

Università degli Studi di Bari

DIPARTIMENTO INTERATENEO DI FISICA, 'MICHELANGELO MERLIN' PhD course in Physics – XXXIV cycle

Study of the electro-thermal properties and acoustic coupling of quartz tuning forks

Tutors: Prof. Vincenzo Spagnolo Dott. Pietro Patimisco

PhD student:

Stefano Dello Russo

Second year report

Outline

Light-induced thermo-elastic spectroscopy (LITES)

- LITES signal mapping on QTF and maximization process
- **Comparison** between QTF and Near-IR photodetector
- Low-pressure and Mid-IR measurements
- CH₄ H₂O QEPAS measurements near a traffic light

- Optical modulated LASER absorption
- Photothermal energy generation
- Thermo-elastic conversion
- Induced vibration
- Piezo-electric charge accumulation

Custom QTFs can improve LITES performance with respect to standard QTF^[1]

[1] Y. Ma, Y. He, P. Patimisco, A. Sampaolo, S. Qiao, X. Yu, F.K. Tittel, V. Spagnolo, "Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork", Applied Physics Letters 116, 011103 (2020).

44 kHz – 1st overtone mode 0° degrees tilt

The piezoelectric charges are proportional to the strain intensity

1st Overtone signal mapping and strain simulation

The QTF-T1G08 signal is 14 times better compare to the other QTF, but the strain is only 1.7 times higher. Are we hitting the right point?

Best LITES signal by varying hitting angle

The effects due to the different gold pattern can be overcome by appropriately choosing the hitting angle

QTF SNR comparison and analysis

Apart from standard QTF, LITES SNR values follow a linear trend as a function of the product **τ·ε**

Comparison LITES - Photodetector

Best LITES SNR = 3500PDA10CF-EC SNR = 2030 Comparable performances in Near-IR range

Pressure analysis

The LITES SNR follows almost the same trend as the QTF accumulation time SNR @ 5 Torr = **13500**

Comparison LITES - Photodetector

NEAR-IR and MID-IR spectral ranges

	Laser type	Wavelength (µm)	Power (mW)	Gas target	Pathlength (cm)	Linestrength (cm/mol)	Detector	MDL (ppm)
/	LD	1.36	3.5	H ₂ O	60	8.84.10-21	QTF PDA10CF-EC	0.74 4.93
	LD	1.65	1.13	CH_4	1000	9.27·10 ⁻²²	QTF PDA10CF-EC	3.5 2.27
/	ICL	3.33	1.2	CH ₄	15	4.57·10 ⁻²⁰	QTF PVI-4TE-4	1.98 2.9
	QCL	5.26	5.1	H ₂ O	60	3.13.10-22	QTF PVI-4TE-6	14.05 138.5
	QCL	10.34	5.6	NH ₃	15	5.19·10 ⁻¹⁹	QTF PVI-4TE-10.6	0.28 0.34

The QTF performances are **comparable** with respect to those obtained for **commercial detectors**

CH₄ – H₂O QEPAS concentration measurement near a traffic light

CH₄ sensor calibration

CH₄ peak signal stability

2 s integration time6 s acquisition time

The QEPAS peak signal is constant over **1 hour** measurement

MDL ≈ 600 ppb

The sensor calibration shows the possibility of measuring the CH₄ atmospheric concentration

H₂O-CH₄ spectral scan

The CH₄ QEPAS peak value was almost unchanged

CH₄-H₂O concentration near a traffic light

Good agreement between values measured by the QEPAS sensor-head and those calculated from the measurements provided by the weather station

CH₄-H₂O concentration near a traffic light

During rush hours, the methane concentration reaches peak values up to 8.5 ppm Average values of 2.4 ppm were measured during two rush periods

Third year goals

• LITES with multipass cells

Improvement of detection sensitivities

QEPAS sensors for environmental monitoring

PM2.5 creation
Coal, gas & oil consumption
Greenhouse gases

List of publications

- S. Dello Russo, S. Zhou, A. Zifarelli, P. Patimisco, A. Sampaolo, M. Giglio, D. Iannuzzi, V. Spagnolo, "Photoacoustic spectroscopy for gas sensing: a comparison between piezoelectric and interferometric readout in custom quartz tuning forks", Photoacoustics 2020, 17, 100155.
- F. Sgobba, G. Menduni, S. Dello Russo, A. Sampaolo, P. Patimisco, M. Giglio, E. Ranieri, V. M. N. Passaro, F. K. Tittel, V. Spagnolo, "Quartz-Enhanced Photoacoustic Detection of Ethane in the Near-IR Exploiting a Highly Performant Spectrophone", Appl. Sci. 2020, 10(7), 2447.
- G. Menduni, A. Sampaolo, P. Patimisco, M. Giglio, S. Dello Russo, A. Zifarelli, A. Elefante, P.Z. Wieczorek, T. Starecki, V.M.N. Passaro, F.K. Tittel, V. Spagnolo, "Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy", Appl. Sci. 2020, 10(8), 2947.
- **S. Dello Russo**, A. Zifarelli, P. Patimisco, A. Sampaolo, T. Wei, H. Wu, L. Dong, V. Spagnolo, "Light-induced thermo-elastic effect in guartz tuning forks exploited as a photodetector in gas absorption spectroscopy", Optics Express **2020**, 28, 19074.
- B. Sun, A. Zifarelli, H. Wu, S. Dello Russo, S. Li, P. Patimisco, L. Dong and V. Spagnolo, "Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in SF₆ gas matrix exploiting a T-grooved quartz tuning fork", Analytical Chemistry 2020, 92, 13922-13929.

Conference proceedings

- S. Dello Russo, P. Patimisco, A. Sampaolo, M. Giglio, G. Menduni, A. Elefante, V.M.N. Passaro, F.K. Tittel, V. Spagnolo, "Measurement of non-radiative gas molecules relaxation rates by using quartz-enhanced photoacoustic spectroscopy", Proc. SPIE, Quantum Sensing and Nano Electronics and Photonics XVII, 2020.
- P. Patimisco, S. Zhou, S. Dello Russo, A. Zifarelli, A. Sampaolo, M. Giglio, H. Rossmadl, V. Mackowiak, A. Cable, D. Jannuzzi, V. Spagnolo, "Comparison between interferometric and piezoelectric readout of tuning fork vibrations in quartz-enhanced photoacoustic spectroscopy", Proc. SPIE, Quantum Sensing and Nano Electronics and Photonics XVII, 2020.

Thank you for your attention

