for increasing energy and a peak for the horizontal
direction, cos θ′ = 0. This feature is due to the longer path covered in the atmo-
sphere by secondary particles, which thus have a higher probability of decaying
into neutrinos before detection.

energy and zenith angle resolution, so as to avoid diluting matter effects in the
event spectrum, and a very large detector, in order to observe spectral details
with high statistics.

4.4 The PINGU project as a reference case study

The promising results on the (θ23,∆m
2) determination obtained by DeepCore

[220] in the energy range from 6 to 56 GeV, together with the possibility of en-
hancing the hierarchy sensitivity by lowering the energy threshold, has led to the
proposal of an additional project at the South Pole, called PINGU [216]. The
PINGU (Precision IceCube Next Generation Upgrade) configuration consists in
the addition of 40 strings in the DeepCore volume at a depth of 2 km in ice,
each equipped with 60 digital optical modules (DOM) positioned at 5 m distance
from each other. This dense array of strings increases the detection sensitivity of
neutrinos with energy between 1 and 20 GeV. The PINGU main purpose is to
determine the neutrino mass hierarchy and, secondarily, to continue the analysis
of atmospheric oscillations performed by DeepCore, trying to establish either the
maximality of θ23 or its true octant. In addition, PINGU may perform a rough
tomography of the Earth, improving our knowledge of the matter density profile
in the Earth[221]. Finally, it can observe supernova neutrinos [216] (see chap-
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ter 5) and look for indirect evidence of weakly-interacting dark matter particles
(WIMPS) with mass < 20 GeV [216].

Apart from the oscillation probabilities, which have been discussed in section
4.2 and 4.3, the other relevant ingredients for PINGU are the neutrino fluxes
(at the South Pole), the effective volume of the detector, the cross sections and
the energy and angular resolution functions. Concerning the unoscillated atmo-
spheric neutrino fluxes, we take the azimuth-averaged values of d2Φα/(d cos θ′dE ′)
calculated at South Pole from [222]. Figure 4.4 reports the shape of the flux as a
function of the zenith angle and for three reference values of the neutrino energy:
1, 3, 10 GeV. We note a strong flux decrease with increasing energy, with a trend
that can be approximated by E−2.7 and is inherited by the primary cosmic ray
flux. Another important feature is the peak for the horizontal direction, where
the longer path covered by secondary particles in the atmosphere increases the
probability of decaying and thus producing neutrinos before detection. More-
over, at low energies (∼ 1 GeV) there is an angular asymmetry connected to the
geomagnetic effects on cosmic ray primaries (and secondaries).

Concerning the PINGU detector, we basically assume the preliminary charac-
terization reported in [216]. We approximate the effective detector mass ρV α

eff(E ′)
(i.e., the ice density ρ times the effective volume Veff for α = µ, e) by interpolat-
ing the E ≥ 1 GeV histograms in Fig. 6 of [216] with the following (smooth and
monotonic) empirical functions,

ρV µ
eff(E ′) = 3.33

(
1− e−0.287(E′−E′thr)

)
, (4.14)

ρV e
eff(E ′) = 3.44

(
1− e−0.294(E′−E′thr)

)
, (4.15)

where [ρV α
eff] = MTon, [E ′] = GeV, and the effective threshold has been set at

E ′thr = 1 GeV . (4.16)

The ratio of ρV α
eff to the proton mass mp provides the effective number of target

nucleons.
The total charged current (CC) cross sections σµCC and σ̄µCC for E ′ ≥ E ′thr are

extracted from Fig. 14 of [216]. They are the sum of three contributions: (i)
deep inelastic, (ii) quasi-elastic and (iii) resonant scattering, where the first one
dominates for E ′ above a few GeV. For simplicity, we assume that the total CC
cross section for νe is identical to the one for νµ at any E ′ ≥ E ′thr (and similarly
for antineutrinos),

σeCC(E ′) = σµCC(E ′) ≡ σCC(E ′) . (4.17)

The resolution functions are extracted from the 2-dimensional histograms in
Fig. 7 and 8 of [216] in digitized form [223]. In particular, in each x-axis bin
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Figure 4.5: The horizontal colored bands represents the±1σ width of the gaussian
energy resolution function for three reference values: 3, 10 and 30 GeV. The red
continuous lines refer, instead, to the ±1σ width of the zenith angle resolution
function. In these case the reference values are θ′/π = 0.6, 0.75 and 0.9. Note that,
the width of the zenith angle resolution function is symmetric in θ′ (left panel),
but it is not so in terms of cos θ′ (right panel).

having median true energy E ′ therein, we fit the histogram contents with gaussian
functions having widths σE(E ′) and σθ(E

′),

rαE(E,E ′) =
1√

2πσαE(E ′)
exp

[
−1

2

(
E − E ′

σαE(E ′)

)2
]
, (4.18)

rαθ (θ, θ′) =
1√

2πσαθ (E ′)
exp

[
−1

2

(
θ − θ′

σαθ (E ′)

)2
]
. (4.19)

The resulting collection of widths σαE(E ′) and σαθ (E ′) in each bin of E ′ are finally
fitted with the following (smooth and monotonic) empirical functions:

σµE/E
′ = 0.266/(E ′0.171 − 0.604) , (4.20)

σeE/E
′ = 0.369/(E ′0.247 − 0.508) , (4.21)

σµθ = 3.65/(E ′1.05 + 5.00) , (4.22)

σeθ = 1.88/(E ′0.823 + 1.93) , (4.23)

where [E ′] = GeV and [σθ] = rad. These approximations capture the main
features of PINGU as described in [216].

Figure 4.5 shows the ±1σ resolution bands for νµ in the plane charted by
log10(E ′/GeV) versus θ′/π (left plot) or versus cos θ′ (right), in the intervals
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E ′ ∈ [1, 40] GeV and θ ∈ [0.5, 1].1 The horizontal bands correspond to ±σµE(E ′)
for E ′ = 3, 10, and 30 GeV, while the three curved, vertical bands correspond to
±σµθ (E ′) for θ′/π = 0.6, 0.75 and 0.9. The resolution functions largely smear any
spectral feature when passing from true to reconstructed variables, (E ′, θ′) →
(E, θ), the more the lower the energy.

Figure 4.5 also illustrates three advantages of using the zenith angle rather
than its cosine, as anticipated in section 4.2. The first is that the angular res-
olution bands (which provide a rough idea of the appropriate zenithal binning)
are obviously symmetric in θ′ (left plot) but not in cos θ′ (right plot), where they
are squeezed towards the upgoing directions (cos θ′ → −1). The second is that,
compared with the full sub-horizon range θ′/π ∈ [0.5, 1], the interesting angular
fraction subtending the dense Earth core (θ′/π ∈ [0.816, 1]) is as large as 36.8%,
while it would be squeezed by a factor of about two (16.2%) in terms of cos θ′.
The third is that, by using cos θ′, one would expand the nearly horizontal part
of the zenith spectrum (cos θ′ & −0.5) which, despite being weighted by higher
atmospheric fluxes [222], is less interesting for hierarchy discrimination, due to
smaller matter effects at shallow depth in the Earth’s mantle.

Concerning the energy, we remind that in normal (inverted) hierarchy, matter
effects for neutrinos (antineutrinos) are particularly enhanced around E ′ ∼ 2.5–
3 GeV and E ′ ∼ 6–10 GeV, as well as for intermediate energies where mantle-
core interference effects occur (see section 4.2). Although the low-energy range
E ′ ∼ O(1 − 10) GeV contains most of the hierarchy “signal,” it is useful to
extend the analysis to few tens of GeV (or more), for at least two reasons: (1) the
high-energy spectrum is better experimentally resolved and is largely hierarchy-
independent, so it can help to “fix” some floating parameters in the fits; (2)
due to the relatively poor energy resolution at low energy, hierarchy effects may
“migrate” well above ∼ 10 GeV in reconstructed energy. In any case, to avoid
“squeezing” the most relevant low- energy range, it is useful to adopt a logarithmic
energy scale, as in Fig. 4.5. Summarizing, we shall use the zenith angle (instead
of its cosine) and a logarithmic energy scale for representing PINGU event spectra.

4.5 From oscillograms to event spectra

In atmospheric neutrino experiments, the detected neutrino events are usually
organized in terms of energy and zenith angle (or related variables). The double
differential spectra of Nα events induced in PINGU by both να and να, as a

1As usual, upgoing events (θ/π ∼ 1) correspond to the left of the zenith scale, and horizontal
events (θ/π ∼ 0.5) to the right.
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function of the true energy E ′ and zenith angle θ′, can be cast in the form

d2Nα

d cos θ′dE ′
=

[
2π T

ρV α
eff(E ′)

mp

σCC(E ′)
d2Φα(θ′, E ′)

d cos θ′dE ′

]
Pα(θ′, E ′) , (4.24)

where the prefactor in square brackets does not depend on the oscillation param-
eters, while the last factor Pα is a linear combination of the relevant oscillation
probabilities:

Pα =

[
Pαα +

Φβ

Φα
Pβα

]
+

[
Φ
α

Φα

σCC

σCC

Pαα +
Φ
β

Φα

σCC

σCC

P βα

]
, (4.25)

where β 6= α and the first (second) term in brackets is due to ν (ν), respectively.
In Eq. (4.24) we have assumed a priori azimuthal averaging, hence the 2π factor;
see [207, 208] for an approach including azimuth dependence. This issue and
other related approximations will be discussed in section 4.6.

The spectra in terms of reconstructed variables (E, θ) are obtained by con-
volving the ones in Eq. (4.24) with the resolution functions,

d2Nα

dθdE
=

∫ 2π

0

sin θ′dθ′rαθ (θ, θ′)

∫ ∞
E′thr

dE ′rαE(E,E ′)
d2Nα

d cos θ′dE ′
, (4.26)

where the change of variable cos θ′ → θ′ has been applied, as discussed at the end
of the previous subsection.

The number of events Nα
ij in the ij-th bin is obtained by integrating the r.h.s.

of Eq. (4.26) over the bin area [θi, θi+1]⊗ [Ej, Ej+1]. By changing the integration
order (see [13, 224]), the resulting quadruple integration can be reduced to a
double one:

Nα
ij =

∫ θi+1

θi

dθ

∫ Ej+1

Ej

dE

∫ 2π

0

sin θ′dθ′rαθ (θ, θ′)

∫ ∞
E′thr

dE ′rE(E,E ′)
d2Nα

d cos θ′dE ′
(4.27)

=

∫ 2π

0

sin θ′dθ′
∫ ∞
E′thr

dE ′wαi (θ′)wαj (E ′)
d2Nα

d cos θ′dE ′
, (4.28)

where the functions wαn(x) are defined, for (n, x′) = (i, θ′) and (j, E ′), as:

wn(x′) =
1

2
erf

(
xn+1 − x′√

2σαx

)
− 1

2
erf

(
xn − x′√

2σαx

)
, (4.29)

with erf(x) defined as in Eq. (3.27) In the limit of perfect resolution (σαx → 0),
the curve wn(x′) becomes a top-hat function in the interval [xn, xn+1]. For finite
resolution, the “top-hat” shape is smeared and extends beyond this interval for
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a few σαx ’s. However, for numerical purposes, wn(x′) practically vanishes beyond
[xn − 4σαx , xn+1 + 4σαx ], so that the double integral domain in Eq. (4.28) can be
just taken as the ij-th bin range “augmented” by ±4σαθ and ±4σαE.

As previously argued, we actually adopt a logarithmic energy variable,

λ = log10(E ′/GeV) , (4.30)

(and similarly for the reconstructed energy E), so that

Nα
ij =

∫ 2π

0

sin θ′dθ′
∫ ∞

0

dλE ′ ln(10)wαi (θ′)wαj (E ′)
d2Nα

d cos θ′dE ′
. (4.31)

Finally, we consider reconstructed energies in the interval E ∈ [1, 40] GeV,
namely, in the logarithmic range log10(E/GeV) ∈ [0, 1.6], that we divide into 16
bins. We also divide the range of sub-horizon reconstructed angle, θ/π = [0.5, 1],
into 10 bins. With this choice, the bin widths are smaller than the typical resolu-
tion widths in Fig. 4.5 (so as to avoid additional smearing from binning), but large
enough to contain a significant number of events after a few years of exposure (so
as to apply Gaussian, rather than Poissonian, statistics). The calculation of Nα

ij

via Eq. (4.31) is performed through Gauss quadrature routines, which have been
checked to yield numerically stable results up to the third significant figure, even
in bins where the integrand oscillates rapidly via Pα.

Figure 4.6 shows the main ingredients of typical PINGU spectra calculations
(first three couples of panels from the left) and final spectra (last couple of panels
on the right), where the upper and lower panels refer to muon events (α = µ) and
to electron events (α = e), respectively. The adopted ranges and bins have been
discussed in the previous subsection. For definiteness, we have assumed normal
hierarchy (NH), sin2 θ23 = 0.5, and the remaining oscillation parameters as in
Eqs. (4.1)–(4.5); in any case, the graphical results would appear qualitatively
similar for different choices. The units and the color scale are arbitrary: in each
panel, the darkest color corresponds to the bin with maximum contents, while
lighter shades refer to lower contents, down to total white for almost empty bins.1

The leftmost panels in Fig. 4.6 show the product V α
effΦασαCC, namely, the

oscillation-independent prefactor in Eq. (4.24). This prefactor is suppressed at
high energy by ΦασαCC ∼ E−2, and at low energy by the small value of V α

eff, with
a maximum in the few GeV range, which is interesting for matter effects. Unfor-
tunately, the atmospheric neutrino flux Φα peaks at the right energy but in the
wrong direction, i.e., at the horizon (θ/π → 0.5), where matter effects vanish. In

1Concerning the absolute event rates, for the specific oscillation parameters chosen in
Fig. 4.6, we estimate a total of 1.9 × 104 muon and 1.4 × 104 electron events per year in
PINGU. The total statistics can thus reach O(105) events in a few years, as already noted.
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Figure 4.6: Ingredients of event spectra in NH (arbitrary units in color scale).
The distributions in red refer to V α

effσCCΦα/mp (left) and Pα (right), while the ones
in blue refer the unsmeared (left) and smeared (right) event spectrum respectively.
The top (bottom) refers to νµ (νe) events. The inclusion of energy and zenith
angle smearing (rightmost panels) cancels most of the oscillating structures visible
in Pα, making the hierarchy discrimination challenging when considering possible
shape uncertainties. Indeed, the smeared spectrum for IH (not shown) would be
indistinguishable by eye from the above one in NH.

this sense, atmospheric neutrinos are not “optimal” for seeking hierarchy effects,
which occur mainly in a tail (rather than at the peak) of the event spectrum.

The next couple of panels in Fig. 4.6 show the oscillation- dependent factor
Pα in Eq. (4.25). In the upper panel, the factor P µ shows large variations, whose
shape is reminiscent of the oscillograms related to νµ disappearance in Fig. 4.1. In
particular, a large disappearance “valley” (the first oscillation minimum) extends
from the upper left corner to the lower right margin of the panel. Conversely, in
the lower panel, the factor P e shows much milder variations, since the νe disap-
pearance and appearance probabilities are largely suppressed by the smallness of
sin2 θ13.

The third couple of panels shows the binned product of the factors V α
effΦασαCC

and Pα, which is proportional to the unsmeared spectrum of events in Eq. (4.24).
An oscillatory structure is still visible in the central part of each panel, i.e., for
slanted trajectories and for E ∼ few GeV. These structures, however, are largely
suppressed around the vertical upgoing direction, where the atmospheric flux is
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lower.
Finally, the rightmost couple of panels shows the observable, smeared spectra

of µ and e events, including resolution effects as in Eq. (4.31). The oscillating
structures appear to be largely suppressed, except for remnants of the large νµ
disappearance valley, carrying the dominant information about the oscillation
parameters (|∆m2|, sin2 θ23). The smeared spectra in inverted hierarchy (not
shown) would be visually indistinguishable from the ones in normal hierarchy in
Fig. 4.6. Indeed, hierarchy effects emerge as relatively smooth and subdominant
modulations, at the level of a few percent, in the left tail of the zenith spectra
and for intermediate energies. It is thus imperative to assess how accurately we
know the shapes of the neutrino event spectra in PINGU and, in general, in
large-volume atmospheric experiments.

4.6 Spectral uncertainties and their parametriza-

tion

Our statistical analysis of the µ and e event spectra in PINGU is based on a
χ2 approach as in Chapter 3, assuming again the usual definition for hierarchy
sensitivity as Nσ =

√
∆χ2. Since our implementation of the Markov Chain Monte

Carlo [181] is numerically too demanding in this context, we adopt less general
but faster “pull method” (see section 2.6) for minimizing the χ2. The TH (true
hierarchy) and WH (wrong hierarchy) spectral event rates are defined as

Rα
ij(pk) =

Nα
ij(TH; pk)

T
, (4.32)

R̃α
ij(p̃k) =

Nα
ij(WH; p̃k)

T
, (4.33)

where T is the detector live time, the pk are the (oscillation and systematic) fixed
parameters in TH, while p̃k are the corresponding floating parameters in WH.1

The “theoretical” WH hypothesis is tested against the “experimental data” rep-
resented by the TH event rates, which are affected by statistical errors decreasing
as
√
T ,

sαij =

√
Rα
ij√
T

(1σ) , (4.34)

and by systematic errors on the parameters pk,

pk ± σk (1σ) . (4.35)

1Since we neglect seasonal variations and take average fluxes from [222], the event rates are
constant in time.
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In the “pull” approach we assume by construction a first-order expansion of the
R̃α
ij(p̃k) under small deviations of (some) parameters p̃k around the “true” values

pk, which in general is a reasonably good approximation for all the parameters, ex-
cept δ and θ23. For this reason, for any given choice of TH parameters (sin2 θ23, δ),
we do scan the WH parameters (sin2 θ̃23, δ̃) over a grid sampling the full range
[0, 1]⊗[0, 2π]. For each (sin2 θ̃23, δ̃) point of the the grid, we numerically calculate
the derivatives by taking finite differences at ±2σk, then we calculate the ∆χ2 by
minimizing over the linearized p̃k variations:

∆χ2 = min
p̃k

 10∑
i=1

16∑
j=1

∑
α=µ, e

(
Rα
ij(pk)− R̃α

ij(p̃k)
)2

(sαij)
2 + (uαij)

2
+
∑
k

(
pk − p̃k
σk

)2

 , (4.36)

where uαij represents uncorrelated errors in the ij-th bin (to be discussed later)
and the second term represents the sum of penalty functions for the nuisance
parameters p̃k (assuming gaussian errors σk).

The most obvious sources of systematic uncertainties are due to: (1) the cal-
culation of oscillation probabilities and (2) absolute and relative normalizations.
Concerning the first ones, we adopt the central values in Eqs. (4.1) and 1σ error
in Table 1.1. The parameters δm2 and sin2 θ12 are kept fixed as in Eqs. (4.2) and
(4.4), respectively, since their errors induce negligible effects in the PINGU anal-
ysis. As already discussed, the true parameter δ is fixed at 3π/2 as in Eq. (4.5),
while for the wrong hierarchy it is left free in the range [0, 2π]. The true param-
eter sin2 θ23 is chosen in the range [0.4, 0.6], while for the wrong hierarchy it is
left free in the range [0, 1]. Finally, we add a reasonable 3% error on the electron
density in the Earth’s core,

σ(Ne) = 3% (core) , (4.37)

to account for uncertainties in its chemical composition.1

Concerning the absolute normalization, we attach an overall 15% error fN to
all the event rates, accounting for fiducial volume, flux and cross section uncer-
tainties,

R̃α
ij → R̃α

ij(1 + fN) , σ(fN) = 0.15 . (4.38)

The relative normalizations between the µ and e rates, and between the ν and ν
components of the rates, are allowed to differ, respectively, up to 8% and 6% at

1The typical difference between the Ne values in the mantle and in the core is ∼ 6% [225].
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1σ (which represent values in typical ranges [107, 206])1

(
R̃µ
ij

R̃e
ij

)
→
(
R̃µ
ij(1 + 1

2
fR)

R̃e
ij(1− 1

2
fR)

)
, σ(fR) = 0.08 , (4.39)

(
R̃α
ij(ν)

R̃α
ij(ν)

)
→
(
R̃α
ij(ν)(1 + 1

2
fν)

R̃α
ij(ν)(1− 1

2
fν)

)
, σ(fν) = 0.06 . (4.40)

Let us discuss an example of best fit spectrum including above uncertainties.
Figure 4.7 shows the absolute spectra Rµ

ij(pk) and Re
ij(pk) in terms of events per

bin (upper and lower left panels, respectively) for the favorable case of true normal
hierarchy and sin2 θ23 = 0.6. The middle panels show the statistical differences
between such spectra and the corresponding best-fit spectra in inverted hierar-
chy, R̃µ

ij(p̃k) and R̃e
ij(p̃k), after marginalization over the p̃k systematic parameters

(oscillation and normalization uncertainties) described above. As pointed out in
several papers [114, 176, 205, 206, 208, 210, 216], statistical differences, up to
1–2σ in some bins, appear in the energy-angle region where matter effects are
generically large, and even beyond (due to smearing); the differences typically
change sign by changing flavor and, for a given flavor, they also change sign in
the energy-angle plane. Such patterns of statistical deviations should thus provide
useful cross-checks, provided that they are not spoiled by systematic effects. The
right panels show the same differences, expressed in terms of percent deviations,
reaching a few % for muon event spectra and twice as much for electron event
spectra. Hypothetical systematic shape deviations at the 5–10% level, “equal and
opposite” to those shown in the right panels of Fig. 3, would basically cancel the
hierarchy difference, strongly reducing the related PINGU sensitivity. A nonegli-
gible reduction can still be expected, however, for smaller shape deviations at the
(few) percent level, especially if we consider an “unfavorable” case like IH true
and sin2 θ23 = 0.4.

In conclusion, Fig. 4.7 shows, once more, the necessity to investigate the
impact of shape systematics at the (few) percent level in a wide energy-angle
region, not necessarily restricted to nearly upgoing events at few GeV. For this
purpose we shall first include “known” systematics directly affecting the shape,
and then try to parametrize “unknown” uncertainties.

Uncertainties in the double differential cross-section, as well as in the detector
energy-angle reconstruction, eventually affect the shapes of the resolution func-
tions. For the sake of simplicity, we consider only gaussian resolution functions

1In principle, due to oscillations, one should distinguish between a relative Φµ/Φe flux error
at the source, and a relative R̃µij/R̃

e
ij mis-identification error at the detector. However, we have

verified that these errors are highly correlated in the fit results, and their merging in a single
error source is a reasonable approximation within the present work.



96 Neutrino oscillations in high-statistics atmospheric neutrino experiments

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

π/θ

E/
G

eV

1

10

0.50.60.70.80.91

=0.6)
23
2 (sNH

αN
NH
αN√) / NH

αN - IH
αN( NH

αN) / NH
αN - IH

αN (×100 

E/
G

eV
E/

G
eV

 = m
uon

α
 = electron

α

π/θ π/θ π/θ

0

200

400

600

800

1000

1200

1400

1600

1800

-1.0

-0.5

  0.0

+0.5

+1.0

-4

-2.0

-3

-1.5

-2

-1.0

-1

-0.5

  0

  0.0

+1

+0.5

+2

+1.0

+3

+1.5

+4

+2.0

0

200

400

600

800

1000

1200

1400

-10

-5

  0

+5

+10

Figure 4.7: Case of true normal hierarchy and sin2 θ23 = 0.6. Left panels: ab-
solute event spectra (top: µ events; bottom: e events). Middle panels: statistical
deviations with respects to the best-fit spectrum in the wrong (inverted) hierarchy,
marginalized over oscillation and normalization systematics only. Right panels: the
same deviations in percent values.

[see Eqs. (4.18) and (4.19)], which may be affected by two kinds of systematics:
biases in the centroid, and fluctuations in the width. More complicated (e.g.,
skewed) variants might be considered for nongaussian cases.

Following recent PINGU presentations (see, e.g., [226]), we assume that the
true energy centroid may be biased by up to 5% at 1σ,

E ′ → E ′(1 + fE) , σ(fE) = 0.05 . (4.41)

We actually include two such energy scale errors, for µ and e event independently,
while we neglect possible directional biases for such events, which are expected
to be smaller (and are usually undeclared in PINGU presentations).

Concerning the resolution widths, on the basis of our histogram fitting pro-
cedure described in section 4.4, as well as on fluctuations in the PINGU own
evaluation of widths [226], we estimate that they may vary up to 10% at 1σ,
independently of each other:

rαz → rαz (1 + fαz ) , σ(fαz ) = 0.1 , (4.42)

where α = µ, e and z = E, θ. The allowance for slightly wider or narrower
resolution functions is a relevant degree of freedom in the fit, given the role of
smearing effects in determining the observable spectral shapes.
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The previous energy scale and resolution width errors do not exhaust the
(presumably long) list of shape systematics. Uncertainties in the effective volume
and in the reference atmospheric fluxes may also lead to an entire set of (few)
percent deviations as a function of energy and angle, which are not necessarily well
known or under good control. In the absence of a detailed study of such residual
shape systematics in PINGU, we provisionally assume that the observable PINGU
spectra have small, additional functional uncertainties, parametrized in terms of
polynomials. In particular, we rescale the abscissa and ordinate variables of the
spectra in Figs. 4.5–4.7 as

x = 4θ/π − 3 , (4.43)

y = 1.25 log10(E/GeV)− 1 , (4.44)

so that they range within

(x, y) ∈ [−1, +1]⊗ [−1, +1] . (4.45)

We assume that the rates R̃α
ij may be subject to generic h-degree polynomial

deviations in (x, y) of the kind:

R̃α
ij → R̃α

ij

(
1 +

h∑
m+n>0

cαnmx
m
i y

n
j

)
, (4.46)

where xi and yj are the midpoint coordinates of the ij-th bin. The coefficients
cαnm are allowed to float around a null central value within representative errors,
that we choose as

σ(cαnm) = 10−2 ×


1.5 (default) ,
3.0 (doubled errors) ,
.75 (halved errors) ,

(4.47)

so as to cover cases with shape systematics at various levels (percent, few percent,
subpercent).

It is legitimate to posit that our knowledge of the systematics, no matter how
detailed, may be incomplete, leaving residual uncorrelated errors uαij in each bin
from various source, including finite statistics effects in atmospheric, cross sec-
tion, and reconstruction MC simulations. There are however, deeper motivations
to include such uncorrelated errors, as noted in [227]. In the limit of very large
statistics (sαij → 0), assuming that we know all the possible sources of correlated
systematic parameters p̃k and their effect on each binned rate, we would have the
paradoxical result of ∆χ2 → ∞ for uij = 0. To solve the paradox, one should
admit that the knowledge of spectral systematics may be either incomplete or
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inaccurate to some extent, and try to deal with the residual ignorance. One
possibility is to render the spectra more flexible, by including additional families
of admissible spectral deviations via extra parameters p̃k, as we are doing with
polynomials in Eq. (4.46). Another possibility is to parametrize our ignorance by
allowing additional uncorrelated errors uij of reasonable size in each bin, which
lead to finite ∆χ2 values in the limit of infinite statistics [227]. We shall con-
sider three simple, representative cases for the residual (uncorrelated) fractional
uncertainties in each bin, namely:

uαij
Rα
ij

= 10−2 ×


1.5 (default) ,
3.0 (doubled errors) ,
.75 (halved errors) .

(4.48)

This completes our list of uncertainties, which will be progressively included in
the following statistical analysis.

4.7 Estimate of the sensitivity to the hierarchy

Figure 4.8 shows the PINGU sensitivity to the hierarchy, in terms of standard
deviations separating the true mass hierarchy (top: NH; bottom: IH) from the
wrong mass hierarchy, as a function of the detector live time T in years. The bands
cover the fit results obtained by spanning the range sin2 θ23|true ∈ [0.4, 0.6]. The
abscissa is scaled as

√
T , so that the bands would grow linearly in the ideal case of

no systematic errors (not shown). From left to right, the fit includes the following
systematic errors: oscillation and normalization uncertainties, energy scale and
resolution width errors, polynomial shape systematics (with up to quartic terms),
and uncorrelated systematics, as defined in Sec. III. The last two error sources
are kept at the default level of 1.5%. With only normalization and systematic
errors, Nσ grows almost linearly in

√
T , i.e., the experiment is not limited by these

systematics, even after 10 years of data taking. However, the progressive inclusion
of correlated shape systematics, both “known” (resolution scale and widths) and
“unknown” (ad hoc polynomial deviations), and eventually of uncorrelated shape
systematics, provide a suppression of Nσ, whose estimated ranges increase more
slowly than

√
T . The typical effect of all the systematic shape errors in the

rightmost panels is to decrease the 5-year (10-year) PINGU sensitivity by up to
∼ 35% (∼ 40%), with respect to the leftmost panels in Fig. 5.

Table 4.1 reports numerical results for the same fit of Fig. 4.8, with a break-
down of the polynomial shape systematics (from linear to quartic deviations).
It can be seen that most of the sensitivity reduction due to polynomial shape
variations is already captured at the level of linear and quadratic parametriza-
tion, with higher- degree terms contributing a small fraction of 1σ. Although
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Figure 4.8: PINGU sensitivity to the hierarchy (Nσ), for either true NH (top
panels) or true IH (bottom panels), as a function of the live time T in years. The
abscissa is scaled as

√
T , so that the sensitivity bands (which span sin2 θ23|true ∈

[0.4, 0.6]) would grow linearly for purely statistical errors. From left to right, the
fit includes the following systematic errors: oscillation and normalization uncer-
tainties, energy scale and resolution width errors, polynomial shape systematics
(with up to quartic terms) at the 1.5% level, and uncorrelated systematics at the
1.5% level, as defined in Sec. III.

each polynomial term cαnmx
n
i y

m
j can typically contribute to a ±1.5% deviation

by construction, their sum
∑
cαnmx

n
i y

m
j yields typical deviations of about ±1%

(±2%) for µ (e) events in the fit, except for the case of NH in the second octant,
where they can become twice as large (but where Nσ is also large). In conclusion,
reasonable shape uncertainties at the (few) percent level may produce a notice-
able overall effect on the PINGU sensitivity, although none of them appears to
be crucial in itself.

In the previous Section, we have assumed a prior range sin2 θ23|true ∈ [0.4, 0.6],
roughly corresponding to the current ±2σ allowed region in Table 1.1. In view
of future constraints on θ23 coming from ongoing and future accelerator experi-
ments, it is useful to consider also a possible reduction of this range in prospective
PINGU analyses. In particular, let us consider Fig. 4.9, which is analogous to
Fig. 4.8, but is obtained for sin2 θ23|true ∈ [0.46, 0.54]. One can notice a significant
narrowing of the Nσ bands, and an overall gain in the minimum sensitivity. How-
ever, the pattern of progressive reduction of Nσ due to the inclusion of various
shape systematics is similar to the one in Fig. 4.8. Therefore, prior information
on sin2 θ23 is of crucial relevance in determining the absolute sensitivity to the
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Table 4.1: Reduction of the PINGU sensitivity to the hierarchy (expressed in
terms of Nσ range for sin2 θ23 ∈ [0.4, 0.6]) due to the progressive inclusion of
various shape systematics, for 5 and 10 years of exposure. Correlated polynomial
and uncorrelated systematic uncertainties are taken at the default level of 1.5%.
See the text for details.

5-year sensitivity Nσ 10-year sensitivity Nσ

Errors included in the fit True NH True IH True NH True IH
Stat. + syst (osc.+norm.) 4.23–12.3 3.34–5.64 5.82–16.1 4.49–7.64
+ resolution (scale, width) 3.31–9.76 2.95–4.37 4.54–12.9 4.00–5.94
+ polynomial (linear) 3.14–9.17 2.86–4.16 4.23–11.9 3.81–5.49
+ polynomial (quadratic) 3.01–8.29 2.69–3.88 3.93–10.6 3.47–5.05
+ polynomial (cubic) 2.98–8.26 2.67- 3.84 3.87–10.5 3.42–4.94
+ polynomial (quartic) 2.95–8.12 2.64–3.79 3.82–10.3 3.37–4.87
+ uncorrelated systematics 2.84–7.84 2.54–3.68 3.55–9.69 3.14–4.63
Total Nσ reduction from 1st row 33–36% 24–35% 39–40% 30–39%

hierarchy, although it does not affect the relative reduction effects of systematic
shape uncertainties. In this context, it makes sense to study how well this mixing
angle may be determined by PINGU itself.

Figure 4.10 shows, in each panel, the fitted value sin2 θfit
23 (at 1, 2 and 3σ) as a

function of the true value sin2 θtrue
23 ∈ [0.4, 0.6], for the four possible cases where

the true and tested hierarchies coincide or not. The results are obtained in a
representative scenario with 5 years of PINGU data, and with polynomial and
uncorrelated shape errors at the 1.5% level. In order to understand qualitatively
such results, we stress that most of the hierarchy information (via matter effects)
and octant-asymmetric information is embedded in the µ ↔ e flavor oscillation
channel, whose amplitude grows with sin2 θ23. This information is enhanced in
normal hierarchy, where matter effects are stronger for neutrinos, characterized
by a larger cross section than antineutrinos.

In Fig. 4.10, the panel (a) refers to the case with true normal hierarchy, as-
sumed to be unambiguously determined by PINGU. In this case, by construction,
the fitted value sin2 θfit

23 coincides with of the true value sin2 θtrue
23 ; the 1, 2 and 3σ

bands provide then the accuracy of the sin2 θ23 measurement with PINGU data
only. The panel (c) shows analogous case for inverted hierarchy, which clearly
shows a worsening of the accuracy for sin2 θfit

23, and a much more pronounced ef-
fect of the octant degeneracy. The panel (b) refers to the case where the true
hierarchy is normal, but PINGU is assumed to mis-identify it as inverted. In
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Figure 4.9: As in Fig. 4.8, but for polynomial and uncorrelated systematic errors
doubled (left) or halved (right), while statistical errors and systematics related to
oscillation, normalization and resolution uncertainties are assumed to be the same.

this case, the fitted value sin2 θfit
23 is systematically higher than the true one; the

reason is that the fitted IH spectrum tries to reproduce the intrinsically larger
effects present in the true NH one, by increasing sin2 θfit

23 as much as as possible.
For analogous reasons, the opposite situation occurs in the panel (d), where the
true hierarchy is inverted, but PINGU is assumed to mis-identify it as normal:
the fitted value sin2 θfit

23 is then systematically lower than the true one. Therefore,
until the hierarchy is unambiguously determined, the determination of sin2 θ23

may be subject to strong biases in PINGU.

In conclusion, Fig. 4.9 illustrates the importance of prior information on
sin2 θ23 in determining the PINGU sensitivity to the hierarchy, while Fig. 4.10
illustrates, vice versa, the importance of prior information on the true hierarchy
in determining the PINGU sensitivity to sin2 θ23.1

4.8 Summary of results and open problems

In this chapter we have examined, taking the proposed large-volume detector
PINGU as reference, several issues arising in the calculation of energy-angle dis-

1 In this context, the role of the unknown phase δ is marginal: we have verified that the
reconstructed values of δ are never constrained above the 1σ level, for any of the PINGU error
configurations examined in our fits (not shown).
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Figure 4.10: Fitted value sin2 θfit
23 (at 1, 2 and 3σ) versus the true value sin2 θtrue

23 ,
for the four possible cases where the test hierarchy (i.e., the one assumed in the
fit) is either the true or the wrong one: (a) NH = true, NH = test; (b) NH = true,
IH = test; (c) IH = true, IH = test; (d) IH = true, NH = test.

tributions of atmospheric muon and electron events, and in the associated error
estimates. Our description of the event spectra have confirmed the general pic-
ture reported in previous papers, showing that the main challenges are related to
the lack of ν/ν separation and to the smearing due to energy and zenith angle
resolution. These effects cancel most of the differences between NH and IH which
are present in the oscillograms, despite the high statistics, which is unprecedented
in atmospheric neutrino oscillations.

We have highlighted the fact that, considering only standard systematics (os-
cillation and normalization uncertainties), the hierarchy differences are O(10%)
in the most favorable case of true NH and θ23 > π/4, but they can be halved
when considering the more pessimistic case of true IH and θ23 < π/4. Such
small hierarchy effects make PINGU vulnerable to O(few %) systematics of the
spectral shape, which may affect the atmospheric neutrino flux, as well as the
cross sections and the effective detector mass. We have then adopted polynomial
parametrizations of the shape systematics, allowing smooth modifications of the



4.4.8 Summary of results and open problems 103

event spectra. Constraints have been put on the size of each polynomial coef-
ficient, so that the maximum point-to-point variations do not overcome few %
level. Nevertheless, there can still be some residual unknown source of systemat-
ics, mostly related to unavoidable numerical approximations and finite simulation
statistics, that we have included as uncorrelated errors in each bin.

If we consider default errors (1.5% on both polynomial coefficients and un-
correlated errors) we obtain a reduction of the sensitivity of about 35% (40%)
after 5 (10) years of data taking, with respect to the standard systematics case.
The variation changes to ∼20 and ∼50% if we consider halved or doubled errors,
respectively. More quantitative results can be found in Table 4.1, for to the case
with default errors. The significant reduction of the hierarchy sensitivity due
to spectrum shape uncertainties highlights the importance of further studies of
systematics in PINGU. For instance, the work done for the Kamioka site in [228]
represents an example of decomposition of atmospheric flux uncertainties into
many separate nuisance parameters that should be repeated for future experi-
ments like PINGU and ORCA, in the context of 3D calculations of the fluxes.
Similar observations can be applied also to the uncertainties associated to the
neutrino cross sections and, to some extent, to the effective detector mass. Such
decomposition would be beneficial not only for hierarchy determination, but also
for searches of other subleading signals, such as those induced by the phase δ at
low (sub-GeV) energy [229].

We have also investigated the correlation between the mass hierarchy and θ23.
PINGU is capable of determining the true octant, if the mixing is non maximal,
but only if the true hierarchy is known. On the other hand, if the mass ordering
is not reconstructed properly, then θ23 could be underestimated or overestimated
depending on the true hierarchy. It is to be hoped that when PINGU experiment
will start (∼ 2020), LBL accelerator experiments will have shed more light onto
the θ23 octant issue.

Other improvements might come from better angular resolutions, which might
be achieved, e.g., in ORCA [196], or from the possibility to discriminate ν from
ν through the reconstruction of the event inelasticity [208, 211, 216]. All these
efforts and a more refined characterizations and evaluations of (known and un-
known, correlated and uncorrelated) spectral uncertainties should be largely pro-
moted in the neutrino physics community, as already started by the PINGU
collaboration itself [230, 231].
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5

Supernova neutrinos as a possible
probe of neutrino properties

5.1 Supernova neutrinos

The evolution of a star is the result of two effects acting in opposite directions:
the gravitational force, which tends to induce a collapse, and the thermal pressure
generated by nuclear burning processes, which tends to expand it. To maintain
the equilibrium a star will undergo different burning stages, starting from the
one of hydrogen and then of heavier elements. In particular, for a core-collapse
supernova (SNe), which is the final explosion of a star with a mass & 8 solar
masses, these processes lead to an onion structure, made up of shells with the
relics of previous stages, an expanded envelope and a degenerate iron core. In
such a case, no other burning process can occur in the core, because iron is the
nucleus with the largest binding energy. As a result, the core begins to collapse
under the effect of gravity until it reaches the Chandrasekhar limit, which is the
maximum mass that the electron degeneracy pressure can support. The density
rapidly increases until the core reaches the nuclear density (3 × 1014 g/cm3).
Then it becomes incompressible and the collapse stops, producing a rebound.
The bounce generates a shock wave travelling outwards and ejecting outer layers.
This shock dissipates energy by the dissociation of iron and may stall without
driving off the stellar mantle and envelope. According to the “delayed explosion
scenario” the shock can be revitalized by energy deposition of neutrinos below the
shock wave, so that enough pressure builds up behind it to trigger the explosion
leading to a supernova.

In general, a supernova can be roughly seen as a black-body that cools via neu-
trino emission. Neutrinos also carry lepton number from the core, transforming
it into a neutron star. During the explosion, the collapsing star emits neutrinos
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Figure 5.1: Typical SN neutrino fluxes, for a 10.8 M� progenitor star, taken from
[232]. Luminosity (top) and average energy (bottom) associated to supernova νe
(continuous line), νe (dotted line) and νµ,τ (dashed line). The left, central and
right panels report the relevant time scale for the neutronization, accretion and
cooling phase respectively.
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Figure 5.2: Neutronization events rate per time bin for a 0.4 Mton water-
Cherenkov detector and for both NH (continuous line) and IH (dashed line). [Cour-
tesy of A. Mirizzi]
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in three main phases.

• Neutronization burst : this phase lasts ∼10 ms and consists in the rapid
electron capture (e−p→ nνe) on dissociated nuclei. This leads to a sudden
rise in the luminosity of νe up to 1053 erg/s, while for the other flavors it is
negligible.

• Accretion phase: the high density traps neutrinos, which escape from the
last scattering surface, called the neutrinosphere. The shock loses its energy
in dissociating heavy nuclei and it stalls at distances r ' 150−200 km from
the core. In this phase material continues to fall onto the core and accretes
on it for the following few 100 ms. The accreting matter leads to a flux of
neutrinos and antineutrinos of all species, with a luminosity of ∼1052 erg/s.
νe and νe have a larger production rate than other flavors, since they can
be generated by both CC and NC interactions with the accreting matter.
Therefore, the accretion phase is characterized by a strong excess of electron
neutrinos and antineutrinos. The averaged energy for each flavor has the
following hierarchy: 〈Eνx〉 > 〈Eνe〉 > 〈Eνe〉, where x stands for any νµ,τ or
νµ,τ .

• Cooling phase: After the explosion, the remaining proto-neutron star cools
by neutrino emission of all flavors over about 10 s. The luminosity is ap-
proximately equipartitioned between the flavors (3×1051 erg/s/flavor) and
the hierarchy of average energies is presumably milder than in the previous
phase.

The spectral characteristics evolve in time, as shown in Fig. 5.1, and can
vary in their details with the mass of the progenitor star and with input physics
(nuclear equation of state and neutrino transport). In general, however, the
expectations are for 〈Eνe〉 ' 10 − 12 MeV, while 〈Eνe〉 ' 12 − 15 MeV, due
to their smaller CC cross section, which allow them to escape from denser and
hotter regions of the star. For the other flavors (µ, τ) one expects similar fluxes
and average energies 〈Eνx〉 ' 15− 18 MeV.

Neutrinos from neutronization burst represents a possible source of informa-
tion on the mass hierarchy, because, as we shall see in section 5.3, the dominance
of νe over νe and νx (where νx = νµ,τ and νx = νµ,τ ) prevents the develop-
ment of self-induced oscillation effects, leaving as the only oscillation effect the
MSW one. In a typical supernova the MSW resonance occurs for r & 103 km
and, assuming completely adiabatic propagation, the survival probabilities are
(Pee, Pee)=(0, cos2 θ12) for NH and (Pee, Pee)=(sin2 θ12,0) for IH. Since the initial
νe flux is characterized by a sharp peak as a function of time, the observation of
such a feature in the distribution of events would be an evidence for IH.

SN core-collapse neutrinos were observed for the first (and so far only) time
on the 23rd February 1987, when 24 events were detected in the Kamiokande



108 Supernova neutrinos as a possible probe of neutrino properties

q

p

ϕq

p

r

θR

θr

R

Figure 5.3: Geometry of the bulb model.

[61], IMB [233] and Baksan [234] experiments, a few hours before visible light
reached the Earth. Despite the small statistics, this observation led to a general
confirmation of the main features of our physical description of a SNe [62, 63],
like the binding energy of the neutron star of about ∼ 1053 erg, the duration of
the accretion and cooling phase (few seconds) and the average energy of νe (∼ 15
MeV). It also allowed to put constraints on neutrinos mass-mixing parameters.
However, this was not enough to obtain more detailed information on the SN
mechanism or on neutrino properties.

Since 1987, there have been huge developments on both the experimental and
theoretical side. On the onre hand, current detectors like Daya Bay, Borexino,
KamLAND, IceCUBE and SK can provide a much higher statistics (O(104−6)
events) than obtained in 1987. On the other hand, progress has been made
on theoretical models for SNe dynamics, as well as on the study of oscillations
in a dense neutrino environment, where collective phenomena may occur and
be sensitive to the mass hierarchy. In the following sections, we will discuss
briefly the state-of-the-art of supernova neutrino oscillations and then present
some recent development.

5.2 Neutrino oscillations in a dense neutrino back-

ground

Near the neutrinosphere, the neutrino density is so high that the neutrino-
neutrino potential is not negligible. In such a case, the general equations of motion
(EoMs) for flavor are usually written in terms of the density matrix %p,x, where p
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and x are the momentum and position of neutrinos. The diagonal elements of the
matrix represent the usual occupation numbers, while off-diagonal ones contain
the phase relations that allow to describe neutrino oscillations. The general form
of the EoMs is [235, 236, 237, 238]

(∂t + vp · ∇)%p,x = −ı[Hp,x, %p,x], (5.1)

where vp is the velocity of a neutrino with momentum p (p = |p|) and, taking
L = diag(1, 0, 0), H is the total Hamiltonian given as

Hp,x =
UM2U†

2p
+ VCCL + H νν

p,x. (5.2)

An analogous equation can be written also for antineutrinos. The first two terms
of Eq. (5.3) represent the vacuum and matter Hamiltonian, as defined in section
1.3. The only change regards the matter potential, which now depends on the
difference between the electron and positron density, i.e. VCC =

√
2GF (Ne− −

Ne+). The last and new term is the self-interaction Hamiltonian, which under
certain conditions can generate collective effects, consisting in coherent flavor
conversions over the entire energy range. The expression of H νν

p,x is [239, 240]

H νν
p,x =

√
2GF

∫
d3q

(2π)3
(%p,x − %p,x)(1− vp · vq). (5.3)

For identifying the strength of the ν−ν potential we use µ =
√

2GFNν , where Nν

is the neutrino density. The main feature in H νν
p,x is the angular factor 1−vp·vq =

(1 − cos θpq). The angular term averages to zero for isotropic neutrino gases,
but for a non-isotropic emission, like in SNe environment, it is non-vanishing.
This produces a different refractive index for neutrinos propagating on different
trajectories, leading to the so-called “multi-angle” effects, which consist under
certain conditions in flavor decoherence for the self-induced oscillations. In section
5.3 we will see that flavor asymmetry is a fundamental parameter for assessing
the presence of multi-angle effects.

Equation (5.1) has never been solved in its full complexity. A common simpli-
fication comes from the “bulb model” [241, 242, 243], where the emission from the
neutrinosphere is assumed to be uniform, half isotropical (only the outward-going
modes are occupied) and azimuthal symmetric. In this case, the relevant physics
depends only on the radial distance r. Another important hypothesis is station-
arity, which allows one to neglect the time derivative. Under these circumstances,
the left-hand side in Eq. (5.1) becomes

ı
d

dr
%p,u,r =

1

vu,r

[
UM2U †

2p
, %p,u,r

]
+
VCC
vu,r

[L, %p,u,r] + (5.4)

+

√
2GF

2(2π)

R2

r2

∫ ∞
0

dq q2

∫ 1

0

du′
(

1

vu,rvu′,r
− 1

)[
%q,u′,r − %q,u′,r, %p,u,r

]
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where u = sin2 θR, θR is the zenith angle at the neutrinosphere, vu,r =
√

1− u(R/r)2

is the radial velocity and R is the radius of the neutrinosphere, see Fig. 5.3 for
a geometrical reference and [240] for technical details of the EoMs in the bulb
model.

It has been shown in [244], that if Nνe−Nνe � Ne−−Ne+ matter effects do not
play a relevant role, while in the opposite limit they create large phase differences
for neutrinos traveling on different trajectories, because the term VCC/vu,r from
Eq. (5.5) prevents possible flavor conversions. On the other hand, if Nνe −Nνe ∼
Ne− − Ne+ , flavor decoherence may occur. According to current models on the
evolution of a supernova, in the initial stages of the accretion phase the matter
density is expected to overcome the neutrino density. In these cases, no flavor
evolution can develop according to current knowledge. In section 5.4 we will
present a possible twist in this scenario.

5.3 Collective flavor transition effects

Let us assume that F 0
νe � F 0

νe � F 0
νx , as it occurs in the initial stages of the

accretion phase (see Fig. 5.1). Furthermore, we assume that the matter potential
do not prevent collective flavor conversion to occur, and consider a small effective
mixing angle to simulate its in-medium suppression. As a first case, let us consider
inverted hierarchy. In such a context, it has been found that until a certain radius
(rsynch), synchronized oscillations take place: all neutrino flavors oscillate with the
same frequency, but with no relevant flavor conversion, because the mixing angle
is small [240]. For rsynch < r < rbip bipolar oscillation νe, νe → νxνx occur,
which consist in almost complete flavor conversion between the two flavors. The
conversion cannot be complete because the total lepton number must be conserved
[240]. For r > rbip, when bipolar oscillations are finished, their effect can be
observed, as reported in Fig. 5.4. The top panels show with continuous red lines
the final energy spectra for νe (left) and νe (right), while blue dotted and black
dashed lines indicate νx, νx and νe, νe initial spectra, respectively. We note that
for E & 10 MeV the νe spectrum is swapped with the one for νx, as a consequence
of bipolar oscillations: a phenomenon called “spectral split”. For νe the swap is
almost complete, since it regards the whole spectrum. Being F 0

νe � F 0
νe only νe

can completely convert to νx in order to keep constant the total lepton number.
The bottom panels of Fig. 5.4 report the oscillation probabilities, in all possible
channels, as a function of energy. In order to have a spectral split for νe the
survival probability Pee vanishes only after Ec ' 10 MeV, while for νe it start
decreasing at the beginning of the spectrum. For normal hierarchy (not shown)
we do not observe any bipolar conversion or spectral split, but only synchronized
oscillations.
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Figure 5.4: (Top) Energy spectra for neutrinos (left) and antineutrinos (right),
taken from [240]. The initial spectrum for the flavor e is represented by dashed
black lines, the one for the flavors x, y is represented by dotted blue lines, while the
final spectrum for the flavor e is given by continuous red lines. (Bottom) Oscillation
probability, as a function of energy for the channels νe → νe (continuous red line),
νe → νy (dashed blue line) and νe → νx (dotted black line).

The results described above were considered as a sufficiently general “paradigm”
for self-induced flavor conversion of supernova neutrinos [240]. However, if we
modify the ordering of the initial fluxes, flavor evolution might change. For in-
stance, if F 0

νe � F 0
νx � F 0

νe , which occurs in the neutronization burst when the
νe flux is enhanced, no bipolar conversion occur and no spectral split is expected
for both mass hierarchies. Moreover, if F 0

νe & F 0
νx & F 0

νe , typical for the cooling
phase, multiple spectral splits are present in both neutrinos and antineutrinos
spectra. Multi-angle effects are not negligible in this case and they reduce the
size of spectral swaps by introducing decoherence in the system. As a final re-
mark, it has been proved that for such flux ordering, spectral splits can occur
also for NH.

We conclude this section with a remark. We have seen that according to the
ordering of the spectra, flavor evolution in SNe may vary, with possible depen-
dence also on the mass hierarchy, which may therefore leave an imprint in the
neutrino distributions observed on Earth. In particular, if F 0

νe � F 0
νe � F 0

νx

bipolar oscillations occur only in IH and not in NH, thus providing a possible
hierarchy signature. However, this result was obtained by assuming that mat-
ter effects do not suppress collective effects. As shown in [245], in the accretion
phase the presence of the matter background can suppress bipolar oscillations,
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Figure 5.5: Features of the toy model used for our non-stationary analysis.
Monochromatic neutrinos are emitted from the x-axis (z = 0) in the plane (x, z),
with only two angles with respect to the positive direction of x: θL and θR.

thus requiring a larger flux hierarchy in order to obtain the previous scenario.

5.4 Non stationary self-induced flavor conver-

sion

The collective phenomena introduced in section 5.3 have been derived in the
framework of the “bulb model”. The symmetries on which the model is based
simplify considerably the complexity of the problem, but they may be unrealistic
and, in principle, valid only if small perturbations do not alter the flavor evolution
of the system. However, it was recently shown that self-interactions can break
the boundary symmetries and introduce instabilities, when some simplifying hy-
potheses are relaxed. An important role in these studies is played by the stability
analyses [246] of the linearized EoMs (Eq. 5.1), which can show the presence and
the conditions for the development of an instability, and thus usefully comple-
ment the numerical solutions of the equation of motion. In [247, 248, 249] the
azimuthal symmetry was relaxed, leading to the breaking of spherical symmetry
when flavor conversions start to develop. Contrarily to what obtained in the bulb
model, in this context flavor conversions are present in both NH and IH. Another
example was reported in [250], where it is pointed out that, introducing time
dependence in the equation of motion, the time translational symmetry is broken
by the self-interaction potential. In [251, 252, 253] it was shown that the pres-
ence of spatial inhomogeneity can lead to instabilities in flavor conversion in both
mass hierarchies and close to the neutrinosphere, where the bulb model predicts
synchronized oscillations. Moreover, in [254, 255] it was underlined that the large
matter density at small r suppresses any flavor instability. In this regard, a step
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forward has been recently presented in [256], where the hypothesis of neutrino
stationary emission is relaxed. In particular, this represents the first attempt
to solve the equation of motion with the presence of temporal non-stationarity,
spatial inhomegeneity and multi-angle matter effects. The main outcome of this
study is that non-stationarity can reduce the impact of a large VCC , thus allowing
collective effects to develop in both mass hierarchies. Building up on this work,
we describe below an improved characterization of temporal instabilities and their
role in supernova neutrino oscillations, which represents the original contribution
in this Chapter [work in progress].

The solution of Eq. (5.1) without spatial homogeneity and stationarity repre-
sents a formidable problem, which we try to attack by means of a toy model. In
our case we assume the “line model” described in [251], whose main features are
summarized in Fig. 5.5. A monochromatic beam of neutrinos is emitted by an
infinite boundary, which we label as the x-axis, positioned at z = 0. The emission
occurs only in the (x, z) plane and in two directions, which we call left (L) and
right (R), with velocity vL = (sin θL, 0, cos θL) and vR = (sin θR, 0, cos θR). We
relax both the hypotheses of stationarity and spatial homogeneity. In this case
the temporal derivative in Eq. (5.1) must be taken into account. It is useful to
perform the Fourier transform of the density matrix

%L(R),k,ω(z) =

∫
dx dt %L(R),x e

−ıkx−iωt, (5.5)

where ω is the temporal pulsation of the mode %L(R),k,p(z) and k is the wavevector
of spatial inhomogeneities. Applying Eq. (5.5) to (5.1), we obtain a tower of
differential equations for the Fourier modes. For instance, the equation of motion
for the mode L of neutrinos is

ı
d

dz
%L,k,ω(z) =

1

vz

[
UM2U †

2p
, %L,k,ω

]
+

1

vz
(kuL + ω)%L,k,ω +

VCC
vz

[L, %L,k,ω]

+
1

vz

∫
dx dt e−ikx−iωt[H νν

L,x, %L,x], (5.6)

where uL = cos θL and vz = sin θL. We assume θL 6= θR to mimic the multi-angle
effects, since two different angles create a trajectory dependent phase difference,
which suppresses flavor conversion if VCC � µ. However, the existence of non
stationary modes allows for the possibility that a given ω compensates the phase
dispersion, if VCC ' ω, and thus creates instabilities. Note that the same can-
cellation cannot occur for spatial inhomogeneities, since they are proportional to
the projection of the neutrino velocity on the x-axis, i.e. uL, uR, which is different
for L and R modes.

To give a quantitative illustration of this claim, we adopt the following initial
conditions. We assume only νe, νe emitted by the source at z = 0 and %ee =
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Figure 5.6: Amplitude of non stationary flavor conversions (log10 |%
eµ
ω |) as a func-

tion of the distance from the neutrino source (z) and of the Fourier mode with
index nω (ω = nωV0/100). The closer is log10 |%

eµ
ω | to 0 (red color in the plot), the

stronger are the flavor conversions, while the opposite happens for negative values.
Left: we assume a constant matter density with VCC = 4×104 km−1. Right: same
as the left panel, but for VCC = 4× 104 exp (−z/20) km−1.

(1 + ε)%ee, with ε = 1, i.e. a factor two of excess of νe over νe. We take a vacuum
oscillation frequency Ω = ∆m2/2p = 1 km−1 and a large self-interaction potential
µ = 40 km−1. Moreover, we choose θL = 7π/9 and θR = 5π/18, so as to simulate
the matter induced multi-angle suppression. We choose θ = 10−3 and a normal
mass hierarchy, but similar results will be obtained in the inverted hierarchy.
The previous conditions would lead, for k = ω = 0, to no flavor conversion even
without matter. We take into account both a constant and a variable matter
density profile. In the former case we take VCC = 4 × 104 km−1, while in the
latter VCC = V0 exp (−z/τ), with V0 = 4 × 104 km−1 and τ = 20 km. We fix
k = 150Ω, which is an unstable mode if VCC � µ. However, the large matter
density (VCC � µ) suppresses the growth of both the homogeneous (k = 0) and
the inhomogeneous (k 6= 0) modes. To summarize, the hypotheses we have just
presented have been chosen so that no instability would grow in the stationary
case ω = 0. Concerning temporal inhomogeneity, we take ω = nωω0 (nω integer
number), where ω0 = V0/100, and we generate them through an initial seed of
δ% = 10−12 in the initial conditions of each mode.

Let us first consider a constant VCC . In the left panel of Fig. 5.6 we reported
the evolution of log10 |%eµω |, i.e. the off-diagonal term of the density matrix, as
a function of z and for a range of modes in nω. The closer is log10 |%eµω | to 0
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(red color in the plot), the stronger are the flavor conversions, while the opposite
happens for negative values. The most unstable mode, i.e. the one growing faster
than the others, is the one satisfying the condition VCC ' ω, which corresponds
to nω ' 90. The cascade in Fourier space, started at nω ' 90, then develops to
both smaller and larger nω due to the non-linear interaction term, which couples
different modes. The mode nω = 0 is almost stable in all the z range considered,
because of the large flavor asymmetry assumed as initial condition, but it will
eventually grow for z > 30 km. The right panel of Fig. 5.6 refers to an analogue
case for a non constant VCC with τ = 20 km. Since the matter potential decreases
with z, like in a real SN, the condition to be satisfied in order to activate the
cascade requires a smaller ω. This shifts the development of the cascade at smaller
scales. Considering a faster variation of VCC (τ = 10 km, not shown) the same
features can be observed with a further shift towards lower nω.

In conclusion, we have shown that in the toy model neutrinos can change
flavor when VCC � µ, if non-stationary modes with VCC ' ω are allowed. This
occurs for a constant matter density, as shown in [256], and for a variable one. In
the latter case, the faster is the decrease rate of VCC , the smaller are the scales
for which the cascade in Fourier space develops. In the context of the dynamics
of a core-collapse supernova, this result can have interesting consequences as we
shall briefly discuss below.

5.5 Summary of results and open problems

The study of supernova neutrino oscillations is a very promising field of re-
search for the several applications in both astrophysics and particle physics. In
particular, flavor conversions may also depend on the neutrino mass hierarchy,
and the full understanding of oscillations in the three stages of neutrino emis-
sion may allow the determination of the mass ordering with the next signal of
supernova neutrinos.

In the accretion phase and the cooling phase, the flavor evolution of the system
can be affected by collective phenomena, for which there is not a complete under-
standing. The results that have been obtained so far with the simplified “bulb
model” are strongly affected by relaxing the symmetries of the model, which are
spontaneously broken by the self-interaction potential. For instance, self-induced
flavor conversion can occur in both normal and inverted hierarchy, contrarily to
what was found in early calculations.

In this Chapter, as a result of a recent work in progress, we have analyzed in
more details the impact of the temporal instabilities introduced in [256]. They
can allow for flavor conversion even where the matter density would in principle
suppress oscillations. We have studied the evolution of the Fourier cascade re-
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garding the ω-modes, both with a constant and a variable matter potential. The
effect of a not constant λ is to move the most unstable mode at lower scales.

In the future, the toy model should be modified in order to test non station-
arity in the case of real SNe. In this case, the presence of flavor conversions
at low radii may imply the need for the inclusion of neutrino oscillations also
in the shock wave revitalization, where it is usually neglected, and it may have
consequences in the nucleosynthesis processes occurring in SNe.

In conclusion, a future neutrino signal from a SN can give information on
both the dynamics of the collapse and on the properties of neutrinos, like the
mass hierarchy, but, in order to have a correct understanding of the distributions
observed in the detector, a re-investigation of the collective flavor oscillation re-
sults obtained with the “bulb model” is in order, since the strong ν− ν potential
can break the symmetries on which the model is based.
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Conclusions and perspectives

6.1 Mass hierarchy from neutrino oscillations

Current data from neutrino oscillation experiments, as presented in Chapter
2, are not able to discriminate between NH and IH [13]: subleading effects related
to the mass ordering cannot yet emerge with the experimental precision available.
Nevertheless, the recent evidence for θ13 6= 0 [7, 8, 9], leading to a relatively high
value sin2 θ13 ' 0.02, has opened the possibility to probe the mass ordering in
a relatively near future. In this regard, until 2020, most of the information will
come from the long baseline accelerator experiments T2K and NOνA, where the
propagation of neutrinos in matter modifies the νµ → νe oscillation probability
differently for NH and IH. One limit of this approach is the large uncertainty on
δ, which can create a degeneracy with the mass hierarchy if matter effects are
not strong enough. The optimal scenario is realized for maximally violated CP,
which seems to be hinted by the global analysis in Chapter 2, and supported
also by the latest results from T2K and NOνA, which suggest sin δ ∼ −1 in
combination with short-baseline reactor data. In the near future, joint analyses
of LBL accelerator and SBL reactor data have the potential to shed light on this
issue, by breaking the θ13−δ degeneracy. Recent investigations [131, 133] envisage
a∼3σ hierarchy sensitivity if the current best-fit for δ is confirmed, with a possible
further improvement if θ23 > π/4. Despite their limited hierarchy sensitivity,
these two experiments can provide a solid basis for next-generation searches, also
because of their expected improvements on ∆m2 and θ23 measurements.

In the decade 2020-2030, medium-baseline reactor and high-statistics atmo-
spheric experiments will lead to new searches for the mass ordering. The for-
mer class can observe the hierarchy-dependent interference between the ∆m2-
and δm2-driven oscillations, requiring a very good energy resolution and a high
statistics. Until now, two projects have been proposed: JUNO [140] (under con-
struction) and RENO-50 [143]. In both cases, an accurate calculation of the event
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spectrum is essential, including, e.g., matter and multiple reactor effects, as well
as nucleon recoil, as shown in Chapter 3. We have seen that the main challenges
to the hierarchy sensitivity are posed by the combined effects of residual non-
linearities in the energy scale and flux shape errors. We have parametrized both
systematics with polynomial functions, which can assume arbitrary shapes within
current estimated uncertainties. In view of dedicated calibration campaigns ex-
pected in JUNO and of the high statistics collected by current SBL reactor data,
we also investigated prospective halved errors, leading to an estimated sensitivity
is 3σ in 6 years for both hierarchies. We argue that an additional reduction of
these uncertainties as well as the use of a near detector will be highly beneficial
for hierarchy discrimination.

Atmospheric neutrino oscillations are sensitive to the mass ordering through
matter effects for neutrino trajectories crossing the Earth interior. In [112] Super-
Kamiokande has recently presented a hint for normal hierarchy with ∆χ2

I−N = 3,
but its intrinsic sensitivity is rather limited. The sensitivity can be improved
in future facilities, characterized by large-volume detectors and a precise recon-
struction of the neutrino energy and direction. In this context, several projects
have been proposed, most of which using Cherenkov Mton detectors: Hyper-
Kamiokande [195], ORCA [196] and PINGU [216]. A different improvement can
be achieved by distinguishing neutrinos from antineutrinos, as proposed via large
magnetized calorimeters in ICAL-INO [198]. In Chapter 4 we have highlighted,
in the context of PINGU-like projects, that the hierarchy-dependent effects are
O(few%) in the spectral shape. Thus the most “dangerous” uncertainties are
spectral deviations of comparable size, which are expected to arise from uncer-
tainties in the neutrino flux, cross sections and effective volume of the detector.
For such uncertainties, we adopted a polynomial parametrization with tentative
constraints on the coefficients, so as to cover various levels of deviations: percent
(default), few percent (pessimistic), subpercent (optimistic). We included also
possible unknown systematic sources, whose parametrization may be undefined,
and that we treated as uncorrelated errors. For the PINGU reference case, the
analysis presented in Chapter 4 reported a sensitivity of 3−10σ in NH and 3−5σ
in IH for 10 years of data taking, where the spread is related to current uncertain-
ties on the true value of θ23 and on the maximal size of possible spectral shape
variations.

New generation, high statistics reactor and atmospheric experiments will thus
face unprecedented challenges in neutrino physics. In this context, the usual treat-
ment of systematics effects needs to be improved. As already pointed out in other
fields of physics [257, 258, 259, 260], effects of residual and unknown systemat-
ics should be taken into account, including any functional form that is allowed
by current data or estimated limits. Dedicated studies are needed to deal with
such “shape” uncertainties. The efforts towards an improved characterization of
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the spectral shape systematics and their reduction will be beneficial also for the
precision physics program, capable of reducing errors on θ12, δm2 and ∆m2 at
the sub-percent level and, in principle, to the determination of θ23 octant (if this
angle is non-maximal).

An experiment which is less affected by such issues and that may perform
a statistically significant determination of the hierarchy is the accelerator-based
Deep Underground Neutrino Experiment (DUNE) [199, 200], scheduled to start
data taking in 2024-2028. The main advantages are an optimum baseline (1300
km), a large liquid-argon far detector (40 kt), a high-power, broadband and well
known neutrino beam, and a highly-capable near detector. The long baseline,
with respect to T2K and NOνA, enhances the hierarchy sensitivity via matter ef-
fects, expected to exceed 5σ regardless of δ, for an exposure of 300 kt×MW×years.
The possibility to look at both the first and second oscillation maximum will also
allow a precise measurement of δ. A possible discovery of sin δ 6= 0, i.e., of leptonic
CP violation, would be of paramount importance in particle physics.

As a last probe for the mass ordering, in Chapter 5 we have discussed the pos-
sible signatures in core-collapse supernova neutrinos. The current uncertainty in
modeling the evolution of the collapse and the complexity of the flavor equations
of motion, make the study of hierarchy effects in SNe a challenging task, which
is still open to new developments. However, at least in the first phase of the
collapse (neutronization burst), one expects a suppression of self-induced flavor
conversions, leaving the well-known MSW effect as the only source of hierarchy
information. In this case, the hierarchy can be determined by the observation
or absence of a peak in νe events after O(10 ms) from the bounce. Current ex-
periments (KamLAND, Borexino, Daya Bay, Super-Kamiokande, IceCUBE) are
mostly sensitive to νe, but future detectors, especially those with liquid argon, will
enhance the sensitivity to νe, thus opening the door to the determination of the
mass ordering via the νe/νe comparison. Concerning the other phases of the col-
lapse where collective effects are important, we have shown that non-stationarity
may induce flavor conversion even in presence of strong matter effects and in
both hierarchies. In such a case, a global picture of neutrino oscillations has
not been achieved yet, and, in general, a revisitation of what obtained with the
“bulb model” is in order. The effort towards the complete understanding of flavor
evolution in dense neutrino environment is of particular importance at the mo-
ment, given the intense experimental activity for the realization of large-volume
detectors for low energy neutrino astronomy.

In conclusion, in the next years several experiments with complementary ap-
proaches have the potential to probe and possibly to determine the neutrino mass
hierarchy, using neutrinos from accelerators, reactors, the atmosphere, or explod-
ing stars. The complementarity of different experiments will allow consistency
checks for the hierarchy determination and a possible reduction of the uncertain-
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ties on the mass-mixing parameters, especially those related to δ or θ23, through
the combination of separate data sets.

6.2 Mass hierarchy from non-oscillation observ-

ables

As already remarked in Chapter 1 and 2, the hierarchy can also be probed by
observables sensitive to absolute ν masses. Thse observables include mβ in beta
decay, mββ in neutrinoless double beta decay and (Σ) in cosmology (see section
1.2 for definitions). Current bounds on the mass-mixing parameters, presented
in Chapter 2, impose hierarchy-dependent constraints in the space (mβ,mββ,Σ):

for mmin �
√

∆m2 the mass eigenstates are degenerate (m1 ' m2 ' m3) and
the allowed regions for NH and IH are overlapped, while they branch out when
mmin &

√
∆m2 (partially degenerate spectrum), eventually reaching the lowest

values for NH.

Data from the absolute neutrino mass scale searches can be used, under certain
conditions, as a probe for the mass ordering. E.g, to have a direct evidence for
IH, a combined analysis of two observables, either (mβ,β,Σ) or (mβ,Σ), is useful,
as shown in Chapter 2. In this case the larger the uncertainties, the smaller the
regions where the combination is hierarchy-sensitive [122, 266]. In particular, in
order to convert the cosmological and 0νββ data into information on mββ and
Σ, we have to assume theoretical models, which might give different outcomes.
Only mβ (being a kinematical quantity) is free from model dependence.

Currently, the absolute mass scale has been probed down to the sub-eV re-
gion (partially degenerate spectrum) through mββ [118] and Σ [119], and down
to the eV region (degenerate spectrum) through mβ [116, 117]. These limits
cannot probe the hierarchy yet. However, in the next decade, new generation
experiments are expected to improve the sensitivity by one order of magnitude.
Among the proposed projects, KATRIN [261] aims at being sensitive to values of
mβ ∼ 0.2 eV at the 90% C.L., thus scanning almost completely the degenerate
spectrum regime, while an even lower mβ is the planned goal of Project 8 [262] (in
development), which might probe the normal hierarchy regime. Existing searches
on 0νββ [118] will cover in the next few years the quasi-degenerate region, but
future searches (e.g. nEXO [263]) will be sensitive to mββ > O(10) meV deep in
the IH region. Furthermore, in [264] it is shown that, in the field of cosmolog-
ical searches, the combination of Planck with the future data from the recently
approved ESA mission EUCLID [265] may provide evidence for Σ 6= 0 at few-σ
level, even in the most pessimistic case of normal hierarchy regime with m1 ' 0.

In conclusion, non-oscillation searches can also probe both the neutrino mass
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ordering. The improvements expected on mβ, mββ and Σ sensitivity will allow a
complete scan of the inverted hierarchy parameter space and, in some cases, to
enter in the normal hierarchy regime. However, a clear result is not guaranteed,
since it depends not only on the precision achievable by each experiment, but
also on the true mass spectrum and, to small extent, to theoretical models for
the interpretation of mββ and Σ data.

6.3 Implications of hierarchy determination

The determination of the mass hierarchy is one of the major goals in current
neutrino physics, since it may have profound consequences not only in particle
physics, but also in cosmology and astrophysics. An important objective of the
theoretical research on neutrinos is to construct a model explaining the observed
neutrino mass-mixing pattern, and possibly connecting it to the charged lepton
masses and to the quark masses and mixings. In this context, predicting the mass
hierarchy will help discriminating between various model possibilities [49, 50]. For
instance, an hypothetical evidence for the inverted hierarchy would disfavor grand
unified theories based on SO(10), which suggest normal hierarchy [11].

Resolving the mass hierarchy also plays a role in understanding the Majorana
nature of neutrinos [122, 266], which are the only particles of the Standard Model
that can be their own antiparticle. We have seen in this thesis that the limits on
the mass-mixing parameters can be translated in bounds on the effective neutrino
mass mββ for 0νββ. If it turns out that the mass ordering is inverted and no signal
of neutrinoless double beta decay is found for mββ < 20 meV, this would be an
evidence for Dirac neutrinos. On the other hand, if a signal is found around
mββ ∼few meV, it would imply the presence of physics beyond Standard Model
related to light Majorana neutrinos.

In Chapter 2 we have discussed how the δ phase can be probed in LBL accel-
erator experiments, and we have underlined that it is connected to (and partially
degenerate with) the hierarchy determination. Determining the mass hierarchy
will help reducing the uncertainties on δ and posibly lead toindications of CP
violation, as shown in [267]. This finding would strongly support (although not
prove) leptogenesis models as a possible explanation of the current asymmetry
between matter and antimatter in the universe [56, 57, 58].

Finally, the mass ordering may have an impact on various processes occurring
in a supernova [268]. However, the research in neutrino oscillations in a supernova
environment is still in development and the role of the mass hierarchy is not fully
understood yet.

In conclusion, present and future efforts towards the hierarchy determination
will improve not only our description of neutrino oscillations, but also our under-
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standing of neutrino masses and their origin, which may have a direct connection
with physics beyond Standard Model. In this search, great benefits can obtained
by using complementary approaches, with and without oscillations, which will
not only allow consistency checks but also improve the measurement of other un-
known mass-mixing parameters, and possibly lead to surprising and unexpected
results.
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Appendix A

Approximate oscillation
probability in matter with
constant density

The mixing matrix U can be decomposed as

U = O23ΓδO13Γ
†
δO12 , (A.1)

where Oij are the real rotation matrices in the angles θij and Γδ = diag(1, 1, eıδ).
If we apply a unitary transformation O23Γδ to H (the neutrino hamiltonian in
the presence of matter), the matter term remains unchanged

H̃ = (O23Γδ)
†H (O23Γδ) = O13O12

M 2

2E
(O13O12)T + V , (A.2)

whereM 2 = (−δm2/2,+δm2/2,±∆m2) up to a term proportional to the identity
matrix. With the above unitary transformation one passes from the flavor basis

(νe, νµ, ντ ) to the so-called propagation basis (νe, ν̃2, ν̃3). Note that H̃ does not

depend on δ and θ23, so it is easier to calculate the evolution operator S̃ in such a
basis. Once this operator has been found, it is straightforward to deduce S from
the inverse transformation,

S = (O23Γδ)S̃(O23Γδ)
† , (A.3)
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that can be rewritten in components as

See = S̃ee,

Sµe = S̃2ec23 + S̃3es23e
ıδ,

Sτe = −S̃2es23 + S̃3ec23e
ıδ,

Sµµ = S̃22c
2
23 + S̃23c23s23e

−ıδ + S̃32c23s23e
ıδ + S̃33s

2
23,

Sτµ = −S̃22c23s23 − S̃23s
2
23e
−ıδ + S̃32c

2
23e

ıδ + S̃33c23s23,

Sττ = S̃22s
2
23 − S̃23c23s23e

−ıδ − S̃32c23s23e
ıδ + S̃33c23c

2
23 ,

(A.4)

with Seµ, Seτ , Sµτ obtained from Sαβ ←→ Sβα and δ ←→ −δ. With this formal-
ism, the oscillation probability for the appearance channel is given by

P (νµ → νe) = |Sµe|2 = |S̃2ec23 + S̃3es23e
ıδ|2 = Aeµ cos δ +Beµ sin δ + Ceµ , (A.5)

where

Aeµ = 2Re[S̃2ec23 + S̃3es23e
ıδ]c23s23

Beµ = −2Im[S̃2ec23 + S̃3es23e
ıδ]c23s23

Ceµ = |S̃2e|2c23 + |S̃3e|2s2
23

(A.6)

Because of the smallness of θ13 and δm2, let us define as the “first order terms” the
ones proportional to either s13 or δm2, and let us label them O1 (the next-order
ones are labelled O2, O3, etc.).

First, consider the “l” limit s13 → 0. Under this conditions O13 = 1, and the
hamiltonian in the new basis is

H̃ l = lim
s13→0

H̃ =
1

2E

O12

−δm2/2 0 0
0 δm2/2 0
0 0 ∆m2

OT
12 +

ACC 0 0
0 0 0
0 0 0


=
ACC
4E

1 +
1

4E

ACC − cos 2θ12δm
2 sin 2θ12δm

2 0
sin 2θ12δm

2 cos 2θ12δm
2 − ACC 0

0 0 2∆m2 − ACC

 .

(A.7)

From Eq. (A.7) we can calculate the S̃l2e component of the evolution operator

S̃l2e = e−ı
A
4E
L

[
−ı sin 2θ̃12 sin

(
δm̃2L

4E

)]
, (A.8)

where sin 2θ̃12 and δm̃2 have the same expressions as in Eq. (1.47) and (1.48).

This implies S̃l2e = O(δm2) = O1. On the other hand, the third flavor of
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this basis (ν̃3) evolves separately from the other two. As a consequence, S̃l3e =

lims13→0 S̃3e = 0 and S̃3e = O1.

Let us consider the “h” limit δm2 → 0, for which the hamiltonian becomes

H̃ h = lim
δm2→0

H̃ =
1

2E

O13

0 0 0
0 0 0
0 0 ∆m2

OT
13 +

A 0 0
0 0 0
0 0 0

 =

(
∆m2 + A

4E

)
1

+
1

4E

A− cos 2θ13∆m2 0 sin 2θ13∆m2

0 −∆m2 − A 0
sin 2θ13∆m2 0 cos 2θ13∆m2 − A

 .

(A.9)

The (e, ν̃3) flavor evolution is now decoupled from ν̃2, so that S̃h2e = limδm2→0 S̃2e =

0 and S̃2e = O(δm2) = O1. Therefore,

S̃h3e = −ıe−ı
A
4E
Le−ı

∆m2

4E
L sin 2θ̃13 sin

(
∆m̃2L

4E

)
, (A.10)

which implies S̃h3e = O1. Summarizing, at first order

S̃2e = −ı sin 2θ̃12 sin

(
δm̃2L

4E

)
+O2,

S̃3e = −ıe−ı
∆m2x

4E sin 2θ̃13 sin

(
∆m2L

4E

)
+O2 ,

(A.11)

where we have neglected an overall phase exp−ıAx/(4E). Applying Eq. (A.11)
to Eq. (A.5), we can derive the coefficients Aeµ, Beµ, Ceµ describing the oscillation
probability Pµe,

Aeµ = sin 2θ̃12 sin 2θ̃13 sin 2θ23 sin

(
∆m̃2L

4E

)
sin

(
δm̃2L

4E

)
cos

(
∆m2L

4E

)
,

Beµ = sin 2θ̃12 sin 2θ̃13 sin 2θ23 sin

(
∆m̃2L

4E

)
sin

(
δm̃2x

4E

)
sin

(
∆m2L

4E

)
,

Ceµ = cos2 θ23 sin2 2θ̃12 sin2

(
δm̃2L

4E

)
+ sin2 θ23 sin2 2θ̃13 sin2

(
∆m̃2L

4E

)
.

(A.12)

We are interested in the special case of LBL experiments, where δm2 � A typi-
cally. Taking into account that s13 � 1, we can safely use the following approxi-
mated expressions for the effective value of the oscillation parameters in matter
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sin 2θ̃12 ' sin 2θ12
δm2

|A|
+O2 ,

δm̃2 ' |A|+O2 ,

sin 2θ̃13 '
∣∣∣∣ ∆m2

∆m2 − A

∣∣∣∣ sin 2θ13 +O2 ,

∆m̃2 ' ∆m2

∣∣∣∣∆m2 − A
∆m2

∣∣∣∣ .
(A.13)

Using Eq. (A.13), (A.12), and (A.5) we finally deduce the oscillation probability
for the appearance channel of LBL experiments as

P (νµ → νe) ' X sin2 2θ13 + Y sin 2θ13 cos

(
δ − ∆m2L

4E

)
+ Z , (A.14)

where

X = sin2 θ23

(
∆m2

A−∆m2

)2

sin2

(
A−∆m2

4E
L

)
, (A.15)

Y = sin 2θ12 sin 2θ23
δm2

A

∆m2

A−∆m2
sin

(
AL

4E

)
sin

(
A−∆m2

4E
L

)
,(A.16)

Z = cos2 θ23 sin2 2θ12

(
δm2

A

)2

sin2

(
AL

4E

)
. (A.17)

For early works with the derivation of this formula see, e.g. [79].



Appendix B

Statistical analysis of LBL
accelerator experiments

In this thesis, the statistical analysis of the LBL experiments has been per-
formed using a modified version of the software GLoBES [269, 270] for the calcula-
tion of the expected event spectra. The analysis regarded mainly the appearance
and disppearance channel of T2K [89], while for MINOS we have only updated
the disappearance one [92]. The evaluation of the expected number of events
requires as input the neutrino flux at the far detector, taken from [271] and [92]
for T2K and MINOS respectively, and the neutrino cross sections (both charged
current and neutral current, for possible background), which have been extracted
from [272].

Let us first consider the analysis of the disappearance channel. We normalize
our no oscillation spectrum to the one reported in Fig. B.1 for T2K and in
Fig. B.2 for MINOS in terms of reconstructed neutrino energy. We calculate the
oscillation probabilities in the assumption of a constant electron density and we fix
the solar parameters (θ12, δm

2) to their best fit values, as done in [89]. Oscillation
probabilities are then folded with the no-oscillation spectra via a appropriate
gaussian energy resolution function depending on the detector characteristics. For
T2K, taking into account that the resolution width is ∼0.1 GeV at the oscillation
maximum [88], we use

σT2K
E

E
=

0.13√
(E/GeV)

. (B.1)

For MINOS, energy reconstruction is dominated by the uncertainty on the hadronic
shower energy, while the contribution from the muon track is less signficant. We
consider only the dominant resolution width [274]:

σMINOS
E

E
=

0.4√
(E/GeV)

+ 0.086 +
0.257

(E/GeV)
. (B.2)
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Figure B.1: (Left) Event spectra for the disappearance channel of T2K. The
dashed black line refers to the no oscillation case, whereas the red line is the
best fit spectrum obtained from the statistical analysis. (Right) Observed events
and best fit spectrum for the appearance channel of T2K. The event spectra for
no oscillation and the observed events are taken from [86, 89], while the best fit
spectra are obtained from the statistical analysis described in the text.

Then, we calculate the χ2 for each point of a four dimensional grid in the space
p=(θ13, θ23,∆m

2, δ) by assuming Poisson statistics

χ2(p) = min
ζ

[
2

nbins∑
i=1

(
N theo
i (p, ζ)−N exp

i +N exp
i log

N exp
i

N theo
i (p, ζ)

)
+

K∑
i=1

(
ζi
σζi

)2
]
,

(B.3)
where nbins is the number of bins for a given experiment and channel, N theo

i is
expected number of events in the i-th bin, N exp

i is the observed number of events
in the i-th bin, ζ is K-th dimensional array containing systematical errors used
in the analysis and σζi is the correspondent uncertainty. Note that

N theo
i = stheo

i + btheo
i , (B.4)

where stheo
i is the number of signal νµ events and btheo

i are background events.
In the case of MINOS, as reported in [275], the main systematics are an overall
normalization error ζ1 (σζ1 =4%), a normalization uncertainty on the NC back-
ground ζ2 (σζ2 =50%) and an energy scale error ζ3 (σζ=10%). We adopt these
uncertainties for both ν and ν data sample, even if in the latter case the analysis
is dominated by statistical errors and has a marginal role in the global scenario.
For T2K we use an overall normalization factor ζ1 (σζ1 =8% [88]) and an energy
scale error (σζ2 =2.4% [89]).
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Figure B.2: (Left) νµ event spectra for the disappearance channel of MINOS
obtained with a νµ dominated flux. (Right) Same as left panel but for νµ events.
(Bottom) νµ event spectra for the disappearance channel obtained for a νµ en-
hanced flux. The dashed black line refers to the no oscillation case, whereas the
red line is the best fit spectrum obtained from the statistical analysis. The event
spectra for no oscillation and the observed events are taken from [91], while the
best fit spectra are obtained from the statistical analysis described in the text.
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For T2K appearance we normalize
∑nbin

i N theo
i to the total number of events

expected at best fit by the T2K collaboration [89]. The shape of the expected
spectrum is shown in Fig. B.1. As systematics we consider an overall normaliza-
tion error ζ1 (σζ1 =9% [86]). Note that, Eq. (B.3) can be used both in a total
rate and a binned analysis, with similar final results. This is due to the limited
statistics currently available, and to the effect of the smearing induced by the
energy resolution. In this thesis we have reported the oscillation results for a
shape analysis of the spectrum.

Systematic parameters are marginalized away, according to Eq. (B.3), in
order to reduce the χ2 to a grid in the four dimensional space p, which turns out
to reproduce well the ones coming from the quoted experiments, and can there-
fore be safely combined in the global analysis. In particular, we reproduce with
good approximation the official results of T2K and MINOS, although an exact
reproduction of the analysis performed by the LBL experiments collaborations
is virtually impossible, since the publicly available information is not complete,
and the details of the experimental set-up and the simulations are usually not re-
leased. Nevertheless, this approach is unavoidable if one wants to combine these
experiments with all the others in a synergic analysis.



Appendix C

Oscillation probability for
atmospheric neutrinos

The Earth matter density profile is reported in the PREM model [276], where
eight concentric layers are considered, each having different chemical and physical
properties. However, as proposed in [225], we gather the 4 external layers of the
mantle in a unique one, leading to a five-layer structure: inner core, outer core,
lower mantle, transition zone and upper mantle. The electron density Ne is then
calculated under the assumption of the following chemical composition of the
Earth: for the core we assumed Fe (96%) and Ni (4%) [277], for the mantle
SiO2 (45.0%), Al2O3 (3.2%), FeO (15.7%), MgO (32.7%) and CaO (3.4%) [278].
The electron density profile, reported in Fig. C.1, can be approximated with a
biquadratic polynomial [225]

Nj(r) = αj + βjr
2 + γjr

4 , (C.1)

where r is the radial distance from the Earth center divided by RT , j is an index
indicating one of the five shells (inner core, outer core, lower mantle, transition
zone and upper mantle). The values of the polynomial coefficients are reported
in Table C.1, together with the inner (rint) and outer (rext) radius of each shell.
The functional form in Eq. (C.1) is invariant for nonradial neutrino trajectories
(i.e. with zenith angle θ 6= 0, π):

Nj(x) = α′j + β′jx
2 + γ′jx

4, (C.2)

where x is the trajectory coordinate defined as

x =
√
r2 − sin2 θ (C.3)
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Figure C.1: Electron density (mol/cm3) as a function of the radial distance given
by the PREM model [276], assuming the composition and the parametrization in
Eq. (C.1) and adopted in [225].

and

α′j = αj + βj sin2 θ + γj sin4 θ, (C.4)

β′j = βj sin2 θ + 2γj sin2 θ, (C.5)

γ′j = γj. (C.6)

Let xj−1 and xj be the initial and final value of the trajectory coordinate,
respectively, for a neutrino propagating in the j-th shell. The calculation of

Table C.1: Values of αj , βj and γj for the five shells in which the Earth can be
divided. The electron density is expressed in mol/cm3.

j Shell rint,j rext,j αj βj γj

1 Inner Core 0.000 0.192 6.099 -4.119 0.000
2 Outer Core 0.192 0.546 5.803 -3.653 -1.086
3 Lower Mantle 0.546 0.895 3.156 -1.459 0.280
4 Transition Zone 0.895 0.937 -5.376 19.210 -12.520
5 Upper Mantle 0.937 1.000 11.540 -20.280 10.410
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evolution operator S(xj−1, xj) can be performed with a Magnus expansion [279]:

S(xj−1, xj) = exp
∞∑
n=1

Ωn(xj−1, xj). (C.7)

In our case we stop the expansion at the first two orders

Ω1(xj−1, xj) = −ı
∫ xj

xj−1

dt1H (t1), (C.8)

Ω2(xj−1, xj) = −1

2

∫ xj

xj−1

dt1

∫ t1

xj−1

dt2[H (t1),H (t2)], (C.9)

where H is the Hamiltonian defined in section 1.3 as the sum of the vacuum
Hamiltonian H0 and the matter potential VCC . The first order corresponds to

Ω1(xj−1, xj) = −ı
(
H0 + V CCL

)
(xj − xj−1), (C.10)

where V CC = diag(
√

2GfNj, 0, 0) is the averaged potential, L = diag(1, 0, 0) and

Nj =
1

Dj

∫ xj

xj−1

dxNj(x) (C.11)

On the other hand, Ω2 corresponds to

Ω2(xj−1, xj) = ı[H0,Mj], (C.12)

where

Mj =
1

Dj

∫ xj

xj−1

dx VCC(x)

(
x− xj + xj−1

2

)
(C.13)

is the “first moment” of the matter potential around the trajectory midpoint
inside the j-th shell. Because of the approximation in Eqs. (C.1) and (C.2) the
calculation of the integral in Eq. (C.13) is elementary.

The evolution operator for the propagation in the atmosphere (vacuum) Svac ie
evaluated by using Eq. (1.44) with Ne=0. Finally, the general evolution operator
Satm for atmospheric neutrinos can be written as the product of the evolution
operator in each shell chord

Satm =

[
M∏
j=1

S(xj−1, xj)

]
Svac, (C.14)

where x0 is the trajectory coordinate of the detection point, M is the number
of shells crossed and xM is trajectory coordinate of the point of entrance in
the Earth upper mantle. We have verified, for selected representative points in
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the oscillation parameter space, that the oscillation probabilities obtained with
the above second-order Magnus expansion are in very good agreement with the
numerical results obtained via time-consuming (e.g., Runge-Kutta) numerical
integration of the flavor evolution equations.
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