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A b s t r a c t

This thesis deals with the description, at a continuum level, of active fluids. Examples of 
active fluids are suspensions of biological filaments, such as actomayosin m icrotubules 
bundles, activated with motor proteins and bacterial cultures. The constituents of these 
systems have the natural tendency to assemble and align, thus developing structures 
with typical polar or nem atic order. Combination of this property with self-motility 
capacity is at the origin of a wealth of interesting phenom ena, including spontaneous 
flow and unusual rheological properties. Some experimental evidence will be presented 
in Chapter 1.

In the last two decades m uch effort has been posed in understanding these proper­
ties with the declared aim to reproduce, control and exploit them. Here we mainly focus 
on self-propulsion and the rheology of active emulsions. To describe these phenom ­
ena we rely on a continuous description that makes use of vectorial or tensorial order 
parameters borrowed form liquid-crystal theory. The dynamical models used will be 
presented in Chapter 2. The dynamical equations are numerically solved using a well 
known Navier-Stokes solver, the Lattice Boltzmann Method, coupled with finite differ- 
ence method. This num erical schem e and its MPI im plem entation will be described in 
Chapter 3.

In Chapter 4 and 5 we will present our numerical results. In particular in Chapter 
4 we will focus on self-propulsion. First results concerning a scalar active model, to 
spot out the role of compressibility in cell propulsion, will be presented. Then in the 
second part of Chapter 4 we will present some mesmerizing results regarding the self- 
propulsions of an active cholesteric droplet. In Chapter 5 the morphology and rheology 
of an emulsion composed of an active and a passive phase will be analysed. Within 
our model it is possible to reproduce some rheological experiments regarding bacterial 
suspensions, and to explain the origin of the different flow regimes observed.
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1
A c t i v e  M a t t e r

Any physical isolated system evolves towards equilibrium. No matter which is its n a­
ture -  a gas in a box, a system of electric charges or the whole universe -  it will evolve 
to minimize some thermodynamic potential or free energy to end up in a state where 
no flow of any kind occurs, where all forces sum up to zero and temperature is uniform 
in space and constant in time. This is the HeatDeath ofthe Universe. Despite thermo- 
dynamics predicts this as the inevitable end of any system, there is a huge num ber of 
situations where equilibrium is well far to be reached and there are net flows of matter, 
energy, etc..

In thermodynamics, a system is said to be in equilibrium when no mass or energy 
flow occurs, and it minimizes some thermodynamic potential, or free energy; such 
states have a spatially uniform temperature, are m echanically at equilibrium - all the 
forces sum to zero - and no m acroscopic change can be observed in time. In systems 
that are at a state of non-equilibrium there are, by contrast, net flows of matter or en-

ergy.
There are different classes of non-equilibrium systems. Among them driven sys­

tems are those forced out of equilibrium by some external forces -  such as a gradient 
in the temperature or in some other chem ical potential, and display non-equilibrium 
stationary states. A known example is represented by a Newtonian fluid -  water, for 
instance - enclosed between two slabs at different temperatures. In this case a tem ­
perature gradient set up across the fluid, and if the gradient if enough pronounced, it 
would eventually give rise to rolling vortical flow. Such convection rolls will endure as 
long as the external force persists, and for some time after that, until dissipative effects 
will maximize the entropy of the system until equilibrium is reached again, that is when 
the temperature is uniform and net flows are extinguished. Active systems constitute a 
new class of non-equilibrium systems, in which driving is local. They are in fact forced 
out of equilibrium by the individual constituent particles themselves. These are inher- 
ently not in equilibrium, having some internal energy storage to draw from to perform 
all sorts of work, and eventually to move. This is, typically, the case of biological sys­
tems, which store large quantities of energy to be used for motion, growth, replication, 
chem ical synthesis, and m uch more.

Living matter, such as collection of animals in the form of schools of fish, birds flocks 
or swimming bacteria, constitutes a humongous source of examples of systems evolv-



ing far from equilibrium. This vast class of non-equilibrium condensed matter sys- 
tems has come to be known as active matter. Despite the nature of living systems may 
considerably differ, they still share com mon feature that can be described in a unified 
frame. Ordering is, for instance, one of the most important features on which life relies. 
The com prehension of this unique ability of living organisms to self-organize their con- 
stituents into functional ensembles is the declared central objective of active-matter 
physics.
This introductory chapter is devoted to 
the description of some active matter sys­
tems and to their peculiar behaviours 
that have no equivalent in their equilib- 
rium counterpart. In particular I will 
present some experimental results re- 
garding the two phenom ena this thesis 
is m ost concerned about: self propulsion 
and unusual rheological response.

1 . 1 .  O R D E R  A N D  C O L L E C T IV E  

M O T IO N

Active constituents have the natural ten- 
dency to assemble and align, thus devel- 
oping tendency to form patterns and dis­
play collective organized behaviour [25].
This property is a consequence of self- 
motility capacity, which is at the origin 
of many non-equilibrium properties that 
do not always find an equivalent in stan­
dard externally driven non-equilibrium 
systems; one of the key differences can be 
found in the injection of energy at small 
scales (i.e. the size of the active agents) 
rather than having a forcing that acts on 
the scales of the whole system. This leads 
in fluidic systems to developing hydrody- 
nam ic instabilities that for example gen­
erate turbulent-like behaviours even at 
small Reynolds numbers, where no clas- 
sic turbulence can be accounted for [50,
107, 115, 167].

M acroscopic systems, such as herds 
of horses, flock of birds or schools of fish, 
still exhibit this natural tendency to or-
ganize in ordered pattern and develop coherent motion. Numerical models of self- 
organized motion, inspired both by biology [5, 35, 156] and physics [18, 38, 76, 199], 
support the idea that simple rules of interaction among the individuals are sufficient

Figure 1.1: A gallery of images related to collective 
motion of different animal species. While the sin­
gle organisms each have their individual orienta- 
tion, different degrees of overall polar order can be 
observed from case to case, ranging from uniform 
motion in a single direction (a,c,e,f), vortices (b,d), 
to more disordered states in which the different ori- 
entations average to zero (g,h). Adapted from [200].
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Figure 1.2: System of self-propelled Brownian dumbbells for total covered fraction area 0  = 0.5 and dif­
ferent values of the self-propulsion force corresponding to the Péclet number (parameter proportional 
to the intensity of the self-propulsion force) Pe = 10 and Pe = 40, in panels (a) and (b), respectively. For 
the definition of the model and detailed meaning of parameters see [37, 145]. Dumbbells have a tail and 
a head; the blue vectors represent the directions of self-propulsion of each dumbbell, related to the tail- 
head axis. The snapshots represent small portions (red boxes) of the larger systems shown in the insets. 
Both cases correspond to points in the phase diagram where a dilute and a more dense aggregated phase 
coexist. Note that for small Péclet number polar order is not present in the aggregated phase that only 
shows hexatic order, while for higher Péclet the hexatic phase is polarized. The probability distributions 
(pdf) of the local coarse-grained polarization field confirm this behaviour. At small Péclet the pdf (panel
(c)) shows a maximum at a polarization magnitude |P| « 0.15 while at Pe = 40 the pdf (panel (d)) can 
be interpreted as taking contributions from two distributions with maxima at |P| « 0.18 and |P| « 0.8, 
respectively [145]. Figure adapted from [23].

to produce collective behaviour. Activity alone actually favours aggregation and can 
induce a phase transition, often called Motility Induced Phase Separation (MIPS) [26].

Recent researches [143] have also shed light on the m echanism  at the base of motion 
in large groups of animals, where the leaders of the group -  usually more experienced 
than other -  tend to occupy a strategic position to govern the dynamic of the whole 
group. In m acroscopic animal systems, the tendency to assemble in ordered patterns is 
exploited as a defensive mechanism. Here the environment in which the system evolves
-  air for the birds, water for fish, play a secondary role, since the interaction between 
different units is basically visual [108] so that such systems are usually addressed as 
dry to oppose to the case of m icroscopic systems -  such as cytoskeletal or bacterial 
suspensions -  where the hydrodynamics becom es important and strongly influences 
the overall motion. These are m omentum  conserving systems and for this reason they 
deserve the name of wet systems. In the following we will be concerned only with the 
latter.



Figure 1.3: Three different examples of human melanocytes, melanin-producing cells, forming nematic 
structures [97].

Active constituents are in general anisotropic (such as an elongated structure). This 
sets a favoured direction for their self-propulsion or for the generation of forces. For 
this reason one of the most important feature of active systems is orientational order. 
This feature is pretty evident for the case of groups of animals, that usually orient their 
body in the direction they are moving towards, (Fig. 1.1); but this remains valid even 
at smaller scales, in systems of bacteria or polymerising eukaryotic cellular filaments
-  such as actin or microtubules -  that exhibit asymmetric ends, dubbed 'head’ and 
’tail’ [146].

Depending upon the symmetries of the m icroscopic agents and their reciprocal in- 
teractions, these active fluids generally fall into two wide subcategories. The first one 
is the active polar fluid composed of elongated self-propelled particles, characterized 
by a head and a tail, whose interactions have polar symmetry. Such systems may order 
in polar states, when all the particles are on average aligned along the same direction, 
as in the case of bacteria self-propelled along the direction of their head [47]. Never- 
theless systems of intrinsic polar particles, such as actin filaments cross-linked with 
myosin [16, 189, 191, 192] or microtubule bundles coupled with kinesin motors [42, 
160, 182], may still arrange in a nem atic fashion, restoring head-tail symmetry, when 
interactions favour alignment regardless of the polarity of the individual particles. As 
an example Fig. 1.2 shows the aggregated phase of a system of self-propelled Brown- 
ian polar dumbbells [37, 74, 179, 180] which, depending on the strength of the self- 
propulsion force, may arrange in a polar state (right) or in an isotropic state (left), a 
behaviour also found in bacterial colonies [43]. The second class includes head-tail 
symmetric, or apolar, particles that may move back and forth with no net motion, and 
order in nem atic states. Examples of realizations in nature include melanocytes [97] -  
i.e. melanin-producing cells in human body (Fig.1.3 shows examples of melanocytes 
forming nem atic structures) -  and fibroblasts [49], that are cells that play a central role 
in wound healing. Both of them are spindle-shaped, with no head-tail distinction.

On the practical side, the complex features of active matter can be exploited to craft 
in vitro living materials with non-trivial topological properties, as in the experiment 
by Sanchez et al. [160]. Here, stiff polar filaments assembled from m onom eric tubu- 
lin protein (Fig. 1.4 a), known as microtubules, were made active by the addition of 
kinesins (Fig. 1.4 b). This specialized type of protein can convert chem ical fuel into me- 
chanical energy, and functions by hydrolyzing ATP1 and undergoing a conformational

1The Adenosine Triphosphate is a chemical exploited in any form of life to store energy coming from 
glycolysis. When reacting with water molecules it is turned into Adenosine Diphosphate (ADP) and



Figure 1.4: (a) Sketch of a microtubule assembled from monomeric tubulin protein. (b) Kinesin cluster 
obtained exploiting affinity of streptavidin protein and biotin. (c-d) Combining microtubules, kinesin 
motor crosslinkers, and depletion agent PEG (represented in red) results in the formation of microtubule 
bundles in which the motor clusters drive inter-filament sliding.

change which advances the motor along the microtubules substrate, thus allowing the 
motor to walk along the microtubule filament they are attached to. To generate activity 
at the microtubule, multiple kinesin motors are tied together into cluster and cross- 
linked to multiple microtubules, thus exerting forces between multiple filaments (Fig.
1.4 c). Moreover a non-absorbing polymer (poly-ethylene glycol or PEG) induces an 
effective attractive interaction between microtubule filaments. This 'bundling' m echa- 
nism is entropically driven but can also be thought of in terms of the PEG exerting an 
osm otic pressure on the microtubules. The com bination of microtubules, kinesin m o­
tor crosslinkers, and depletion PEG agents (Fig.1.4 d), results in the formation of m icro­
tubule bundles in which the motor clusters drive inter-filament sliding, thus resulting 
in net extension of bundles.

For high filament concentrations, hydrodynamic instabilities driven by internally 
sustained flows could be observed; furthermore, the filament network displays a strong 
order. Like in nem atic liquid crystal phases, no positional order is observed but con- 
stituents tend to point in the same direction. Topological defects, which are regions 
'out of phase', are also observed (Fig.1.5), characterized by half-integer ±1/2 topologi­
cal charge2.

Self-organized patterns and sustained flows have been also observed in bacterial 
suspensions [47, 50]. Suspensions of B. subtilis can even exhibit chaotic flow patterns, 
as shown in Fig. 1.6, characterized by travelling jets of high collective velocities and 
surrounding vortices.

inorganic phosphate thus releasing energy that is ready to be exploited in many processes fundamental 
for the correct functioning of living cells and organisms.

2A rigorous definition of topological defects will be given in the next chapter.



Figure 1.5: (a) Schematic illustration of nematic +1/2 and -1/2 disclination charges. Adefinitionoftopo- 
logical defects and their role in active systems will be discussed in the next Chapter. (b,c) Microtubules 
under the effect of active stress from molecular motors (kinesins) exhibiting nematic order; (d) Sequence 
of images showing the generation of defect charges from an originally defect free nematic domain [160]. 
Here red arrows correspond to +1/2 defects, while blue ones to -1/2 disclinations.
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Figure 1.6: (a) Very dense homogeneous suspension of B. subtilis showing collective bacterial dynamics. 
Longest arrows correspond to velocity of 30 fim/s. (b) Streamlines and normalized vorticity field deter- 
mined from PIV (particle image velocimetry) data in (a). (c) Turbulent ‘Lagrangian’ flow of fluorescent 
tracer particles (false-color) in the same suspension, obtained by integrating emission signals over 1.5s.
(d) Partial snapshot of a 2D slice from a 3D simulation of the continuum model. Figure adapted from 
[50].



Figure 1.7: (a) Droplets containing microtubulues bundles exhibit spontaneous autonomous motility, 
when partially compressed between chamber surfaces. A droplet trajectory taken over a time interval of 
33 minutes is overlaid onto a bright-field droplet image. (b) In the absence of ATP passive droplets exert 
no internal forces, and the only contribution to their movement is minor drift. (c) Fluorescence image 
of active microtubules bundles which spontaneously adsorb onto the oil-water interface. The resulting 
active liquid crystalline phase exhibits streaming flows, indicated with blue arrows. Red arrow indicates 
instantaneous droplet velocity. (d) Image of the droplet taken at a mid-plane indicates that the droplet 
interior is largely devoid of microtubules bundles.

1 . 2 .  A c t i v e  m a t t e r  c o n f i n e d  i n  d r o p l e t s

In most biological contexts, active fluids are often confined to the cytoplasm, the m ate­
rial within a cell enclosed by cell membrane. Such confinem ent leads to the emergence 
of coherent flows that enhances cellular transport. The effect of confinem ent has been 
studied by Sanchez et al. [160], enclosing the same microtubules bundles, described in 
the previous section, in aqueous droplets emulsified in fluorinated oil (Fig. 1.7). When 
squeezed between two surfaces, these water-in-oil active droplets exhibit a mesmeriz- 
ing persistent autonomous motility (see for instance the blue trajectory in Fig. 1.7a). By 
contrast, in absence of any chem ical fuel in the suspension droplets remain still (Fig. 
1.7b). Microtubules bundles extend and push against the water-oil interface, eventu­
ally being absorbed onto the interface. When in frictional contact with a hard surface, 
these internal flows drive the motility of the entire droplet (Fig. 1.7c). Scanning through 
the bulk of these motile droplets reveals that their interior is largely devoid of m icro­
tubules bundles relative to their surface (Fig. 1.7d). Starting from the seminal work of 
Sanchez et al., recent experiments have shown that the presence of an active fluid can 
favour droplet self-propulsion through several m echanisms, based on chem ical reac- 
tions [218], spontaneous symmetry breaking and Marangoni effects [57, 80, 87, 160]. 
Such experiments motivated numerous theoretical studies, with the aim of develop- 
ing minimal models capable of capturing features of particular relevance in biology (as 
active droplets can mimic the spontaneous motion of cells [10, 16, 66, 191]) or in the 
design ofbio-inspired materials [87]. In Chapter 4 two new models for self propulsion



will be presented and discussed.

1 . 3 .  R H E O L O G Y
Active fluids also display very interesting rheological properties. Different experiments 
have shown that super-fluidic regimes can be observed in bacteria suspensions under 
an external applied shear. In addition reduction or increase of the solvent apparent 
viscosity may occur, depending on the nature of the micro-organisms dispersed in the 
suspension. in the experiment of Lopez et al. [ 120] the apparent viscosity of a suspen- 
sion of E. Coli bacteria was measured with a Couette rheometer. Activity is controlled 
fixing the level of O2 in the system. Fig. 1.8 shows the results for a fixed, low value of 
shear rate. A null apparent viscosity is measured even when the rheom eter is rotating. 
Panel (b) shows the measured apparent viscosity as the concentration of the suspension 
varies. For sufficient values of dilution the linear theoretical behaviour is confirmed, 
while increasing the concentration of the suspension a plateau is reached. Surprisingly, 
negative apparent viscosity values are observed for a short transient after the rheometer 
is switched off.

Experiments by Gachelin et al. [62] confirmed these results. Again a suspension of E. 
Coli bacteria is considered and the relative viscosity measured looking at the displace- 
m ent of the interface between the suspension and a reference fluid while they flow in 
a channel. Fig. 1.9a confirms the reduction in the apparent viscosity comparing b e­
tween active and passive suspension. As evident from Fig. 1.9b, for low concentrations 
the suspension displays the same apparent viscosity of the control fluid, whereas for 
higher concentrations the apparent viscosity increases. In this experiment it has been 
possible to look directly to the statistics of bacteria in the flow direction. Experiments 
also confirm that the observed apparent viscosity behaviour is due only to activity, and 
not to different bacteria distribution.

In another experiment by Rafai et al. [151], the rheology of a suspension of Chlamy- 
domonas Reinhardtii algae is analysed. Differently from the previous case, an increased 
apparent viscosity is observed in a suspension of living cells compared to the case of 
dead cells dispersed (Fig. 1.9). Comparing the different experiments it is evident how 
the different kinds of swimming m echanism  are of crucial importance, as will be ex- 
plained in the next Chapter.

1 . 4 .  O U T L I N E  O F  T H E  T H E S I S
Understanding and control the peculiar properties of active fluids here discussed is of 
fundamental im portance for the design of new active materials and devices with pi- 
oneering applications. To this aim in Chapter 2 I will provide an overview of contin­
uum approaches suitable to model active matter in fluid environments, starting from a 
coarse-grained description of the active constituents and their active effect on the sur- 
rounding fluid. Then in Chapter 3 I will provide an overview of the basic features of Lat­
tice Boltzmann, the numerical method implemented to integrate dynamical equations 
of active matter and present some details regarding the parallelization of the code used 
for simulations. Chapter 4 and 6 will be devoted to the study of the two phenom ena 
here presented, namely spontaneous motion of active droplets and rheological charac- 
terization of active emulsions.
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Figure 1.8: Experiment by Lopez et al. [120]. (a) Apparent viscosity for two different families of E. Coli 
bacteria. The Couette rheometer is put into rotation at time t = 30 s with an angular velocity Q, so to 
have a shear rate of j  = 0.4 s-1. At time t = 60 s the rotation is stopped. (b) Relative viscosity versus 
suspension concentration. Blue circles refers to higher values of activity with respect to white circles, 
while red squares refers to the second E. Coli family considered.

a b

d

1 .0 -

swimming cells

dead cells

0 ,0 5  0,10 0,15 0 ,2 0  0,25

Volume Fraction

Figure 1.9: Experiments by Gachelin et al. (a-b) and Rafai et al. (c-d) [62, 151]. (a) Relative viscosity as 
a function of shear rate, for a volume fraction of 0  = 0.8%, in the case of motile and immotile bacteria. 
(b) Relative viscosity for different values of volume fraction. Inset in (a) shows the displacement of the 
interface between the suspension and the control fluid for different flow values Q. From the interface 
displacement it is possible to measure the relative viscosity. (c) Apparent viscosity versus shear rate for 
different values of volume fraction. (d) Relative apparent viscosity of the suspension. Dotted lined refer 
to a fit with the semi-empirical Krieger e Dougherty law.





2
Dy n a m i c a l  m o d e l s  f o r  m u l t i p h a s e  

AND ACTIVE FLUIDS

Capturing the dynamical properties of active systems is a challenging task and many 
models have been advanced so far to replicate their entangled behaviour ranging from 
a molecular dynamics approach to modified versions of the Navier-Stokes equation. 
However, a good model for active fluids must have some fundamental traits apt to cor- 
rectly capture the m echanisms at the base of phenom ena occurring in active matter. 
One of them -  probably the most important -  is the natural tendency of active units to 
assemble and align in long-ranged ordered structures, whose patterns closely resem- 
ble those observed in passive liquid crystals. Because of this, active fluids are often 
addressed as living or active liquid crystals. In active gel models, the emerging orienta- 
tional order at m esoscopic scales is captured by proper order parameters, such as the 
polarization vector P(r, t) or the tensor Q(r, t), as in the Landau-De Gennes theory for

their passive counterpart. It is natural to think of the direction of the vector field (or in 
turn the primary axes of the Q-tensor) as the mean direction of the forcing exerted by 
swimmers on their surrounding -  a simple observation that is at the base of the intu- 
ition of Simha and Ramaswamy when they first introduced the active stress tensor in 
their seminal work [169]. Since then, the resulting active nemato-hydrodynamic theory 
was able to successfully replicate a certain num ber of phenom ena occurring in active 
gels (from spontaneous motion, to active turbulence). In this regard, it is worth noting 
that active gel theory correctly reproduce the low Reynolds-number1 found in experi- 
mental systems -  a feature that not any theory for active m atter is able to replicate.

In this Chapter I will first introduce the notions of order parameter and topologi- 
cal defect, then the field theory developed to capture the thermodynamics of passive 
liquid crystal. This approach consists in writing a Landau-like free energy functional, 
written in terms of powers of the order parameter and its gradients, so to respect the 
symmetries of the disordered phase. In Section 3 I show, following the work of Simha 
and Ramaswamy, how a coarse-grain procedure can be used to obtain an a,ctive stress

1At low Reynolds number advective mechanism are highly suppressed in a Newtonian fluid, leading to 
laminar, ordered flows, where viscous effects overcome advective mechanisms. On the contrary, when 
advection becomes important, hence at high Reynolds numbers, the flow becomes chaotic, a regime 
commonly addressed as turbulence.



tensor to plug into the Navier-Stokes equation to couple the hydrodynamics of the un- 
derlying fluid with the dynamics of the suspended particles. Finally in Section 4, I will 
present the set of partial differential equations that rule the evolution of active gels.

The continuum fields describing polar and nem atic order are the vector field Pa (r, t) 
or the tensor field Qap(r, t) (Greek subscripts denote the Cartesian com ponents). They 
emerge either from a coarse grained description of a microscopical model [39] or from a 
theory based on general symmetry arguments [8, 128]. Following, for instance, the for- 
mer approach, for a system of arrow-like particles the polarization field can be defined 
as

where f P (v, r, t) is the probability density, encoding all the information coming from the 
m icroscopical model, of finding a particle at position r and at time t oriented along the 
direction v, and the integration is carried out over the solid angle Q. The polarization 
can be also written as

where n(r, t) is a unit vector defining the local m ean orientation of particles in the 
neighbourhood of r, and P (r, t) is a measure of the local degree of alignment, ranging 
from 0 (in an isotropic state) to 1 (in a perfectly polarized state).

Differently, the nem atic phase cannot be described by a vector field, as both ori- 
entations v and - v  equally contribute to the same ordered state, due to the head-tail 
symmetry of the constituents. For a system of rod-like particles, the order is described 
by a nem atic tensor which, in the uniaxial approximation (i.e. when a liquid crystal is 
rotationally symmetric around a single preferred axis), can be defined as

Again fQ(v, r, t) is the probability density to find a nem atic particle oriented along v at 
position r and time t, while d is the dimensionality of the system. As for the polarization 
field, the nem atic tensor can be also written in terms of the versor n  (usually called 
director field) defining the local m ean orientation of the particles

Note that, by defining the nem atic tensor in this way, one can separate local anisotropic 
features out of isotropic ones. Indeed, the only scalar quantity that can be derived from 
a tensorial object, i.e. its trace, is identically null. In Eq. (2.4) S(r, t) plays the same role 
of P (r, t) in defining the degree of alignment of the molecules in the nem atic phase. In 
fact, by multiplying Eq. (2.3) and (2.4) by n anp, summing over spatial com ponents and 
comparing them, one gets (in three dimensions)

2 . 1 .  O R D E R  p a r a m e t e r s

(2.1)

P(r, t) = P (r, t)n(r, t) (2.2)

(2.3)

Qap (r, t) = S (r, t) na (r, t) np (r, t) -  1 Sap . (2.4)

1 ?S (r, t) = ^ (3cos 9 -  1), (2.5)



Table 2.1: The table summarizes bulk and elastic contributions to free energy for polar and nematic, both 
uniaxial and biaxial (see Section 2.2), systems. Splay, twist and bending contributions have been written 
explicitly in terms of different elastic constants Ki (i = 1,2,3) for both polar and uniaxial nematic gels, 
while in the most general case of a biaxial nematic we did not distinguish between different contribu­
tions. The last line in the Table shows how the elastic contribution looks like assuming that the medium 
is elastically isotropic, i.e., K1 = K2 = K3 = K.

Free energy contributions Polar Gel Nematic Gel
Uniaxial Biaxial

Bulk aP2 + bP4 rS2 - wS3 + uS4 rQijQji - wQijQjkQki + U(QijQji)2
Splay y(V- P)2 > - ■

Elastic
Twist K2 2 — (P -Vx P)2 

2
K2 2 — (n-Vx n)2 
2 y  (dkQij )2 + y  (djQij )2 + y  Qij (diQki )(djQki )

Bend y(P xVx P)2 K23 (n x V x n)2

Single constant 
approximation k(VP)2 K(Vn)2 L1 (dkQij )2

where cos 9 = n  • v is a measure of the local alignment of particles. The scalar order pa- 
rameter S achieves its maximum in the perfectly aligned state, where (cos2 9) = 1, while 
it falls to zero in the isotropic phase where the probability density fq  is uniform over 
the solid angle and (cos2 9) = 1/3. Assuming n  to be parallel to a Cartesian axis, one 
can soon verify from Eq. (2.4) that Qap has two degenerate eigenvalues A2 = A3 = - S /3 
(whose associated eigenvectors lie in the plane normal to the particle axes) and a third 
non-degenerate one A1 = 2S/3, greater in module than A2 and A3 and related to the 
director itself. Such formalism can be also extended to treat the case of biaxial nemat- 
ics, i.e. liquid crystals with three distinct optical axis. Unlike an uniaxial liquid crys- 
tal which has an axis of rotational symmetry (hence the Q-tensor has two degenerate 
eigenvalues), a biaxial liquid crystal has no axis of complete rotational symmetry and 
no degenerate eigenvalue. In this case the Q-tensor cannot be expressed any more in 
terms of a single vector field. Indeed, in the m ost general case, liquid crystal molecules 
can have two alignment directions, a preferential one, defined by the director field n 
and a secondary one that I will denote here with m. In this case the Q-tensor will be 
written as the sum of two contributions:

Qap (r, t) = S(r, t) na(r, t)np(r, t) -  1 Sap + V  (r, t) ma (r, t)mp (r, t) -  1 8 ap (2.6)

where the scalar field V  defines the local degree of biaxiality of the liquid crystal. In 
the following, except if differently stated, the liquid crystal is not forced to be uniaxial, 
hence the fully tensor notation Qap will be adopted.

2 . 2 .  F r e e  e n e r g y

In this Section we will shortly review the free-energy functional encoding the equilib­
rium properties of a polar or nem atic suspension and often employed to study active 
fluids. The free-energy depends on the actual configuration of the order parameters.

The free energy functional describing the ground state of the theory can only con- 
tain terms which respect the symmetries of the disordered phase, in the spirit of Lan- 
dau’s symmetry principle. Since the disordered phase of both polar and nem atic system
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Figure 2.1: Cartoon ofthree modes of elastic deformation: (a) splay, (b) twist and (c) bend.

is invariant under roto-translations, the free-energy F  will only contain scalar terms, 
proportional to the powers of the order parameters and their gradient. For a vecto- 
rial order parameter, the only scalar objects of the form P2m can be considered, with 
m  positive integer, usually arresting the expansion to the fourth order. For the n e­
matic order parameter scalar quantities are of the form Tr(Qm); note that there is no

impediment here to odd power terms, by virtue of the invariance of Q under inversions,

but no linear term will appear in the expansion since TrQ is identically null by defi-

nition. The m ost relevant difference between a polar and a nem atic theory is due to 
the presence of a third order term in the polynomial expansion of the bulk free-energy. 
Indeed, while a system described by means of a vector order parameter undergoes a 
second-order phase transition between the ordered and disordered phase, a nem atic 
system undergo a first-order phase transition, characterized by the establishm ent of 
m etastable phases [29].

In order to take into account the energetic cost due to continuous deformations of 
the order parameters, elastic terms are also included in the free energy functional. In 
both polar and nem atic systems three different kinds of deformations can be identified 
(Fig. 2.1): splay, twist and bending, gauged to the theory through (in general) different 
elastic constants k 1, k2, k 3, giving the energetic cost associated to the three different 
kinds of deformations. While splay is related to the formation of radial patterns of the 
director and polarization field (see for instance panel (a) in Fig. 2.1), bending generates 
rounded circular patterns. Instabilities associated to such deformations underlie the 
establishm ent of topological defects in the liquid crystal arrangement, as it will be make 
more clear in the next Section. Twist is instead related to the coiling of the director field 
around an axis normal to the director itself (panel (b) in Fig. 2.1). Because of this, twist 
is only allowed in full 3D geometries, while there is no topological impediment to the 
development of splay and bending in bidimensional systems.

Table 2.1 summarizes the various contributions to free energy, both for polar and 
nem atic systems. Here I made a distinction between uniaxial and biaxial nematics. As 
stated before, uniaxial nem atics can be described by expanding the Q-tensor in terms 
of the only director field n. In this fashion, the uniaxial free energy can be derived from 
the biaxial case by writing the Q tensor through Eq. (2.4).

Table 2.1 also provides a picture of the energetic cost due to different kinds of de­
formations in terms of P and n, respectively for polar systems and uniaxial nematics, 
under the assumption of uniform ordering (S = cost). The most general case is pro-



vided by the elastic contributions in biaxial nem atics and still applies to the uniaxial 
case with S = S (r). In order to exploit which terms are related to which deformations, 
one should expand the Q tensor into the elastic biaxial free energy in terms of the di­

rector through Eq. (2.4); doing so and grouping splay, twist and bend contributions one 
finds, after some algebraic effort, that

K3 + 2K2 -  K1 
L 1 = -

L2  =

L3

9S 2

4(K1 -  k 2 )
952 ’

2(K3 -  K1)
953 ’

given that the Frank constants Ki fulfil the condition k 3 ^ k 1 ^ k 2 to guarantee the pos- 
itivity of Li [162]. In many practical situations it is convenient to adopt the single con­
stant approximation, consisting in setting all elastic constants equal to the same value, 
leading to a m uch simpler form for the elastic free energy [29].

2 .2 .1. CHIRAL LIQUID CRYSTALS
Liquid crystal under certain conditions may also exhibit chiral features. Chiral nem atic 
phase is similar to a nem atic with the molecules on average pointing along a director 
and having no positional order of their centres of gravity. On a larger scale, however, 
the non-centrosym m etric molecules cause the director to be non-uniform and slowly 
rotate along a direction perpendicular to it (Fig. 2.2), giving rise to helicoidal patterns 
that breaks the mirror symmetry. The distance over which the director completes a full 
rotation is called the pitch, p . Chirality can be modelled [213] by introducing a suitable 
term in the free-energy that favours twist deformations:

f cholesteric = (V x Q + 2q0Q)2 (2.7)

in the free energy. The constant q0  rules the cholesteric strength of the liquid crystal 
and is related to the helix pitch in accordance of the following relation p0 = 2n/q0.

Chirality plays a fundamental role in many biological systems which display a ten- 
dency to arrange in helicoidal structures [135, 220]. The most famous example of chiral 
biological material is the double helix of DNA filaments, that are known to arrange in 
cholesteric structures. A concentrated solution of DNA has long been known to exhibit 
a cholesteric or blue-phase in different salt conditions [116, 117]. This system can be 
also made motile when interacting with DNA- or RNA-polymerases or with motor pro- 
teins. Even actin filaments, exhibit chiral features: they are twisted in a right-handed 
direction [45] so that myosin motors tend to rotate the filaments while pulling them, 
generating a torque dipole that act as a source of angular m omentum  on the surround- 
ing fluid.

2 .2 .2. ANCHORING
Boundary conditions of the director field, that is the alignment of liquid crystals molecules 
on the edge of the system volume, strongly control the liquid crystal structure. Because



n I X  ^  / t N* ^  t  \

---------------------------------------------------------------------------»■
Po

Figure 2.2: Structure of a chiral nematic. Locally the molecules have an average direction and therefore a 
director can be determined. On a longer scale, the chirality of the phase induces rotation of the director 
field around an axis x perpendicular to the director. The distance along x over which the director rotates 
by 2^ is called the pitch, p0.

of elastic interactions, the orientation of the liquid crystal molecules on the surface can 
propagate deep into the bulk and rules its structure and properties. Usually the ori­
entation near a surface can be controlled with specific molecular interactions. More 
specifically, in m ost liquid crystals, molecules are hydrophobic and their tails do not 
com bine with polar molecules such as water or glycerol. In this way it is possible to 
have a tangential (planar) orientation of oil-like liquid crystal molecules (Fig. 2.3a). Al- 
ternatively, on surfaces with long perpendicular apolar chains, the tails of molecules 
can penetrate such a layer and cause the director to be perpendicular (Fig. 2.3b).

Anchoring can be modelled with a surface energy term, which penalizes deviations 
of the order parameter n  from a preferred direction n 0. Following the Rapini-Popoul 
model [138] this term has the following form :

f  anch°rmg = _ ^  _  ^ ) 2 , (2.8)

where W  determines the strength of the anchoring.
Yet another situation is the tendency of liquid crystal molecules to align in a prefer- 

ential direction at the interface between two fluids. For instance microtubules bundles 
tend to anchor in a planar fashion at the interface between an oil-water interface, as

Figure 2.3: Cartoon of different orientations of liquid crystals molecules on interfaces: (a) tangential ori­
entation is also called planar anchoring and (b) orientation normal to the interface is called homeotropic 
anchoring.



Figure 2.4: Sketch of (a) half-integer topological defects in 2D nematic liquid crystals, and (b) integer 
topological defects in polar liquid crystals. These can only host defects with integer winding number 
(see main text).

discussed in the Chapter 1. To include this feature in a thermodynamic description, a 
concentration field 0  is needed to describe the phase separation between the two flu­
ids. Anchoring of the liquid crystal molecules can be modelled at a thermodynamic 
level by adding a further term to the free-energy functional of the kind:

f 0anchoring = -W V 0  • Q -V 0. (2.9)

In this case, anchoring will be tangential if W  > 0 or hometropic otherwise.
Anchoring plays a fundamental role in active fluids. In fact, in the case of bacterial 

swimmers, it is com monly observed that, close to the boundaries, they orient along the 
wall direction [112]. In actomyosin solutions, the actin filaments can also be assumed 
to be anchored parallel to the walls due to focal adhesion [212]. Moreover, it has been 
shown that the orientation at the boundaries strongly influences the overall dynamical 
behaviour of the system, so that boundary conditions and anchoring properties must 
be chosen wisely to correctly model active suspensions. I will go back to the choice of 
the anchoring later in Section 2.3.1 where I will present a free energy functional that we 
made use of to model a polar active emulsion.

2 .2 .3 . TOPOLOGICAL DEFECTS
Topological defects in a liquid crystal are com monly addressed as disclinations, i.e. re- 
gions where the order is lost and the order parameter cannot be properly defined [29, 
39]. They play a relevant role in the dynamics of liquid crystals and are found to be 
closely related to the flow evolution in active fluids.

A topological defect can be characterized by looking at the configuration of the or­
der parameter far from its core. This can be done by computing the winding number 
(or topological charge), which is a measure of the strength of the topological defect and 
is defined as the num ber of times that the order parameter turns of an angle of 2n while 
moving along a close contour surrounding the defect core. The allowed topological 
charges critically depend upon the nature of the order parameter: while polar systems 
only admit topological defects with integer winding numbers, nem atic systems offer in- 
stead a wider scenario. In fact, by virtue of the head-tail symmetry, the headless nem atic 
director can give rise to disclination patterns that also allows for half-integer winding 
numbers.

Fig. 2.4 shows the streamlines of the nem atic (panel a) and polar (panel b) pattern 
in the neighbourhood of the defect core of defect of semi-integer and integer charge re-



Figure 2.5: Defect dynamics in active polar systems. The left panel shows the polarization field, repre- 
sented by arrows, with the superposition of velocity streamlines; red/long arrows correspond to ordered 
regions, while blue/short arrows are associated with the presence of topological defects, surrounded by 
regions with strong deformations of the polarization. Note that +1 defects act as a source of vorticity: 
indeed, most of the closed streamlines wrap the core of a defect. This is also shown in the right panel 
with the polarization field superimposed to the vorticity contour plot in the region highlighted by the 
white box in the left panel. Here two defects of charge ±1 are close. In proximity of the defect cores the 
polarization magnitude is approximately null and order is locally lost. These results have been produced 
integrating the dynamical equations presented in this Chapter with the hybrid lattice Boltzmann solver 
presented in the next Chapter. The parameter used are given in Chapter 5.

spectively, in a pure bidimensional system. It is worth to stress that there is no im pedi­
m ent for a nem atic to set up into a integer defect configuration. Topological defects can 
develop in different geometries (a three-dim ensional system, or a closed manifold -  the 
surface of a sphere, for instance). In this latter case, it may happen that a topological de­
fect is never stable and can always be reduced to an uniform configuration. Let us take, 
as an example, the +1 defect in panel (b) of Fig. 2.4 and let us allow the polarization 
field to have a com ponent in the third dimension. The system would be then a quasi- 
2D system. In this situation, the topological defect can be easily removed by rotating 
the polarization so to have a uniform phase with all vectors normal to the plane where 
they were initially confined. This procedure shows that there are certain topologies that 
do not allow for any topological defect to be stable. Indeed a defect is said to be topo- 
logically stable if the configuration of the order parameter in the neighbourhood of the 
defect itself cannot be reduced to a uniform state by an homeomorphism -  namely con- 
tinuous transformation between two topological spaces. A general criterion to establish 
whether a defect is topologically stable or not, is to look at the dimension n of the order 
parameter. In a d -dimensional space, the condition that all the n com ponents of the 
order parameter must vanish at the defect core defines a “surface" of dimension d _  n . 
Hence defects exist if n < d . In Fig. 2.5, for example, we have a two-dimensional system 
(d = 2) with an order parameter (the polarization P) having two com ponents (n = 2), 
and the defects allowed are points (or vortices). However, point defects are unstable in 
quasi-2D systems, as in such case one would have n > d : indeed as we showed before 
in the previous example the vector field in proximity of a vortex can remove the defect
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Figure 2.6: Half-integer winding number (a) are terminal points of disclination lines (b). Integer winding 
numbers correspond to point defects called boojums (c). These results have been produced integrating 
the dynamical equations presented in this Chapter with the hybrid lattice Boltzmann solver presented in 
the next Chapter. The parameter used are given in Chapter 4.

by escaping in the third dimension. In full three-dim ensional systems (d = 3) one may 
have either point or line defects.

Point defects can also appear in bidim ensional manifolds embedded in the full three- 
dimensional space. In this case, the sum of all topological charges in polar or nem atic 
system confined to lay on the manifold obey a conservation law, which is connected 
to the Euler characteristic of the manifold [91]. For spherical confinem ent and planar 
alignment, the Poincaré-Hopf theorem  requires a +2 total topological charge on the 
surface, which corresponds to the Euler characteristic of a sphere [84, 102]. For exam- 
ple, Fig. 2.6 shows on the top panel two possible configurations, achievable on the sur­
face of a liquid crystal droplets under tangential anchoring conditions. On the right a 
+1 defect is visible, so that another defect of the same charge is formed at the antipodal 
point. On the left panel a 1/2 defect is shown and three other +1/2 defects are expected 
to form on the surface of the droplet to satisfy the Poincaré-Hopf theorem. In this latter 
case, the semi-integer defects are connected in pair by disclination lines that pierce the 
droplet so that the defect structure propagate even in the interior of the system.

The situation is yet different if homeotropic anchoring is imposed. In this case a de­
fect is expected to form in the bulk, with a topological bulk charge that equals the half of 
the Euler characteristic of the respective geometry, according to the Gauss-Bonnet the­
orem, while the total topological surface charge is zero [84]. A nem atic droplet would 
then relax into a configuration with a +1 point defect at the center with the outer pat­
tern resembling a radial configuration (Fig. 2.7 left panel). But if the liquid crystal is 
chiral the situation becom es even more fascinating. For medium cholesteric power the 
point defect continuously deforms into an equatorial disclination line (Fig. 2.7 middle



Figure 2.7: A nematic droplet with homeotropic anchoring relax to a configuration with a point defect at 
the center (left panel), while for medium cholesteric power a equatorial disclination line appear (mid­
dle panel). High cholesteric power causes the defects line to twist and the droplet relax to the tennis 
ball configuration (right panel).These results have been produced integrating the dynamical equations 
presented in this Chapter with the hybrid lattice Boltzmann solver presented in the next Chapter. The 
parameter used are given in Chapter 4.

panel) that may eventually end up, at stronger cholesteric power, into the tennis ball 
configuration, shown in the right panel of Fig. 2.7.

For what concerns active matter, topological defects were found to play a funda- 
m ental role in the set up of active turbulence and more in general in the flow properties 
of the system and, as I will report in Chapter 4, they also provide a route to motility 
in active cholesteric droplets. To better address how topological defects affect the hy- 
drodynamics of an active fluid I plotted in Fig. 2.5 the polarization field in proximity of 
two defects of charge ±1 in a full bidimensional active polar system. Here two compet- 
ing m echanisms operate to determine the nematohydrodynamics: on one hand elas­
tic relaxation of the nem atic pattern tend to set up an ordered pattern, on the other 
hand activity enhances its deformations. More in the detail, because of elastic inter­
actions the mutual attraction between the two oppositely charged defect generate a 
back-flow that couples their dynamics to the one of the underlying fluid [69, 196]. This 
is the m echanism  driving the ordering dynamics of a passive liquid crystal where the 
nemato-hydrodynamic interaction set up by the attraction of oppositely charged de­
fects move them  closer, eventually leading to annihilation with each other. Activity 
plays instead the opposite role, since the regions interested by greater deformations are 
the ones where more energy is injected. Indeed, Fig. 2.5 also shows how defects act as 
a source of vorticity with the velocity field tilted with respect to polarization. If strong 
enough, activity may drive defects of opposite topological charge apart and suppress 
pair annihilation [69, 160] or under suitable conditions it may even furnish to the sys­
tem  enough energy to excite a pair of oppositely charged defects, starting from a totally 
ordered state. I will com m ent more on the interconnection between deformation of the 
liquid crystal and activity later on in this Chapter, when I will present how spontaneous 
flow emerges as the result of the bending/splay instability in active gels.

2 . 3 .  A c t i v e  F o r c e s

So far I reviewed the well known theoretical description for liquid crystals and non- 
Newtonian fluids with anisotropic order parameters. I com m ent now on how the active 
behaviour of the constituents of the fluid can be expressed into a theoretical frame- 
work. The most direct way to develop the equations of m otion for active systems at con­



tinuum level is by explicitly coarse-graining more detailed particle-based models [123, 
154]. Before getting involved into the theoretical description, I will spend a few words 
in describing the swimming m echanism  of some micro-organisms.

In general, the propulsive m otion of active agents dispersed in a fluid creates a circu- 
lating flow pattern around each swimmer. The specific swimming m echanism  of b ac­
teria, for example, causes fluid to be expelled both forwards and backwards along the 
fore-aft axis, and drawn inwards radially towards this axis, creating an extensile flow 
pattern (Fig. 2 .8). In some cytoskeleton extracts (such as the actomyosin protein com- 
plex), motor proteins can pull the filaments among themselves, causing them to con- 
tract lengthwise and giving rise to a contractile flow opposite to that of the previous ex­
ample (Fig. 2 .8).The typical flow pattern may be complicated in the near field, but in the 
far field is generically equivalent, at the lowest order, to the action of a force dipole [144] 
and can be represented as such. By summing the contributions from each force dipole 
and coarse-graining [169], it is possible to show that the stress exerted by the active 
particles on the fluid has the form

< Ve = -W Q a ? , (2.10)

where (  is a phenomenological parameter that measures the activity strength, being 
negative for contractile systems and positive for extensile ones, while 0  represents the 
concentration of the active material. Usually only terms linearly proportional to (  are 
considered. In the case of polar active liquid crystals, the description can be carried out 
considering only the polarization field, re-expressing Q as a function of P. The active

stress in terms of the dynamical variable P(r, t) takes the form

= -Z 0  (p ap fi -  d  'P|2S «p) . (2.11)

The expressions Eq. (2.10)) and Eq. (2.11), have been largely applied in the study of 
active gels, but are not the only possible source of energy injection.

Previously, I com m ented on the im portance of chirality on many biological m echa- 
nisms fundamental for the correct functioning of living entities, basically at cellular and 
intracellular level. It is then reasonable to investigate how chirality may influence local

Extensile Contractile

Figure 2.8: Cartoon of (a) extensile and (b) contractile flow (black lines), and force dipoles (red arrows).



energy supply. The effect of chirality, more than being taken into account by a suitable 
cholesteric term in the free energy, thus describing the cholesteric features of the funda- 
m ental constituents, can be incorporated in the description adding to the active stress 
extra terms, providing a source of angular momentum, that may arise due to the twist- 
mg motion of the active agents under suitable conditions. For instance, if the active 
particles act on the surrounding fluid with a net torque monopole, a coarse-graining 
procedure [61] shows that a suitable choice for the nem atic chiral stress tensor is given 
by ( 2 e a^Q^p [122], where ea  ̂ is the second order Levi-Civita tensor. Analogously, if the 
net torque is null but torque dipoles do not vanish, the corresponding stress tensor is 
given by Z'2 eap^dv0 (PpPv) [195], with eap  ̂ the third order Levi-Civita tensor. The sign 
of the second activity parameter ( 2  or ( ' 2  determines whether the stress generates a flux 
parallel (Z2, Z2 > 0) or antiparallel (Z2, Z2 < 0) with respect to the helicity of the twisting 
deformation. These terms drive the system out of equilibrium by injecting energy into 
it, and, once again, cannot be derived from a free energy functional. In this approach 
the active stress tensor enters the hydrodynamic equations governing the motion of the 
self-propelled particles suspension, as it will be discussed in Section 2.4. These are con- 
structed from general principles, by assuming that an active gel may be described by (a) 
“conserved” variables, which take into account the fluctuations of the local concentra- 
tion of suspended particles and the total (solute plus solvent) m omentum  density, and 
(b) “broken-symm etry” variables, which, in the nem atic phase, is the deviation of the 
director field from the ground state.

A more general way to construct the equations of motion at a coarse-grained level, 
is to generalize the forces-and-fluxes approach [77] to active systems [99]. Considering 
for example an active gel characterized by polarization P and velocity v, or equivalently 
by the strain rate tensor uap = (da vp + dp va) / 2 , the generalized hydrodynamic equa­
tions can be derived using Onsager relations, thus expanding fluxes d tP and the stress 
tensor in terms of their conjugate forces - 8 F / 8 P and uap respectively, with F  polar­
ization free energy. Active dynamics is obtained holding the system out of equilibrium 
by introducing a further pair of conjugate variables, namely the chem ical potential dif- 
ference between ATP and hydrolysis products and the rate of ATP consumption [99]. 
This approach can be further generalized [153] including thermal fluctuations, recast­
ing the forces-and-fluxes approach in the language of coupled generalized Langevin 
equations [130].

2 .3 .1. F l u i d  m i x t u r e s  w i t h  a n  a c t i v e  c o m p o n e n t

The active stress expressions of Eqs. (2.10) and (2.11) depend on the concentration of 
the active material. This quantity in turn can be a dynamical field if one would like to 
take into account a inhomogeneous presence of the active material in the solution. At 
level of particle description, different kinds of models for mixtures of self propelled and 
passive units have been considered. For example, Brownian-like simulations [78, 131, 
176] focused on the role of activity in separating the two com ponents of the mixtures. 
In a continuum description, binary fluids with an active com ponent have been studied 
in [10, 189, 191, 192] showing that the active part may cause instabilities on an active- 
passive interface. Here we only introduce, as an example among the different models 
that can be used to describe fluid mixtures with an active com ponent, the free-energy



Figure 2.9: Snapshots of numerical simulations of the model having free energy given in Eq. (5.1), for 
symmetric (a) and asymmetric (b) compositions. Here, as in all the next images from numerical simu- 
lations, red corresponds to the polar phase, while blue corresponds to the isotropic one. These results 
have been produced integrating the dynamical equations presented in this Chapter with the hybrid lat­
tice Boltzmann solver presented in the next Chapter. The parameter used are given in Chapter 5.

for a binary mixture where the active com ponent is a polar gel [189]. It is given by

F  [0, P] = [  d r  { - 0 r 0 2(0  _  00)2 + ||V0|2 (2.12)
J 4 0 cr 2

a ( 0  _  é c r ) 2 a  4 k o 
_  -  /  |P|2 + — |P|4 + - (VP)2 + j0P-V 0} .

2 0cr  4 2

The first term, multiplied by the phenomenological constant a > 0, describes the 
bulk properties of the fluid; it is chosen in order to create two free-energy minima, one 
(0  = 0) corresponding to the passive material and the other one (0  = 0 0) correspond- 
ing to the active phase. The second one determines the interfacial tension between 
the passive and active phase, with k positive constant. The third and the fourth terms 
control the bulk properties of the polar liquid crystal. Here a  is a positive constant and 
0 cr = 0 0/2 is the critical concentration for the transition from isotropic (|P| = 0) to po­
lar (|P| > 0) states. The choice of 0 cr is made to break the symmetry between the two 
phases and to confine the polarization field in the active phase 0  > 0 cr. The term pro- 
portional to (VP)2 describes the energetic cost due to elastic deformations in the liquid 
crystalline phase (see Table 2.1) in the single elastic constant approximation. Finally, 
the last term is a dynamic anchorage energy and takes into account the orientation 
of the polarization at the interface between the two phases. If f5 = 0, P preferentially 
points perpendicularly to the interface (normal anchoring): towards the passive (ac­
tive) phase if f5 > 0 (^ < 0). This choice for the anchoring is suggested by experimental 
observations. For instance, bacterial orientation at water-oil interfaces results from a 
relatively hydrophobic portion of each cell being rejected from the aqueous phase of 
the system [127].



Such model can be also extended to study active nem atic gels, by using the nem atic 
tensor in place ofthe polarization field [10, 48, 66, 69]. In this case the coefficients ofthe 
expansion of Tr (Qn) in bulk free energy (see Table 1) would depend on the scalar field

0  and the elasticity, again written in the single elastic constant approximation, would 
include a term of the form Lda 0Q apdp0  (with L constant) to guarantee a perpendicular 
anchoring of the liquid crystal at the interface. This free energy, in absence of activity, 
gives rise to a lamellar phase (Fig. 2.9 a) for symmetric composition, and to a droplet 
phase for asymmetric one (Fig. 2.9 b).

We finally m ention a recent generalization of such models where emulsification 
of the active com ponent is favoured by the presence of surfactant added to the mix- 
ture [12]. This is done by allowing negative values of the binary fluid elastic constant k 
and by including a term of the form |(V20 )2 (with c positive constant) to guarantee the 
stability of the free-energy.

A different continuum model, specifically introduced to study the motility induced 
phase separation (MIPS) without direct appeal to orientational order parameters P or 
Q, but only to the scalar concentration field 0 , is the so called Active-model H [187]. In

the old classification by Hohenberg and Halperin [88], the passive model H considers a 
diffusing, conserved, phase separating order parameter 0  coupled to an isothermal and 
incompressible fluid flow through the advection-diffusion equation that will be intro­
duced in Section 2.4. The chem ical potential that enters the dynamic equation of the 
passive model H is given by

with a, b , k constants appearing in the Landau free energy for binary mixtures [15] 
(with a negative in order to have phase separation between the two fluid com ponents 
and b and k positive for stability). Thesam e terms appear inEq. (5.1) without the polar­
ization contributions. The active model is then constructed by adding a leading order

stemming from the free energy functional [187]. The deviatoric stress a , that enters in 
the NS equations for the fluid flow, is, in d dimensions,

and can be obtained from the free energy, according to the formula reported in the

is the sole leading-order contribution to the deviatoric stress for scalar active matter. 
Again here, Z < 0 describes contractile systems while Z > 0 the extensile ones. While 
Ua has been found to create a jump in the thermodynamic pressure across interfaces 
and to alter the static phase diagram [210], the active stress a active creates a negative 
interfacial tension in contractile systems that arrests the coarsening [187]. In Chapter 
4 we will present a new scalar active matter to study the role of compressibility in self- 
motility.

(2.13)

time-reversal breaking active term of the form fia = Aa (V0 )2 (with Aa constant), not

Z da0dp0  -  -  (V 0) 8 ap , 
d

(2.14)

second row of Table 2.2, only if Z = k . If Z = k this is not true any more and Eq. (2.14)



Table 2.2: Explicit expressions of the elastic (first row) and the interface (second row) stress, and of the 
term S in the Beris-Edwards equation (2.21) (fourth row) for polar and nematic gels. The molecular field 
E is a vector, with components ha, for polar gels and a tensor Hap, for nematic gels, as shown in the third 
row. k  is the elastic constant of the liquid crystal;the flow-alignment parameters 4  and 4 ' are respectively 
related to the polarization field P and to the nematic tensor Q and depend on the geometry of the mi- 
croscopic constituents (for instance 4  > 0, 4  < 0 and 4  = 0 for rod-like, disk-like and spherical particles, 
respectively). In addition, these parameters establish whether the fluid is flow aligning (141 > 1) or flow 
tumbling (141 < 1) under shear. D = (W + WT)/2 and O = (W -  WT)/2 represent the symmetric and the 
antisymmetric parts of the velocity gradient tensor Wap = dp va.
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2 . 4 .  H y d r o d y n a m i c  e q u a t i o n s

In this Section I will introduce the hydrodynamic equations for active liquid crystals. 
Evolution equations for mass density p(r, t) and velocity v(r, t) are given by

dt p + V • (pv) = 0, (2.15)

p (dt + v •V) v = - V p  + V • a, (2.16)

with the energy balance equation generally neglected in this context, since temperature 
fluctuations can be neglected. Eq. (2.15) is the continuity equation for mass density. In 
m ost of active matter systems Mach numbers M a, defined as the ratio of the stream 
velocity and the speed of sound, is small; in such limit, this equation reduces to the 
solenoidal condition for the velocity field

V -v  = 0 + O (M a2), (2.17)

so that the fluid in this regime can be assumed at all practical effects as incompress- 
ible. Eq. (2.16) is the Navier-Stokes equation, where p is the fluid pressure enforcing 
the imcompressibility condition, and a  is the stress tensor [8 ] that can be split into the 
equilibrium/passive and non-equilibrium/active contributions:

a  = apassive + aactive (2 1 8)

The passive part is, in turn, the sum of three terms:

apassive = a-viscous + .̂elastic + înterface (2 1g)



The first term is the viscous stress, written as o va p̂,cous = n(da vp + dp va), where n is the 

shear viscosity2. An explicit form for the elastic and interface stress is reported for the 
polar and nem atic cases in Table 2.2.

The order parameter ¥  of the active liquid crystal (that is Q for nematics and P for

polar systems) evolves according to

(dt + v•V)¥ _ S = _ r E  , (2.21)

known as Beris-Edwards equation, within the theory of liquid crystal hydrodynamics 
described through the Q-tensor. The term S accounts for the response of the orienta-

tional order to the extensional and rotational com ponents of the velocity gradient and is 
reported for the polar [101, 175] and nem atic [39] case in the fourthrow of Table 2.2. The 
molecular field E governs the relaxation of the orientational order to equilibrium, and 
is multiplied by a collective rotational-diffusion constant r . Its expressions are given 
in the third row of Table 2.2. The left-hand side of Eq. (2.21) is commonly addressed 
as material derivative of the order parameter ¥ ,  and can be formally derived making 
use of Liouville equations. In fact one can write D t¥  = d t¥  + { ¥ ,  H } ,  where {...} are the 
Poisson brackets and the Hamiltonian is H  = F  + 2 / pv2.

A more phenomenological procedure to derive the material derivative explicitly is 
based on the fact that order parameters can be advected by the fluid. Here we outline 
the procedure referring only to the polarisation field. We first note that the relative 
position r of two close points in the fluid evolves according to the following equation:

D t r = dt r + (v -V )r+ d  • r + o  • r, (2 .2 2 )

where D  and O have been defined in Table 2.2. The first two contributions are the usual 
lagrangian derivative terms, while the third and fourth ones account respectively for 
rigid rotations and deformations of the fluid element. Thus the material derivative for 
the polarisation field will include the first three terms since a vector advected by the 
flow is capable to follow any rigid motion; for what concerns the last term in Eq. (2.22), 
this cannot enter directly into the material derivative of a vector field, but it must be 
weighted through an alignment parameter £, ruling the dynamical behavior of the vec­
tor field under enlargement and/or tightening of flow tubes. This allows us to obtain 
the material derivative for the polarization field simply substituting P in place of r.

Finally the time evolution of the concentration field 0 (r, t) of the active material is 
governed by an advection-diffusion equation

/•  ̂ 8 Fdt0  + V- 0 v  = V - M V—  , (2.23)
8 0 )

where M  is the mobility and 8 F / 8 0  is the chem ical potential. A more generalized form 
of the material derivative has been used to model self advective phenomena, for ex­
ample, actin polymerization in motile eukaryotic cells [191], by substituting V • (0v) ^  
V • (0v + wP), where w is a constant related to the velocity of actin polymerization.

2In the compressible case, the viscous stress tensor also includes a term proportional to the divergence 
of the velocity, such that:

0 Vaf ous = n(da vp + dp va) + _ ~dn]dr vy8 ap, (2.20)

where we denoted the bulk viscosity with (.



Figure 2.10: Sketch of instability and spontaneous symmetry breaking mechanism for contractile sys­
tems. When the system is completely ordered (left panel) force dipoles compensate each other, while if 
a splay deformation is present (middle panel) the density of contractile forces is greater on the left than 
on the right. This determines a flow that produces further splay (right panel), resulting in a macroscopic 
flowing state. Adapted from [125].

2 . 5 .  S p o n t a n e o u s  f l o w

Many remarkable phenom ena in the physics of active fluids are related to the flow b e­
haviour induced by the presence of active forcing in the dynamical description of the 
system. The first effect that was studied, to which this section is devoted, is the occur- 
rence of spontaneous flow in fluids with sufficiently strong activity.

This phenom enon occurs in active gels as the effect of the development of nemato- 
hydrodynamic instabilities to bending/splay deformations in the liquid crystal pattern, 
when extensile/contractile activity is considered. The m echanism  underlying the onset 
of self-sustained flows lies in the structure of the active stress tensor that is propor- 
tional to the Q-tensor, so that the active forcing it is proportional to its gradients V • Q.

Perturbations of an ordered state in the liquid crystal arrangement may generate a flow 
field that may eventually propagate so to drive the system out of the quiescent state, 
strengthening deformations and the corresponding flow, until the system sets either in 
a stationary state characterized by a net flux of m omentum  or in a chaotic state where 
flow coherence is lost.

Extensile and contractile suspensions exhibit different instabilities according to the 
particular kind of deformation. To gain an insight into the onset of spontaneous flows, 
let us consider the case of contractile dipoles initially perfectly ordered, as in the sketch 
on the left of Fig. 2.10. In this situation the force dipoles balance each other and the 
net flow, obtained by the sum of those due to single dipoles as represented in Fig. 2.8, 
is null. However, if a small splay deformation is present (middle panel in Fig. 2.10), 
the density of contractile forces on the left is larger than that on the right, and a flow 
sets up. Such flow causes further splay which destabilizes the system that starts to flow 
macroscopically. For extensile activity, under the same splay deformation, the initial 
flow (directed to the left in this case, see Fig. 2.8) would align the dipoles and no net 
m acroscopic flow would appear. By a similar argument, it can be shown that extensile 
fluids get unstable to bend deformations.

To give a simple quantitative proof for the occurrence of instability we can consider 
a simple quasi one dimensional geometry. Let us consider an active slab confined b e­
tween two planes, perpendicular to the x  axis, at x  = 0 and x  = L . For simplicity we also 
assume that dipoles always lies in the xy  plane with constant concentration 0  = 1. As 
initial state we take an active fluid in the disordered phase with all the com ponents of 
the velocity va , a  = x , y , and the polarization p a set to zero. In this simplified geome-



Figure 2.11: Instability and spontaneous flow in extensile mixtures. The polarization field is confined in 
one of the phases of a binary mixture and satisfies homeotropic anchoring both at the lower bound of 
the channel and at the interface between the two fluid components; moreover the interface is modu- 
lated in a sinusoidal fashion, determining a weak splay instability in the polarization field, as shown in 
panel (a). Inset shows detail of the polarization at interface. Starting from this configuration and turn- 
ing on extensile activity, two regimes are found. For weak active doping (Z = 5 x 10_4), shown in panel 
(b), the interface relaxes towards a flat profile and the polarization pattern undergoes bending deforma­
tions, while the velocity field, shown in the right part of panel (b), is parallel to direction of the channel 
and confined in proximity of the interface. If activity is raised (Z = 10_3), the bending deformations are 
tightened (as clearly visible in panel (c)) and a unidirectional flow field develops in centre of the polar 
fluid and mostly parallel to the walls (see the corresponding inset). When active doping exceeds a critical 
threshold (Z = 3 x 10_3 in panel (d)) the polarization field undergoes instabilities leading to the forma­
tion of chaotic non-stationary patterns. In such condition the interface loses its flat profile, although 
the velocity field remains roughly parallel to the channel direction. The velocity field plotted in insets 
of panels (b), (c) and (d) has been rescaled for readability (the averaged velocity magnitude grows from 
|v| -  3.5 x 10_3 to -  x 10_2 in lattice units when Z goes from 5 x 10_4 to 3 x 10_3). The free energy used 
in these simulations is given in Eq. (5.1) with a = 4 x 10_2, k = 4 x 10_1, a = 10_3, k  = 10_2 and p = 10_2, 
while mobility M = 10_1 and aligning parameter Z = 1.1. These results have been produced integrating 
the dynamical equations presented in this Chapter with the hybrid lattice Boltzmann solver presented in 
the next Chapter. The parameter used are given in Chapter 5.

try we can assume v = (0, v(x), 0), and the only non zero com ponent of the active stress 
oxytive = q (x). The hydrodynamic equations then read:

dtv = ndxàx v _  Zdxq, (2.24)

dtq = Kdxdxq  _  aq  + Zdxv, . (2.25)

Here K  is a diffusive term, with the physical meaning of elastic constant, penalizing 
changes in the orientational order. These oversimplified equations are enough to trig­
ger a non equilibrium phase transition from a quiescent disordered phase to a sponta- 
neously flowing state. Rewriting the above equations in Fourier space,

dtv = _ k 2ni) _  ikZq 

dtq = _ K k 2q _  aq  + Zdxv

(2.26)

(2.27)



Figure 2.12: Splay deformation and defect formation in a contractile mixture (Z = -3  x 10-2). Other free- 
energy parameters and initial conditions are the same as in Fig. 2.11. The strong contractile activity leads 
to a catastrophic dynamics: the polarization splay deformation of the initial condition is tightened until 
the initial sinusoidal shape in the interface between the two fluids is completely lost and replaced with an 
undulated profile, as clearly visible in the centre of the system. Notice also the formation of two defects 
of opposite charge that have been framed with two black squares. Defect formation strongly influences 
the hydrodynamics of the system, as shown in the inset, where the velocity field develops a quadrupolar 
flow in their neighbourhood. These results have been produced integrating the dynamical equations 
presented in this Chapter with the hybrid lattice Boltzmann solver presented in the next Chapter. The 
parameter used are given in Chapter 5.

and recasting in matrix form, we have

d
v ' ( - n k 2 - i k  Z ]

( v
q , l ik 4 K2k-a- l q ,

A
We want to evaluate the stability of the disordered state, and to to that we have to add 
small fluctuations around this state and follow the evolution of the velocity and polar­
ization. This problem, in our linearised version, is equivalent to finding the eigenvalues 
of the operator A . If they are both negative, the disordered quiescent state is stable, 
with any fluctuations decaying exponentially with time. If at least one of the eigenval­
ues is positive, the state is unstable and the system would start to flow. Considering that 
eigenvalues of a 2 x 2 matrix can be expressed in terms of the trace (tr) and determinant 
(det)

1 ( ^ -2
2

and given the fact that in our case

^4 ,2 = 1  (tr ± V tr2 - 4 d e t j , (2.28)

detA = nk2 (a + k2 K  ) -  k2 4Z
tr A = - a  -  k2(K + n) < 0 ,  '

we see that either both eigenvalues are negative, or A1 < 0 and A2 < -A 1. The latter con­
dition implies that the quiescent state is unstable to small perturbations for extensile 
systems (Z > 0).



The spontaneous flow instability for contractile systems was analysed in [202] for 
the simple geometry of a bidimensional thin film confined on a one-dim ensional sub- 
strate, with planar anchoring on the confining boundaries. For small thickness or small 
activity, boundary effects are prevailing and the gel remains in an unperturbed, static, 
homogeneously polarized state. Above a critical thickness or a critical activity, a polar­
ization tilt appears and the system flows with a finite shear gradient. The study has 
been later extended to films where undulations of the free surface are also consid- 
ered [123, 161]. In particular Sankararaman et. al [161] constructed dynamical equa­
tions for the concentration and the polarization field, and for the height of the film 
thickness. Activity was found to have two main effects on the evolution of the height 
field: (i) a splay induced flow that tilts the free surface and (ii) an active contribution 
to the effective tension. The latter can be understood by noting that active stresses pull 
(contractile) or push (extensile) the fluid in the direction of the long axis of the particles, 
giving additional elastic contribution to the stretching along that axis. By stability anal- 
ysis arguments they found that, for contractile stresses, splay destabilizes the surface, 
while the activity contribution to tension tends to stabilize it. For extensile activity the 
opposite happens.

The previous results are illustrated in Figs. 2.11 and 2.12. Here the onset of insta­
bility and spontaneous flow are shown for the polar active binary mixture described 
in Section 2.3.1, in which an active polar gel (red) coexists with a passive component. 
Homeotropic anchoring is set both at the lower bound of the channel and at the inter­
face between the two fluid components. In order to study stability with respect to bend- 
ing, the interface is initially modulated by a sinusoidal perturbation. This determines 
a weak splay pattern in the polarization field, as shown in Fig. 2 .11(a) and in its inset, 
in which white arrows represent the polarization field. As expected, the extensile sys­
tem is stable under the initial splay deformations, so that, by increasing activity, these 
are replaced by stationary bending patterns (see Fig. 2 .11(b)). They are accompanied 
by m acroscopic flows, as it can be seen by looking at the velocity field, denoted with 
black vectors in the zooms of panels 2 .11(b) and 2.11 (c), with the magnitude of velocity 
growing linearly with Z. Then, further increasing activity, the polarization field becom es 
unstable (Fig. 2 .11(d)) and the flow looses laminar character. Bends in the pattern give 
rise to non uniform fluxes, generating complex structures in the velocity field. A dif­
ferent behaviour results with contractile activity. When it is strong enough, it tightens 
splay deformations of the initial condition of the polar field until, as shown in Fig. 2.12, 
the initial sinusoidal shape of the interface between the two fluids is completely lost 
and replaced by an irregular profile driven by splay polarization deformations. Fig. 2.12 
also shows the presence of two defects of opposite charge (+1 and -1 ) , framed with two 
black squares. They strongly influence the velocity pattern of the system, as shown in 
the inset where a quadrupolar flow can be observed in their neighbourhood.

Spontaneous flow was systematically analysed numerically in [124, 125]. A slab of 
active nem atic liquid crystal confined between two fixed parallel plates at a distance 
L was studied by a hybrid version of LBM, with different anchoring conditions. The 
active nem atic model is the same of that described in previous sections. The dynamics 
of the order parameter Q is governed by Eq. (2.21), with E replaced by Q and S given

in the last row of Table 2.2, with an extra active term, besides the active stress term in 
the Navier-Stokes equations, of the form AQ on the right-hand side of Eq. (2.21). This



Figure 2.13: Phase diagram for spontaneous flow obtained by Marenduzzo et al. [125], in the two activity 
parameters plane (X, Z) for an active nematic liquid crystal. The lines separate regions of passive immotile 
state, and active, macroscopic motile state for two different system sizes. A slab of material is considered 
with homogeneous anchoring at the boundaries and flow aligning parameter £ = 0.7.

term  was suggested on the basis of symmetry considerations and also obtained by a 
m icroscopic derivation in [154]. Though a linear term in the nem atic stress tensor also 
appears in the molecular field, the extra term here introduced can be regarded as active, 
also because no counterpart is included in the stress tensor. Positive (negative) values 
of X enhance (attenuate) self-aligning features of the nem atic network, so that X > 0 can 
be chosen to model actomyosin suspensions at high concentration, and X < 0 to model 
dilute emulsions.

The m ain results concerning the occurrence of spontaneous flow are summarized 
in Fig. 2.13 for two different system widths L = 100,200, which confirm the presence of a 
transition between a passive and an active phase as predicted analytically. Flow proper- 
ties in the active phase are reported not to depend on the value of X. For small Z there is 
no flow and the polarization field is homogeneous. If Z is strong enough, the system sets 
in the active phase, where a spontaneous flow is observed, while decreasing L leads to a 
reduction of the active region in the parameter space. Alongside the activity parameters 
Z and X, the other key parameter is the flow alignment parameter £ (see Table 2.2). In 
fact, the transition is attained for sufficiently extensile suspensions, in the case of flow- 
aligning (|£| > 1) liquid crystals, and for sufficiently contractile ones for flow-tumbling 
materials (|£| < 1). In the flow-aligning case the velocity profile is characterized by the 
presence of bands, i.e. areas of constant shear rate, separated by narrow regions where 
the shear gradient reverses, similar to shear bands in non active materials [58] with the 
num ber of wavelengths in the channel increasing with Z. Flow tumbling materials rear- 
range themselves so that only the two boundary layers flow in steady state. Simulations 
with periodic boundary conditions show additional instabilities, with the spontaneous 
flow appearing as patterns made up of convection rolls. Boundary conditions for the 
model in [124] are described in detail in [126], while the num erical m ethod in [141]. The 
phase diagram was studied, for a quasi-1d system, in [51], extending previous works to 
the whole (£, Z) plane, varying also the initial orientation of the director field.



A detailed num erical study of the dynamical spontaneous flow transition in polar 
active films is presented in [67]. In this work the effects of varying concentration were 
explicitly taken into account. The free-energy of the model is similar in spirit to that 
of Eq. (5.1) but only one phase for the concentration of the active fluid is considered 
(the free-energy is at m ost quadratic in the concentration field and no phase separa- 
tion can occur). The transition to spontaneous flow is characterized by a phase dia- 
gram in a plane of two variables, related to activity Z and to a parameter controlling 
self-advection3. For high values of activity and self-advection parameters a phase char­
acterized by spontaneous periodic oscillatory banded flows is observed. The latter, ac- 
companied by strong concentration inhomogeneities, can also arise in active nematics, 
although with a physically distinct origin.

The occurrence of spontaneous flow may also be accompanied by the formation 
of topological defects. In fact the dynamics of order parameter and velocity fields are 
interconnected through a feedback loop (see Fig. 2.12). The hydrodynamical instabili- 
ties give rise to lines of distortions in the order parameter field that are unstable to the 
formation of defect pairs [69]. In [184, 185] an extensile active nem atic has been consid­
ered and the dynamics of defects characterized. Two main stages have been identified: 
first, ordered regions undergo hydrodynamic instability generating lines of strong bend 
deformation that relax by forming oppositely charged pairs of defects. Then, annihi- 
lation of defect pairs of different charge restores nem atic ordered regions which may 
then undergo further instabilities. In passive liquid crystals the coupling between the 
order parameter and the flow has significant effects on the motion of defects, generat­
ing a more intense flow around positively charged defects than for negatively charged 
ones [196]. This phenom enon is still present in active liquid crystals, as suggested by 
the quadrupolar flow centred around the +1 defects in the inset of Fig. 2.12. The pres- 
ence of activity gives rise to an even richer phenomenology. Full defects hydrodynam- 
ics in 2d polar active fluids was studied by lattice Boltzmann simulations with a hybrid 
schem e in [53]. In this paper it was found that extensile activity favours spirals and 
vortices, like the defect highlighted by a square in Fig. 2.11d, while contractile activ­
ity favours aster-like defects in the polarization field like the ones boxed in Fig. 2.12. 
Defect-defect interactions have also been studied. In a contractile fluid two asters repel 
each other reaching a steady state with a fixed distance, that increases at larger activ­
ity. In the extensile case two asters turn into two rotating spirals, leading to a final state 
where the rotation continues at approximately constant rotational velocity. For low ac­
tivity the angular velocity increases with Z, while above a critical value an oscillatory 
behaviour is observed, where half clockwise rotation is followed by half anticlockwise 
one, resembling the previous cited oscillatory and then chaotic behaviours appearing 
in spontaneous flow transition for high activity [124].

As we saw in this chapter, confinem ent of polar/nematic pattern triggers the form a­
tion of defects, thus their dynamics is found to be particularly rich in drops of active 
fluids.

3In [67], together with the active stress tensor ^a</;tlve of Eq. (2.11), the term j3(3pPa + daPp) is also con­
sidered. This, primary to polar systems, arises from “self-propulsion” of the active units, taking into 
account higher order contributions in gradients in the coarse-graining [169] procedure that leads to 
Eq. (2.11). This extra contribution complements the modified advected term in the evolution equations 
of the order parameters (discussed at the end of Section 2.4) that allows for the description of self ad- 
vective phenomena.



3
L a t t i c e  B o l t z m a n n  M e t h o d s

A certain num ber of numerical approaches are available when dealing with the descrip­
tion of fluid systems; each of them can be classified according to the level of spatial ap- 
proximation. The full spectrum of scales in fluid flows ranges from nanometres, like 
in nano fluids, to kilometres, like in clouds. The various flow regimes are classified 
according to the Knudsen number, e = X/L, which is the ratio of the m ean free path 
of molecules X to a characteristic flow length L. As e goes from zero to infinity, the 
flow exhibits four regimes: continuum (e < 0.01), slip flow (0.01 < e < 0.1), transitional 
flow (0.1 < e < 10) and free molecular flow (e > 10). The Navier-Stokes equation is only 
valid in the hydrodynamic regime, while the Boltzmann equation is valid in all the flow 
regimes.

Since the 1970s, general-purpose computational fluid dynamics (CFD), based on 
solving the Reynolds-averaged Navier-Stokes (RANS) equations, has been developed to 
compute fluid flow, heat transfer and com bustion with considerable success. With the 
availability of more computational resources, more accurate but computationally de- 
manding methods such as large eddy simulation (LES) and direct numerical simulation 
(DNS) have been in increasing use. These m acroscopic methods, however, are all based 
on the assumption of continuum, which makes it difficult or even impossible to treat 
certain physical phenomena, especially at micro- and m eso-scales.

More fundamental approaches are particle-based (i.e. molecular cluster-based) dis­
crete methods, such as molecular dynamics (MD), direct simulation Monte Carlo (DSMC), 
dissipative particle dynamics (DPD) and multi-particle collision dynamics (MPCD). These 
methods are capable ofsim ulating phenom ena where the continuum assumption breaks 
down. On the other hand, these methods have a high computational cost for the m a­
jority ofproblem s ofpractical concern. The lattice Boltzmann (LB) method, is placed in 
the middle ofthe hierarchy ofm odelling and simulation methods (Fig. 3.1). The corner 
stone of the LB method is the Boltzmann equation

d t f  + £a d a f + j d t a f  = Q(f ) , (3.1)

where Q (f) is the collision operator, and F a the body force. The Boltzmann equation 
describes the evolution of the distribution function f  (r, £, t), which represents the den­
sity of particles with velocity £ at position r and time t. At steady state, in absence
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Figure 3.1: Hierarchy of simulation approaches.

of any external force, the solution of the Boltzmann equation becom es the Maxwell- 
Boltzmann distribution function f eq

f eq (p, v, T, Z) = p
(2nRT  )d/2 exp (

(Z _  v)2 
2RT ) , (3.2)

written in terms of the m acroscopic density p, velocity v and temperature T. In the 
above expression d is the num ber of spatial dimensions and R the gas constant. A 
proper choice of the collision operator O (f) allows some relevant quantities to be con- 
served during time-evolution. These are the moments of the distribution functions that 
bridge the m esoscopic dynamics to the continuum hydrodynamic theory (here written 
for d = 3):

/

/

J  f  (r, Z, t)d 3Z = p(r, t ) ,

f  (r, Z, t)Zd3Z = p(r, t)v(r, t ) , 

Z2
f  (r, Z, t V j  d àZ p(r, t)E  (r, t ) ,

/
IZ _  v|2 3 

f  (r, Z, t)— -—  d3Z = p(r, t)e(r, t)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

where E (r, t) is the total energy, while e (r, t) the internal energy. By taking the contin­
uum limit, i.e. by requiring the Knudsen num ber to be small enough, these relations 
let to recover the Navier-Stokes equation starting from the Boltzmann equation. The 
idea at the base of the lattice Boltzmann method is to exploit this property and to sim u­
late the evolution of the distribution functions of fluid system by means of a discretized



version of Eq. (3.1). As I will make clear in the following, this approach has a num ­
ber of peculiarities that make it successful in the treatm ent of fluid flows because of its 
stability and accuracy features. This Chapter is devoted to lattice Boltzmann method 
and I will first go through a general introduction of the method in Section 3.1, while in 
Section 3.2 I will show how the continuum equations can be recovered starting from 
the algorithm by means of a Chapman-Enskog expansion. The case of a simple fluid 
is treated in Section 3.3 while a procedure to adapt the numerical scheme to the case 
of multiphase flows and liquid crystal is provided in Sections 3.4 and 3.5, respectively. 
The boundary condition problem is taken into account in Section 3.6 while the last Sec­
tions are devoted to some numerical tests concerning error analysis (Section 3.7) and 
code-scalability features of lattice Boltzmann in parallel computing.

3 . 1 .  G e n e r a l  f e a t u r e s  o f  l a t t i c e  B o l t z m a n n  m e t h o d

The lattice Boltzmann approach to hydrodynamics is based on a phase-space discretized 
form ofthe Boltzmann equation [7, 32, 159, 177, 211] forthe distribution function f  (r, £, t), 
describing the fraction of fluid mass at position r moving with velocity £ at time t. Since 
space and velocities are discretized, the algorithm is expressed in terms of a set of dis­
cretized distribution functions {f i (ra, t)}, defined on each lattice site r a and related to a 
discrete set of N  lattice speeds {£i}, labelled with an index i that varies from 1 to N  (see 
Fig. 3 .2). In the case of the collide and stream version of the algorithm, the evolution 
equation for the distribution functions has the form

fi (r + £iA t, t + At) -  fi (r, t) = C ({f i }, t), (3.8)

where C ({f i}, t) is the collisional operator that drives the system towards equilibrium, 
and depends on the distribution functions; its explicit form will depend upon the par- 
ticular im plem entation of the method. Eq. (3.8) describes how fluid particles collide in 
the lattice nodes and move afterwards along the lattice links in the time step At towards 
neighbouring sites at distance Ax = £i At . This latter relationship is no more considered 
in finite difference lattice Boltzmann models (FDLBM) [22, 36, 109, 132, 170, 172]. In 
this kind of models the discrete velocity set can be chosen with more freedom, mak- 
ing possible to use non uniform grids, selecting lattice velocities independently from 
the lattice structure. This approach is found to be extremely useful when it is neces- 
sary to release the constraint of having a constant temperature in the system [72, 207]. 
Moreover it might be also helpful in the case of LB models for m ulticom ponent systems 
where the com ponents have different masses and this would result in having different 
lattice speeds, one for each fluid species. Beside the wider range of applicability of the 
FDLBM with respect to the LBM, the latter furnishes a simple and efficient way to solve 
hydrodynamic equations.

When dealing with FDLBM it is useful to introduce more than only one set of distri­
bution functions {f ki}, where the extra index k labels different sets of discrete velocities 
{£ki}, with index i still denoting the streaming direction. The evolution equation for 
distribution functions for the FDLBM reads:

dtfki + (£ki •V) fki = C ({fki}, t). (3.9)

Here differential operators must be discretized: Runge-Kutta or midpoint schemes can
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Figure 3.2: Graphical representation oflattice velocities for the triangular d2Q7, face centered squared 
d2Q9 and d3Q15 lattices, respectively, shown in the left, center and right panels. Cartesian components 
oflattice vectors fi are found in Table 3.1.

be used to compute the tim e derivative while there are several possibilities to compute 
the advective term on the left-hand side of the previous equation.

In the case of a simple fluid, in absence of any external force, assuming the BGK 
approximation with a single relaxation time [9], one writes

C ({f i }, t) = - - ( fi -  f l q), (3.10)
T i

where f^ q are the equilibrium distribution functions and t is the relaxation time, con- 
nected to the viscosity of the fluid, as it will be seen. The mass and m om entum  density 
are defined as

p(r, t) = X  f i (r, t), (3.11)
i

p(r, t)v(r, t) = X  f i (r, t ) f , (3.12)
i

where summations are performed over all discretized directions at each lattice point. 
By assuming both mass and m om entum  density to be conserved in each collision, it is 
found that conditions in Eq. (3.11), (3.12) must hold also for the equilibrium distribu­
tion functions:

p(r, t) = X  f e q(r, t), (3.13)
i

p(r, t)v(r, t) = X f r (r, f) f i . (3.14)
i

Moreover, it is necessary to introduce further constraints on the second m om ent of the 
equilibrium distribution functions to recover continuum equations, as it will becom e 
more evident in the following. Further constraints on higher order m om ents may be- 
com e necessaryto simulate more com plex systems: for instance full compressible flows 
or supersonic adaptation of the algorithm m ayrequire the specification of m oments up 
to the third, while for a complete hydrodynamic description in which heat transfer is 
also taken into account, even the fourth m om ent needs to be specified [207].

Requiring suitable isotropy conditions and Galilean invariance [31], it is possible to 
show analytically [150] that the equilibrium distribution functions can be written in a



more general way as

r eq
f i = pvi

,  „ vaZia 3 v 9 (vaZia)
1 + 3 ---- ó----- + -------- -------a-----c2 2 c2 2 c4

(3.15)

where the weights wi are given in Table 3.1. Here the quantity c = Ax/At has been 
introduced as the ratio between the lattice spacing Ax and the time step A t. In the next 
paragraph 3.2 it will be shown that the algorithm here presented correctly reproduces 
Eqs. (2.15) and (2.16).

Due to the fact that sufficient lattice symmetry is required to recover the correct 
Navier-Stokes equation in the continuum limit [60], not all the possible lattice struc- 
tures can be adopted. By denoting the space dimension by d and the num ber of lattice 
speeds by Q, Table 3.1 shows the velocities {Zi} and the corresponding weights in the 
equilibrium distribution functions (see next Section) for the m ost frequent choices. Fig­
ure 3.2 explicitly illustrates some lattice structures in the two-dimensional and three- 
dimensional cases.

To choose a suitable discretization in velocity space, one usually relies on consider- 
ations based on the quadrature of a Hermite polynomial expansion of the Maxwell- 
Boltzmann distribution [166]. The idea is to obtain a discretized lattice Boltzmann 
equation that allows the exact recovery of a finite number of leading order m oments of 
the equilibrium distribution functions. Additionally, when dealing with hydrodynam- 
ics, one is not interested in the evolution of the distribution functions, but of their m o­
ments that can be exactly evaluated as a discrete sum over the polynomial integrands 
at specific points Zi (abscissae). Thus, f eq becom es discrete rather than continuous in 
velocity space. The nodes Zi can be derived following the Gauss theory of quadrature 
and can be interpreted as the allowed directions for the fluid mass elements in the lat­
tice. As it will be more clear in the next Section, the choice of the lattice also influences 
the constant c . Some details concerning the properties of some lattices (including the 
ones shown in Fig. 3.2) are shown in Table 3.1. All the results presented in this the- 
sis, besides the ones regarding the comparison with finite difference LB presented in 
this chapter, are obtained using the so called collision-streaming LB. Overall, the core 
LB collision-streaming algorithm consists of a cyclic sequence of sub-steps, with each 
cycle corresponding to one time step. These steps are visualized in Fig. 3.3:

• Compute m acroscopic m oments p(r, t) and v(r, t) from f i (r, t)

• Obtain equilibrium distribution functions f f q (r, t)

• If necessary write the m acroscopic moments (output)

• Perform collision (relaxation)

f *  (r, t) = fi (r, t) _  A  (fi (r, t) _  f eq (r, t)) , (3.16)

where f *  (r, t) represents the distribution function after collision.

• Perform streaming (propagation) f i (r + ZiA t, t + A t) = f *  (r, t)

Increase the time step, setting t to t+ A t, and gob ackto  the first step until the last 
time step has been reached.
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Figure 3.3: Sketch of collision-streaming LB algorithm.

3 .1.1. T h e  k e y s t o n e  o f  L B  m e t h o d :  G a u s s - H e r m i t e  QUADRATURE
In this section we will derive the LBE from continuum kinetic theory. To do this we 
will use the Hermite-Gauss approach. In other words we want to put in connection the 
discretized Boltzmann equation in the BGK approximation and the continuum BGK 
equation with no external force

d t f  + £ada f  = - ^ (f  -  f eq) . (3.17)
T

To develop this formal connection we first expand the distribution function in Her- 
mite polynomials 1. The Hermite polynomial of degree k is defined by the k-th deriva­
tive of the Gaussian weight function

£2Ì-2  , (3.18)
2w(£) = ( 2 5 1 2 exp

so to write the Hermite polynomial of degree k as

( - 1 ) k k
Hk (£) = ^ 7 T  dkw(£). (3.19)

w(£) £

Concluding this very brief summary on Hermite polynomials it is important to men- 
tion that they form a set of orthonormal bases of the Hilbert space equipped with the 
inner product < f , g  >= f  w f g d £, and the following ortonormality property holds

l

+ (X>
Hk(£)w(£)Hl(£)d£ = 8 k l . (3.20)

The distribution function projected on Hermite bases reads
TO

f  (x ,£, t) = w(£) £  Mk(x, t)Hk(£) , (3.21)
k=0

1 For the seek of simplicity we consider only one space and velocity dimension.



where M(f) is the standard Gaussian-weight function (Eq. (3.18)) and the moments are 
given by scalar product in Hilbert space:

/+to
f  (x, f , t)Hk(f)d f  . (3.22)

-TO

Multiplying Eq. (3.17) by H i(f) and integrating upon velocity space we get

/+ro 1
f  f  (x , f ,  t)H i(f)d f  = —  (p\q -  pi) ,  (3.23)

-to T
where have used the orthogonality condition (3.20).
Hermite series expansions is a suitable expansion method since the equilibrium dis- 

tribution functions have the same form as the Hermite weight function. It can be shown 
that that the coefficients in the Hermite series expansion of the equilibrium distribution 
function are related to the conserved moments; in particular, the first three coefficients 
are connected to density, m omentum and energy. But there is also another compelling 
reason to use the Hermite polynomials. Gauss quadrature theory allows for the com ­
putation of integrals of functions by summing the values that the function assumes in 
correspondence of a small number of discrete points, called abscissae. Following this 
idea, evaluation of the integrals with respect to velocity by Gauss-Hermite numerical 
quadrature reads as follows:

b
M i(x , t) = £  Mip(x , f i , t)Hi(fi) , (3.24)

i=0

and

/+to b
f f  (x ,f , t)H i(f)d f = £  M ifip ( x ,f i , t)H i(fi) ,  (3.25)

i=0

where the polynomial distribution have been introduced

( f  (x, f ,  t)p (x , f , t) = ----- ——  . (3.26)
M(f)

Inserting Eq. (3.24) and (3.25) in Eq. (3.23) we obtain the evolution equation for the 
polynomial distribution functions

dtfi + dx (fi fi ) = -  - ( f i  -  f eq ) ,  (3.27)
T

where
fi = Mipi = — ^ f  (x , f i , t) . (3.28)

M(fi )
It is important to note that the weights of the Gauss-Hermite quadrature Mi do not iden- 
tify with M(fi), that is the Gaussian weight evaluated at node f  = f i. Using an explicit 
Euler-forward scheme along the characteristics A xi = f i t, and integrating explicitly in 
time the collision term, we obtain the LBGK equation

fi (x + fi At , t + At) -  fi (x , t) = -  At ( f eq -  fi )T i



Itis known thatGauss-Herm ite quadrature with (b+1) nodes, integrates exactly poly- 
nomials p (Z) up to order 2(b  + 1) _  1. Itfollows that aD1Q3 lattice geometry reproduces 
the continuum equations up to fifth order. In other words, the Gauss-Hermite quadra­
ture provides a route for the optimal sampling of the velocity space, thus allowing for re- 
covering the evolution equations of the lowest-order kinetic m oments (frequent events) 
that are the ones of interest in fluid-dynamics. Capturing higher-order m oments (rare 
events), is beyond the scope hydrodynamics, even if this is still possible by truncating 
the Hermite expansion at superior orders, thus increasing the num ber of nodes and 
weights needed for the computation of the integrals that define the m oments of inter­
est.

The simplified derivation here presented shows that Hermite expansion of the con­
tinuum BGK, as combined with Gauss-Hermite quadrature, gives rise to the LBGK scheme 
[166]. The same reasoning can be applied to higher dimensions by expanding on ten­
sor Hermite polynomials. This procedure encapsulates the LBGK formalism within the 
general box of computational kinetic theory. This is an elegant result, which shows that 
the discrete speeds -  so far chosen based on pure symmetry considerations -  can be 
identified with the nodes of the Gauss-Hermite quadrature, namely the zeros of the 
Hermite polynomials.

3 .1.2. L a t t i c e  B o l t z m a n n  f o r  a  s im p le  f l u i d
In this Section I will present a basic lattice Boltzmann algorithm to solve the hydrody- 
nam ic equations (2.15) and (2.16) for a simple fluid. In this case the on the right hand 
side of the Navier-Stokes equation (2.16) reduces to the pressure gradient plus the mere 
viscous contribution dpovp cous, if no external force is acting on the fluid.

Conditions (3.13) and (3.14) can be satisfied by expanding the equilibrium distribu­
tion functions up to the second order in the fluid velocity v [30]:

f i_q = As + BsvaZi a + Csv + D sv a v pZi aZi p, (3.30)

where index s = Z|2/c2 relates the i -th distribution function to the square module of 
the corresponding lattice velocity, and the Greek index denotes the Cartesian compo- 
nent. This expansion is valid as far as the Mach number M a  = v/ cs is kept small, cs 
being the speed of sound, whose explicit expression in turn depends upon the lattice 
discretization [166]. The present assumption has the important consequence that LB 
models based on the previous expansion of the equilibrium distribution functions have 
great difficulty in simulating compressible Euler flows, that usually take place at high 
Mach numbers. This issue arises in standard LB approaches because of the appearance 
of third order non-linear deviations from the Navier-Stokes equation [79]. Qian and 
Orzsag demonstrated in [149] that such nonlinear deviations grow together with M a 2, 
so that they can be neglected in the low Mach num ber regime but becom e important in 
the compressible limit2. For such reasons it is necessary to ensure that velocities never 
exceed a critical threshold that can be reasonably chosen such that M a <  0.3 [149].

2In order to overcome the limit posed by the low Mach number regime, many variations of the standard 
LBM have been developed. Alexander et al. proposed a model where the high Mach number regime 
could be achieved by decreasing the speed of sound [3];discrete-velocity models [134, 181] were later 
introduced allowing for simulation of the compressible Euler equation in a wider range of Mach num- 
bers. other implementations are based on a Taylor expansion of the equilibrium distributions up to 
higher orders together with suitable constraints on the third and fourth moments [94, 95, 166].



Table 3.1: Lattice speeds with their weights Wi for spatial dimensions d = 2 and d = 3 and number of 
neighbouring nodes Q.

Lattice £i Wi

d 2Q7 (0,0) 1/2
c (cos(i n/3), sin(i n/3)) 1/12

d 2Q9 (0,0) 4/9
(± c ,0) (0, ± c ) 1/9

(± c , ± c  ) 1/36

d 3Q 15 (0,0,0) 2/9
(± c ,0 ,0) (0, ± c ,0) (0,0, ± c ) 1/9

(± c , ± c , ± c  ) 1/72

d 3Q 19 (0,0,0) 1/3
(± c ,0 ,0) (0, ± c ,0) (0,0, ± c ) 1/18

(± c , ± c,0) (± c ,0, ± c ) (0, ± c , ± c ) 1/36

d3 Q27 (0,0,0) 8/27
(± c ,0 ,0) (0, ± c ,0) (0,0, ± c ) 2/27

(± c , ± c,0) (± c ,0, ± c ) (0, ± c , ± c ) 1/54
(± c , ± c , ± c  ) 1/216

Besides constraints expressed by Eq. (3.13) and (3.14), an additional condition on 
the second m om ent of the equilibrium distribution functions is imposed so that

L f i  £ia£ifi = y  pàafi + P va vfi. (3.31)

This is a necessary condition to recover the Navier-Stokes equation in the continuum 
limit. By substituting the expansion in Eq. (3.30) in constraints introduced in Eq. (3.13),
(3.14) and (3.31), a suitable choice for the expansion coefficients is found to be

A0 = P — 20 A2

B 0 = 0

C0 = -
2 p 
3c 2

D0 = 0

A1 = 4 A2 

B1 = 4B2

C1 = 4C2 

D 1 = 4D2

B2 =

P_ 
36 

P 
12c 2

C2
P

24c2

D 2
P

8 c 4 ’

(3.32)

(3.33)

(3.34)

(3.35)

where for the sake of clarity we have explicitly chosen a d 2 Q9 lattice geometry.
Finally, we m ention that it would be possible to introduce small thermal fluctua­

tions into the algorithm, in a controlled way, by means of a stochastic collision opera- 
tor. The fluctuation-dissipation theorem can then be satisfied by requiring consistency 
with fluctuating hydrodynamics [1]. Since to the best of our knowledge there are no 
LB models for active systems including thermal noise, we do not give further details, 
since the role of thermal fluctuations will not be addressed in the study presented in 
this thesis.
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3 . 2 .  C h a p m a n - E n s k o g  e x p a n s i o n

In Section 3.1.2 we presented a LB algorithm to solve the hydrodynamics of a sim- 
ple fluid. We show here that Eqs.(2.23) and (2.16) can be recovered in the continuum 
limit, starting from the evolution equation (3.8) for the distribution functions f i . Two 
approaches can be followed. The first one starts from a Taylor expansion of the left- 
hand side of Eq. (3.8) [140], whereas the second one, discussed below, uses a Chapman- 
Enskog method, that is an expansion of the distribution functions about equilibrium, 
which assumes that successive derivatives are of increasingly higher order in the Knud- 
sen number e = A/L. For small values of e (e «  1) the m ean free path is m uch smaller 
than L and a continuum theory is a good approximation. To take into account both 
ballistic and diffusive scales, spatial density fluctuations of order O(e-1) are assumed 
to relax over time scales of order O(e-2 ). A suitable expansion for temporal and spatial 
derivatives as well as for distribution functions is

built assuming that there is a diffusion time scale t2 slower than the convection one t1. 
We start by expanding the left-hand side of equation (3.8) to the second order in At :

where Eq. (3.10) has been usedto express the collision operator. BysubstitutingEq. (3.36), (3.37) 
and (3.38) into Eq. (3.39) one obtains

dt = edh + e dt2, 

da = edaV

(3.36)

(3.37)

(3.38)

At [(edt1 + e2dt2) + e f iada\ ] ( f i°° + e^  ^  f lT>)

+ (At)2 1 (edt1 + e2dt2)2 + efi ada(edh + e2 dt2)

+ 1  e 2 (ia(ipàa 1 ] (f™  + e f ' 11 + e2f<21)

= - 1 (  f ( ° '+  e /i( l l+ e2 f™  -  f ‘ q ). (3.40)

By retaining at most terms of second order in e, the previous equation reads

eAt  (dt! f™  + f i  ada1 £ (0))

+ e2 A t(d t1 f i 11 + fiada 1 f i 11 + dt2 f,.(0))

1 1
+ At2 2  d2t 1 + 2  fi afi pda1 dp1 + fi ada1 dh f,™ 

f  (0^  f eq e f  (1  ̂ _|_ e2 f  (2)

T T



Finally, grouping terms of same order in e, we get

f™  = f e q + o  (e), (3.42)

dt1 /ì(0) + Zi ada1 /ì(0) = _  TAt f™  + O (e), (3.43)

àh f™  + Zi ada1 f "  + dt2  f™

+ A  (3% + 2Zi ada1 dt1 + Zi aZi p ^  Òp, ) f™

= _  tA t  f i 2ì + O (e). (3.44)

In the following paragraphs we will use these relations to recover continuum equations 
up to second order in the Knudsen number.

3 .2 .1. R e c o v e r  C o n t i n u i t y  E q u a t i o n
To recover the continuity equation one can start by summing Eq. (3.42) over lattice ve- 
locities with the constraints given in Eqs. (3.13) and (3.14). One then gets

E  f i 0' = p, E  f i "  = E  f i 2' = 0, (3.45)
i i i

and, by using again Eq. (3.14),

E  f ^ Z i  a = P va, E  f l l)Zi a = E  fi^Zi a = 0. (3.46)
i i i

By performing a summation over lattice velocities in Eq. (3.43), one gets

dt1 P + da1 (p v a) = 0 + O (e), (3.47)

which is the continuity equation at first order in the Knudsen number. To recover the 
complete time derivative according to Eq. (3.37), we need to explicitly compute the term 
dt2 p. By applying the differential operators ed t 1  and eZipdp1 to Eq. (3.43) we obtain

4  f - OÌ + Zi ada1 dh f™  = _  t A ,  òh f™  + O (e2), (3.48)

Zi pdp, dt1 f ( OÌ + Zi aZi pda1 dp1 f f  = _  tA -  Zi pdp1 f™  + O (e2), (3.49)

and, summing both equations:

( 4  + 2Zi ada1 àh + Zi aZi pda1 d^) /ì(0) = _  t A ,  (dh + Zi p ^ )  f™  + O (e2). (3.50)

Note that the left-hand side of this equation is exactly the term in round brackets of 
Eq. (3.44), thatnow becom es

dt2 f/0) + 1 ------
2 t (àh + Zi ad^) f f  = _  TAt f l 2) + O (e). (3.51)

By summing over lattice directions and using Eqs. (3.45) and (3.46), we get

d , 2  p = 0 + O (e2), (3.52)



that, summed with Eq. (3.47), gives

(edh + e òt2)P + edai(Pva) = 0 + O(e ). (3.53)

Finally, after restoring the canonical differential operators (through Eqs. (3.37) and (3.38)), 
we get the continuity equation

dt P + da (P va ) = 0 + O (e2), (3.54)a P a

at second order in the Knudsen number.

3 .2 .2. R e c o v e r  N a v i e r - S t o k e s  E q u a t i o n s
The procedure to recover the Navier-Stokes equation is analogous, albeit less straight- 
forward, than that used for the continuity equation. We will proceed by calculating the 
first-order m om ent of Eq. (3.43) and Eq. (3.44). First, one multiplies by £ifi both mem- 
bers of Eq. (3.43) and sums over index i, to get

c 2

dt1(P va) + dfi1 Y P 8 afi + P va vfi ■ 0 + O (e). (3.55)

To get the Navier-Stokes equation to second order in the Knudsen number we need to 
calculate the first-order m om ent of equation (3.44). We can then multiply Eq. (3.51) by 
£ iy to obtain

dt2 i l  y f™  +
1

1 ------
2 t

1
(dti — £i adai)£i Y f j 1'> = ---- TT £i Y f f2'> + O (e2),TAt

and, by summing over lattice velocities, we are left with

dt2(P v a)
1

1 ------
2 t  ,

dfi1 E  f i l)£ia£ifi 0.

(3.56)

(3.57)

Now we must determine an expression for the summation in square brackets. From 
Eqs. (3.42) and (3.43) we note that

L f tm £i a£i fi = —TAt (dt1 + M y ! )  E  f i q £i a£i fi

-T A t dt
c 2

3 P^afi + P va vfi + 3Y1 E  f i q £i a£i fi£i Y

(3.58)

where we have used Eq. (3.31) in the second equality. The second term of the second 
line of Eq. (3.58) can be written in terms of the equilibrium distribution functions given 
in Eq. (3.15) and of the related coefficients in Eq. (3.33)

dY1

e c 2 

E  f i q£ia£ ifi£ iY = dYi lP(8afi vy + 8 aY vfi + 8 fiY vai] , (3.59)

while the first round bracket in the second line of Eq. (3.58) can be written by means of 
Eq. (3.47) and Eq. (3.55) as

c 2

dti — P8 afi + P va vfi = — — ÒYi(P vY)8 afi + vfidti(P va) + vadh (P vfi) — va vfiÒh P 
3 3  

c 2
-  — y  [ÒYi (P vY)8 afi + (vadfii P + v fidai P)] .



In the last line terms of order v3 were neglected, an approximation valid as far as the 
Mach num ber is kept small. Now substituting Eqs. (3.60) and (3.59) into Eq. (3.58) we 
find, after some algebra, that

L f i f i a f i p  = - T A t y p [dfa Va + da1 Vp] . (3.61)

This term, in turn, enters Eq. (3.57), which now reads

dt2(p Va)
1

T ----
2

A t y dfa [p [dP 1 Va + da1 Vp)] = 0. (3.62)

Finally, summing this equation with Eq. (3.55) and using the canonical differential op- 
erators (i.e. Eqs. (3.37) and (3.38)), we obtain the Navier-Stokes equation

dt (p Va) + dp (p Va Vp) = -da  p + At
3

dp [p (dp Va + da Vp)] , (3.63)

where p = (c2/3)p is the isotropic pressure and the shear viscosity is given by

p csAt 1
t —  

2

where cs = ^3 is the speed of sound.

(3.64)

2

2

2

n 3

3 . 3 .  L B M  b e y o n d  s i m p l e  f l u i d s

So far we have implemented a lattice Boltzmann method for a simple fluid in absence of 
any forcing term, with only viscous contribution to the stress tensor. On the other hand 
when dealing with more complex systems, such as m ulticom ponent or multiphase flu­
ids, the stress tensor may include further contributions (such as elastic and interfacial 
ones, see Table 2.2) which have a non-trivial dependence on order parameters and their 
derivatives. In this Section we will show two different strategies adopted to numerically 
im plem ent such terms. Briefly, while in the first one they are included in an extra term, 
appearing in the second m om ent of the equilibrium distribution functions, in the sec­
ond one they enter through an external forcing added to the collision operator in the 
lattice Boltzmann equation.

3 .3 .1. S t r e s s  t e n s o r  in  t h e  s e c o n d  m o m e n t
To im plem ent a general symmetric stress tensor contribution in the lattice Boltzmann 
schem e previously introduced, we again impose the constraints of Eq. (3.13) and Eq.
(3.14) on the zeroth and on the first m om ent of the equilibrium distribution functions, 
while constraint on the second m om ent previously given in Eq. (3.31) is modified ac- 
cording to the following relation

^  f i q f i af i p = - &ap + p Va V p. (3.65)
i

Here a ap stands for the total stress tensor including pressure contributions, but de- 
prived of viscous ones. Note that, due to the symmetry of the lefthand side of Eq. (3.65),



this algorithm can be applied to models that involve only symmetric contributions to 
the stress tensor. For instance, this method is suitable to study binary mixtures, as the 
stress tensor associated to the concentration contribution is indeed symmetric, but not 
liquid crystals, as the antisymmetric part of the relative stress tensor does not vanish 
(see Table 2.2). This latter case will be discussed in the following Sections. To satisfy 
Eq. (3.65) [44, 142], the equilibrium distribution functions can be expanded as follows

f i q = As + Bsv aZi a + Csl)2 + D sva vpZi aZi p + Gs ^Zi aZi p , (3.66)

where an extra term, quadratic in lattice velocities, has been added with respect to the 
case of a simple fluid (see Eq. (3.30)), to include a general stress tensor in the model. 
As for a simple fluid, the coefficients of the expansion can be calculated by imposing 
constraints ofEq. (3.13), Eq. (3.14) andEq. (3.65). Fora d 2Q9 geometry a suitable choice 
is given by

A 0  = p _  20 A2  A 1 = 4A2  A2  

B0  = 0 B 1 = 4 B 2 B2  z

C0 =
2 p_
3c  2

C1 -  4C2 C2 -

Tr a  
24c 2 

p 
12c 2 

p

D 0 = 0 D 1 = 4D2 D2 =

Gap 0 Gap 4 Gap .^ap

24 c2 
p

8 c 4
na

(3.67)

ap
8c2 ’

where we denoted by a 0ap the traceless part of a ap.
One can now proceed to recover the Navier-Stokes equation by using a Chapman- 

Enskog expansion3. Assuming that the fluid is flowing at small Mach numbers, so to 
ignore third-order terms in the fluid velocity, and taking the first m om ent ofEq. (3.43), 
one gets ( )

dh (p v a) + dp-1 (p v a vp) = dp1 aap + O (e), (3.68)

which is the Navier-Stokes equation at first order in Knudsen number. To recover the 
Navier-Stokes equation at second order, we start from Eq. (3.57), where we need to eval- 
uate the second m om ent of f.(1)

L f tm Zi aZi p = _TA t (dt1 + Zir dn ) L  f ? q Zi aZi p

= -T A t dh (_aap  + p va vp) + ÒT 1 E  f i q Z i aZi pZ. 1  y

(3.69)

The first time derivative in square brackets is negligible at the leading order, while

dt1 (p va v p ) = vadt1 (p v p) + vpdh (p va) (3.70)

3The second moment constraint on the equilibrium distribution functions is not necessary for the 
derivation of the continuity equation. Hence the procedure to recover this equation is not affected by
the modifications introduced in the new version of the algorithm, with respect to the case of a simple 
fluid.
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that shows, together with Eq. (3.68), that this term gives a nuli contribution. Finally, 
using Eq. (3.59) we get the same result of Eq. (3.61) which allows one to restore the 
Navier-Stokes equation.

3 .3 .2. F o r c i n g  s c h e m e
An alternative route to the solution of the LB equation (3.8) relies on the use of a pure 
forcing method [113, 186]. In this case the total stress tensor enters the model via a 
forcing term F i, without any additional constraint on the second m om ent of the equi­
librium distribution functions, with condition given in Eq. (3.31). The collision term C f  
assumes the simple form of the BGK approximation supplemented by a forcing term

1
C  ({f i }, t) = - -  [fi (r, t) -  f eq (r, t)] + A t F i ,

T i
(3.71)

where the equilibrium distribution functions f'eq are again expressed as a second-order 
expansion in the velocity v of the Maxwell-Boltzmann distribution [150]. The fluid m o­
mentum is now given by the average between the pre- and post-collisional values of the 
velocity v, as usually done when using a forcing term [19, 165]

P va = E  fi ti a + 2  F aA t, (3.72)

where Fa is the cartesian com ponent of the force density acting on the fluid. The choice 
of the equilibrium distribution functions and their constraints is kept as in Section 3.1.2, 
with coefficients given by Eqs. (3.32)- (3.35) for a d2Q9 lattice. The term F i can be writ­
ten as an expansion at the second order in the lattice velocity vectors [104]:

F i  = Mi
A , Batia , Cafi(t iatifi ^^afi) 

A +------ - \----------------- -
cS 2 cS

(3.73)

where coefficients A, Ba and Cafi are functions of F a. In order to correctly reproduce 
hydrodynamic equations, the m oments of the force term must fulfil the following rela- 
tions

E  F i  = A E  F i t i a = Ba

1
E_lF it iat ifi = cs A$afi + 2 [Cafi + Cfia] ,

(3.74)

which lead to [83]

F i
1

1 ------ Mi

2

i a -  va , t i fi vfi e 
+ * $i2 + 4 cs2 cs4

Fa. (3.75)

To recover the continuity (2.15) and the Navier-Stokes (2.16) equations it suffices to re- 
quire that

tj is e —total _ viscous\ ’~7r,\
Fa = dfi(°afi -  °afi ) . (3.76)

From the Chapman-Enskog expansion it results that the fluid viscosity in Eq. (2.20) is
n = ^  (t -  1 /2). No extra contributions appear in the continuum equations (2.15) 
and (2.16), apart from a term of order v3 which can be neglected if the Mach number is 
kept small.

t
a



Other approaches to the num erical solution of the LB equation introduce spurious 
terms which cannot always be kept under control [83]. The one presented here has 
proved to be effective for simple fluids [83], m ulticom ponent [73] and multiphase fluid 
systems [34, 174].

3 . 4 .  C o u p l i n g  w i t h  a d v e c t i o n - d i f f u s i o n  e q u a t i o n

The aim oflattice Boltzmann methods goes far beyond the treatm ent of Navier-Stokes 
equation; indeed, it has proven to be a fundamental tool to solve general conserva- 
tion equations [4 ]. Moreover, beside many implementations devoted to hydrodynam- 
ics studies, such as the ones cited at the end of the previous Section, recently a LBM 
approach has also been used to solve Einstein equations for gravitational waves [89].

We devote this Section to report on characteristic ways to solve the dynamics of or­
der parameters coupled to hydrodynamic flow. Because of its relevance in the study of 
complex fluids we will focus on the treatm ent of the advection-diffusion equation (2.23) 
for a concentration field. The first possibility is to develop a full LBM approach in 
which the advection-diffusion equation is solved by introducing a new set of distribu­
tion functions {gi (r, t)} connected to the concentration field, beside the distribution 
functions {f i(r, t)} needed to solve the Navier-Stokes equation. Another route is to fol- 
low a hybrid approach where the advection-diffusion equation is solved via a standard 
finite difference algorithm while hydrodynamics is still solved through a LB algorithm. 
This is the route followed to solve the dynamic equations in this thesis.

3 .4 .1. F u l l  L B M  a p p r o a c h
To solve the hydrodynamic equations for a binary system through a full LB approach the 
introduction of a new set of distribution functions {gi (r, t)} is needed [214, 215]. The in ­
dex i again assigns each distribution function to a particular lattice direction indicated 
by the velocity vector f i. The concentration field 0 (r, t) is thus defined as

0(r, t) = X g i (r, t). (3.77)
i

As in Eq. (3.8), distribution functions g i evolve according to the following equation

gi (r + fi At , t + At  ) -  gi (r, t) = — -  (gi -  g eq ), (3.78)
T$ 1

where the BGK approximation for the collisional operator has been used. A new relax­
ation time t$ has been introduced since the relaxation dynamics of the concentration 
field may consistently differ from that of the underlying fluid. In Eq. (3.78) we have also 
introduced the set of equilibrium distribution functions {g®q (r, t)} that fulfil the follow- 
ing relation

X g*q(r, t) = 0 (r, t). (3.79)
i

This ensures that the concentration field is conserved during the evolution.
To recover the advection-diffusion equation in the continuum limit, it is necessary 

to impose the following constraints on the first and second moments of the equilibrium



distribution functions

E  g l*  Zi a = 0 v a, (3.80)
i

E  g r  Zi aZi p = $va vp + c2 X^ 8 ap. (3.81)
i

Here the mobility parameter x  tunes the diffusion constant M  that appears on the right- 
hand side of the advection-diffusion equation, while x  is the chemical potential. A  suit­
able choice of the distribution function which fulfils Eq. (3.79), Eq. (3.80) and Eq. (3.81) 
can be written as a power expansion up to the second order in the velocity

g j * = H s + JsvaZia + Ksv + M sva vpZaZp, (3.82)

where the coefficients o f the expansion can be computed from Eqs. (3.67) through the 
formal substitution

p ^  0 aap ^ _ c 2 xx^ap. (3.83)

The continuum limit o f the advection-diffusion equation can be obtained through a 
Taylor expansion of the left-hand side ofEq. (3.78) and by using Eqs. (3.79)-(3.81) [217]. 
This leads to the following expression of the diffusion constant

M  = x c  A t (3.84)

This algorithm can be generalized to describe the evolution of more complex order 
parameters, such as the nematic tensor Qap, whose dynamics is governed by the Beris- 
Edwards equation of motion (Eq. (2.21)). Since Qap is atraceless symmetric tensor, in d 
dimensions, at least d(d  + 1)/2 _  1 extra distribution functions G , ap(r, t)} are needed, 
which are related to Qap through

Qap = E  Gi,ap. (3.85)

The rest o f the algorithm can be thus developed as the one presented for the concen­
tration field. In Section 3.5 we will go back to LBM for liquid crystal dynamics and we 
will present another algorithm that employs a predictor-corrector numerical scheme 
for the collision term.

3.4.2. HYBRID L B M  APPROACH
An alternative approach to solve the Navier-Stokes equation and an advection-diffusion 
equation for an order parameter is based on a hybrid method, where a standard LBM 
solves the former while a finite-difference scheme integrates the latter equation.

Letus consider, for instance, the evolution Eq. (2.23) ofthe concentration field 0(r, t). 
Space r and time t can be discretized by defining a lattice step AxFD and a time step 
A tFD for which AxFD = AxLB (namely the scalar field is defined on the nodes o f the 
same lattice used for the LB scheme) and A tLB = m AtFD, with m  positive integer. At 
each time step the field 0  evolves according to Eq. (2.23) and is updated in two partial 
steps.



1. Update of the convective term by means o f an explicit Euler algorithm

0*(ra ) = 0 -  AtFD (0da Va + Vada0), (3.86)

where all variables appearing at the right-hand side are computed at position ra 
and time t. Note that the velocity field v  is obtained from the lattice Boltzmann 
equation.

2. Update of the diffusive part

0(ra, t + AtFD) = 0* + AtFD V2 M -
8 F

0 0  Ì 0 =.
(3.87)

0 =0 *

Note that one could use more elaborate methods to solve convection-diffusion equa­
tions. For instance, one can combine predictor-corrector schemes for the treatment of 
the advective term with a wealth o f finite-difference schemes for the numerical solution 
of parabolic equations [56]. Nevertheless one has to always keep in mind consistency 
between the order o f accuracy of combined different numerical schemes used. How- 
ever, the method here described, besides being relatively simple to implement, com- 
bines a good numerical stability with a reduced memory requirement with respect to 
the full LBM approach [186], as it w illbe discussed in Section 3.8.

3 . 5 .  L B M  f o r  A c t i v e  F l u i d s

As outlined in Chapter 2, many properties of active matter are captured by liquid crys- 
tal hydrodynamics. Here we describe a LB method that solves both the Navier-Stokes 
equation and the Beris-Edwards equation through a full LB approach, a method often 
employed to numerically investigate active matter [28, 44].

As the liquid crystal stress tensor entering the Navier-Stokes equation is generally 
not symmetric, one could either (i) build an algorithm in which it is fully included 
through an external forcing term (as described in Section 3.3.2) or (ii) separate the sym­
metric part from the antysimmetric one, by including the former in the second moment 
of the equilibrium distribution functions and treating the latter as an external forcing 
term. Although the two procedures are equivalent, only the second approach, first in­
troduced by Denniston et al. [44], has been developed so far.

In this method two sets o f distribution functions, { f i} and {Gi,ap}, are defined and 
are connected to the hydrodynamic variables (i.e. density, momentum) and to the order 
parameter through Eqs. (3.11), (3.12) and (3.85). Their lattice evolution equations are 
solved by using a predictor-corrector-like scheme

f i (r + f i  At, t + At) -  f i (r, t) = A  [c  ( { f i }, r, t) + C  ({fi*}, r + f i  At, t + A t ) ] , (3.88)

Gi ,ap(r + f iA t, t + A t  ) -  Gi ,ap(r, t ) = —  C  ({Gi ,ap} ,r, t ) + C  ({G*,ap}r + f iA t, t ) (3.89)
2

where f *  and G *ap are, respectively, first order approximation to f * ( r  + f iAt, t + At) 

and G *ap(r + f i  At, t + A t) obtained by setting f *  = f i and G*,ap = Gi ,ap in Eq. (3.88)



and (3.89). The collisional terms are given by a combination of the usual collision oper- 
ator in the BGK approximation plus a forcing term

where t f  and t g are two distinct relaxation times, and p i and M i>afi are the two addi- 
tional forcing terms.

In order to recover continuum equations one must impose constraints on the ze- 
roth, first and second moments of the equilibrium distribution functions and on the 
forcing terms. The local conservation o f mass and momentum is ensured by (3.13) 
and (3.14), while the second moment is given by Eq. (3.65), in which the stress tensor on 
the right hand side includes the sole symmetric part. The antisymmetric contribution 
aafiti is introduced through the forcing term p i, which fulfills the following relations

We finally note that the predictor-corrector scheme has been found to improve nu­
merical stability of the algorithm and to eliminate lattice viscosity effects (usually emerg- 
ing from the Taylor expansion and appearing in the viscous term, in the algorithms dis- 
cussed so far) to the second order in A t . To show this, one can Taylor expand Eq. (3.88) 
to get

The left-hand side is O (A t) and coincides with the term in square brackets. One could 
then write at second order in A t

C  ( { f i }, r, t) = -  —  (fi -  f ° q) + p i,
Tf

C  ({Gi,afi}, r, t) = ----- (Gi,afi -  G ^ fi) + M i,afi,

(3.90)

(3.91)

X >  = 0, L p i  t i  a = dfiaaafitl, J^pi t i  a ti fi = 0. (3.92)

The remaining distribution functions Gi,afi obey the following equations

E Gj,afi = Qafi,
i

X 'Giafit i Y = Qafi VY,l

'^-jGi'qzfit i Yt i d = Qafi v Y vS,

while the forcing term M i,afi satisfies

T . M Zl> = + S‘ l>’

i

(dt + t i  ada) f i (r, t) -  C  ( { f i }) = - y ( d t  + ti ada) [(dt + ti ada) f i  -  C  ({f i })] + O (A t2). (3.93)

(dt + ti ada ) f i (r, t) = C  ({f i }) + O (A t2). (3.94)



An analogous calculation for Gi,ap shows that

(dt + Zi7 d7)G i,ap(r, t) = C({Gi,ap}) + O (A t2) (3.95)

thus recovering the proper lattice Boltzmann equations.
A hybrid version of the algorithm, widely employed in the study o f active matter, 

solves the Navier-Stokes equation through a predictor-corrector Lattice-Boltzmann ap­
proach and the Beris-Edward equation by means o f a standard finite-difference method [28,

Further models involving more than just one order parameter have been developed 
in recent years, such as the theory discussed in Section 2.3.1, in which the liquid crystal 
order parameter (the polarization field) is coupled to the concentration field o f a binary 
fluid mixture. Again a hybrid approach, in which both equations of the concentration 
and o f the polarization have been solved through finite difference methods, has been 
used [12, 136].

In many practical situations, such as in a system under shear flow, one may be inter- 
ested in studying the physics of the system within a confined geometry. Here we de- 
scribe the implementation of boundary conditions of a sheared bidimensional fluid 
defined on a lattice o f size Lx x Ly and confined between two parallel flat walls located 
at y = 0 and y = Ly. Two key requirements are necessary for a correct description o f the 
physics:

• no flux accross the walls,

• fixed velocity v* along the walls,

which correspond to the following relations on the wall sites:

Assuming a d2Q9 lattice geometry (see Fig. 3.2) with the walls located along the lattice 
links (i.e. along the lattice vectors Z1,Z3), one can explicitly write the previous relations 
at y = 0 (the bottom wall):

Note that after the propagation step, functions f 0, f 1, f 4, f 7  and f 8  are known, so that 
one can use relations (3.97) and (3.98) to determine the three unknown distribution 
functions f 2, f 5, f 6. This system of equations can be closed by adding the bounce-back 
rule:

84].

3 . 6 .  B o u n d a r y  c o n d i t i o n s

L f i  Zi* = p vX, Z f i  Ziy = 0. (3.96)

f 2 + f 5 + f 6 _  f 4 _  f 7 _  f 8  = °, 

f 1 + f 5 + f  8 _  f 3 _  f  6 _  f 7 = p vXc.

(3.97)

(3.98)

(3.99)

f 5 = 2 (2 f 7 + f 3 _  f 1 + p vX) 

f 6 = 2 (2 f 8  + f 1 _  f 3 _  p vX).

(3.100)

(3.101)



With this choice for inward-pointing distributions, the desired momentum at the bound- 
ary is achieved. Unfortunately this scheme does not allow for the local conservation 
of mass since, after the collision step, inward-pointing distributions are not streamed. 
In [106] an improvement of this scheme was proposed to overcome such a problem. In 
the following we will use notation f pi to identify the outgoing distribution function in a 
wall lattice site at time t -  A t , while f i denotes those streamed from neighbouring sites 
at time t. Besides conditions in (3.96) it is required that the fraction of mass moving 
towards the wall or eventually still on a wall site at time t -  A t is the same that moves 
from the wall or stay still on the walls at time t . This is expressed for a bottom-wall site 
by the following relation:

f p 0 + f p 7 + f p 4 + f p 8 = f 0 + f 5 + f 2 + f 6, (3.102)

where f 0 must be determined by solving the system o f Eqs. (3.96) and (3.102) together 
with the bounce-back condition (3.99). This leaves unchanged the solutions for the 
unknown f 5 and f 6 in Eqs. (3.100) and (3.101), but provides a new expression for f 0 that 
is thus given by:

f0 = P -  ( f 1 + f3) -  2(f4 + f7 + f 8 ). (3.103)

Such scheme can be easily adjusted to the case of the pure forcing method pre­
sented in Section 3.3.2. The only difference lies in the momentum conservation rela- 
tions [93] that in such case read as follows,

^  f i f ix + ~ Fx = P v*, ^  f i f iy + ~2 Fy = °. (3.104)
i 2 i 2

The system of Eqs. (3.104) together with Eq. (3.102) admits the following solutions:

1 A
f 5 = 2 2 f 7 + f 3 -  f 1 + P v *x -  — (Fx + Fy)

V ^  J

1 ( A t '
f 6 = ;; 2f8 + f 1 -  f3 -  P v* + —  (Fx -  Fy)

2

(3.105)

(3.106)

f 0 = P -  ( f 1 + f 3) -  2 (f4 + f 7 + f 8) + — Fy, (3.107)

where the outward-pointing distribution f 2 was fixed by the bounce back condition (3.96).

3 . 7 .  E r r o r  a n a l y s i s  a n d  c o m p a r i s o n  w i t h  f i n i t e  d i f f e r ­

e n c e  L a t t i c e  B o l t z m a n n : w h e n  c o l l i s i o n - s t r e a m i n g  

IS  E N O U G H

In this section we will do a comparison between the standard collision-streaming LB 
and finite difference LB. This will help us in discussing error analysis and validate the 
algorithm used to produce results presented in this thesis.

When using the finite-difference LB model in this section, the evolution equation is 
solved by using the third order total variation diminishing (TVD) Runge-Kutta (RK-3) 
time steppingprocedure,[75, 86, 168, 197] together with the fifth-order weighted essen- 
tially non-oscillatory (WENO-5) scheme for the advection [20, 63, 91]. Since FDLB will



be used only in this section for a comparison with CSLB, we will not discuss the details 
of its implementation. More details are given in [137].

Using the Chapman-Enskog method, it can be shown that, when the fluid satisfies 
the Navier-Stokes equation, the non-dimensionalized value of the kinematic viscosity 
is given by

where t fd  is the relaxation time non-dimensionalized with respect to the finite differ- 
ence conventions, T  is the non-dimensionalized value o f the local fluid temperature 
and m  is the non-dimensionalized value of the fluid particle mass.

In order to relate the non-dimensional values for a quantity A  (the tilde indicates 
a dimensional quantity), obtained using two non-dimensionalization conventions (A 1 
and A 2), the following formula can be used[216]:

since A = A 1 Aref;1 = A 2 Aref;2.
We wish to simulate the same fluid system using both the FD and the CS lattice 

Boltzmann models. Since the reference values used in these models may be different, 
but the computer simulations are usually performed using non-dimensionalized quan- 
tities, we need the conversion relations between the non-dimensionalized values o f the 
physical quantities used to describe the fluid properties and the flow geometry within 
each model. In the sequel, we will use the subscripts FD and LU to denote the physi­
cal quantities in the FD and the CS models, respectively. We choose to use LU (which 
stands for "lattice units") since this notation is frequently encountered in the LB litera- 
ture dealing with CS models.

Let us consider a fluid system whose characteristic length is T  in which an ideal 
fluid with viscosity T is maintained at the constant temperature T0  = T0r ref. Here, we 
assume that the reference temperature Tref, the reference pressure Pref, the reference 
mass mref, as well as the reference density pref are identical in both the CS and the FD 
models.

The reference speed in the two models is:

where KB is the Boltzmann constant, and Tref is the reference temperature in both mod-

Let the reference length in the FD approach be the system size Tref;FD = T, while in 
the CS approach, it is the lattice spacing. Considering that the CS simulation is per­
formed on a lattice containing N lu nodes along the characteristic length ì  the refer­
ence length in the CS model is

TfdT
(3.108)VFD =

m

(3.109)

(3.110)

els.

T Tref;FD
(3.111)



The reference time in the FD approach is

Lref;FD = X----- . (3.112)
Lref;FD

The reference time in the LU approach is:

LL Ltref;FD
Lref.LU = ----- ------ = (3.113)
ref;LU Nlu Lref.LU N lu

In order to ensure that the same system is being simulated, the viscosity must be 
fixed. The reference viscosity in the FD approach is:

~ Lref;FDPref LPref
Lref;FD = ----- ------  = -------— , (3.114)

A* ref Lref;FD pref

being independent of the simulation details, such as number o f nodes or time step, 
where Pref is the reference pressure. The LU reference viscosity reads:

-  Lref;FD
vref;LU = , r . (3.115)

N lu

Thus, the LU reference viscosity depends on the number o f lattice nodes NLu.
This result, as well as the expression of the non-dimensionalized viscosity value in 

the CS model
5t ì

vlu t lu _  —  
2

(3.116)

allows us to get the relation between the non-dimensionalized FD relaxation time t FD 

and the corresponding value of t lu :

5 ,lu V3
tlu  = vlu + = N luTfd + — , (3.117)

2 6

where the last term represents the numerical correction typical for collision-streaming 
simulations.

Cartesian shock problem
As a first test problem we consider the Cartesian shock problem. The test consists o f a 
one-dimensional Riemann problem: In an isothermal ideal gas at temperature T, the 
density is initialized as follows:

Ìp(x) = pL if x < x0
F FL 0 (3.118)

p (x ) = pR otherwise,

where pL and pR are the values of the density to the left and to the right o f the initial 
discontinuity, which is located at x  = x0. Since in our simulation set-up, the density is 
related to the pressure P  through p = m P/T , where T  is considered to be constant, we 
expect no contact discontinuity to appear in our simulation results. This can be seen 
by considering the Euler equations, reproduced below for the one-dimensional flow of 
an isothermal fluid:

d, p + dx (p u) = 0, d, (p u ) + dx (pu 2  + P) = 0. (3.119)



Introducing the similarity variable

£ =

it canbeseen thatEq. (3.119) reduces to:

du £ -  u dp 

= ~ ^ d £  ’

x  -  x 0

dP 2 dp
u t  — (£ -  u)2i j -  d£ d£

(3.120)

(3.121)

Noting that P  — pc2s, where cs — V T /m is the non-dimensionalised speed of sound in 
an isothermal fluid, the above equations are satisfied either when p and u are constant, 
or when

u — £ ± cs. (3.122)

The above solution corresponds to a rarefaction wave travelling to the left (+) or to the 
right (- ) .  We note that the solution u — £ (corresponding to the contact discontinuity) 
does not appear in the case of isothermal flows.

Assuming that pL > pR, the rarefaction wave propagates to the left, in which case the 
velocity can be seen to increase linearly according to:

u* (£ *) — £ * + c s (3.123)

where the star (* ) is employed to indicate that the analysis is restricted to the rarefaction 
wave. From Eq. (3.123) it can be seen that the head o f the rarefaction wave travels with 
constant velocity

£r — -c s . (3.124)

The tail of the rarefaction wave corresponds to the value £c o f the similarity variable, for 
which the velocity takes the constant value on the plateau, u — uc:

£c — cs (Z - 1), Z — (3.125)

where the dimensionless quantity Z was introduced for future convenience. The value 
of uc will be determined further below.

Inserting Eq. (3.123) into Eq. (3.121) gives the solution

p*(£*) — pLexp
( £ * - £ r 

£r
pL exp - Z

u (£ )
(3.126)

It can be seen that the density on the central plateau, p c, can be determined once Z is 
known using the equation

pc — pLe-Z . (3.127)

Let us now consider the Rankine-Hugoniot junction conditions for a discontinuity 
having the similarity variable £s:

p + (u + -£ s  ) — p - (u - - £ s  ), p + u + (u + -£ s  ) + P+ — p - u - (u - - £ s  ) + P -, (3.128)

where + and -  denote the fluid properties to the right and to the left of the discontinuity, 
respectively. Specializing the above equations to the case of the shock front, where p+ — 
pR and u+ — 0, the following relations are obtained:

£s —
pc Zcs 

pc -  pR

2 pcpR
pc -  Z ------------pr — 0.

pc -  pR
(3.129)

uc
cs

c



Inserting p c from (3.127) in the above relations, the value o f Z can be found by solving 
the following nonlinear equation:

2 + Z2 -  — e-  -  —  eZ = 0. (3.130)
Pr Pl

In order to obtain the full solution, the value o f Z must be inserted in Eqs. (3.125) and 
(3.127) to obtain the velocity f c of the tail of the rarefaction wave and the density P c of 
the central plateau. The velocity f s of the shock front canbe obtained from Eq. (3.129):

Zcs
= 1 - 7 5 7 .  (3.131)

P l

We now discuss our numerical results. We consider that the fluid temperature is the 
reference temperature, such that T = TLu = TFD = 1, where subscripts LU and FD refer 
to lattice units and finite difference units receptively. Hence the non-dimensionalized 
sound speed in both LB models is cs = 1. In order to reduce the errors due to compress- 
ibility effects, we take pL = 1.1 and pr = 0.9, where the reference density is taken to be 
the average of pL and pr . In this case, Z -  0.10035 and the relevant finite difference 
quantities are given below:

f r = - 1, f c --0 .900 , uc = Z -  0.10035, P c -  0.995, f s -  1.051. (3.132)

The discontinuity in density makes the simulation o f shock waves propagation a 
good test for the numerical methods used. The initial density jump creates a density 
wave traveling from high density regions to lower density ones. We fixed the number 
of nodes at N x = N LU = 2048 and considered two values o f the relaxation time, namely 
r FD = {10- 4,10-3}, corresponding to t Lu = {0.493,2.33}. In Fig. 3.4, the density and ve­
locity profiles obtained with the two methods are represented at time tFD -  0.1128 (at- 
tained after 400 iteration using CSLB), alongside the analytic solution for the inviscid 
case. The curves show good agreement between the two models for the considered 
values of viscosity.

In the CSLB implementation, (St)LU = 1/\/3 corresponds to the time step (8 t )FD = 
1/N\/3 -  2.82 x 10-4. The Courant-Friedrichs-Lewy number, CFL = c\St/Ss, is equal 
to one for this choice of parameters. In the FDLB implementation, the time step is 
bounded by the CFL condition CFL < 1, such that the maximum time step permitted 
is that employed in the CSLB implementation. The time step in the FDLB implemen­
tation is further restricted to obey (S t)FD < t fd , in order to prevent the collision term 
from becoming stiff. Thus, at t fd  = 10-3, we performed the FDLB simulations using 
(S t)FD = 1/N>/3, while at t fd  = 10-4, the time step was decreased by a factor of 3, 
(S t)FD = 1/3N\/3 -  9.40 x 10-5, such that 1200 iterations were required to reach the 
state shown in Fig. 3.4.

Shear waves
In order to compare numerical viscosity effects in the two models, we analyse in this 
subsection the evolution of shear waves. We consider waves of wavelength A = 1 in an 
ideal gas with density p  = 1 at temperature T = 1.

In the simulations performed, the wave vector k , |k| = 2n/A = 2n, was aligned along 
the horizontal axis and its Cartesian components were (2n,0).



tFD=0.1128
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x

Figure 3.4: Comparison of FDLB and CSLB results in the context of the Cartesian shock problem at the 
level of the density (upperpanel) and velocity (lowerpanel) profiles, obtained at ,fd -  0.1128 forvarious 
values of the relaxation time. The inset shows the shock front.



c s lb f d l b

t lu Nx V app Rel. err. V app Rel. err.
0.2986 20 0.0005073 0.0154 0.0005271 0.0542
0.3036 30 0.0005032 0.0065 0.0005039 0.0078
0.3086 40 0.0005017 0.0034 0.0005009 0.0018
0.3136 50 0.0005015 0.0021 0.0005003 0.0006
0.3186 60 0.0005006 0.0013 0.0005001 0.0002

Table 3.2: Apparent kinematic viscosity vapp, expressed using the FD adimensionalization, measured as 
a numerical fit of Eq. (3.135) in the context of the damping of shear waves.
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Figure 3.5: Relative error ofthe measured kinematic viscosity Vapp expressed with respectto the expected 
analytic value v q ,  extracted from the numerical simulations of the decaying shear waves problem, ex­
pressed with respect to the number of nodes Nx. A second second order convergence is recovered for the 
CSLB method, while for the FDLB method, the convergence is of fifth order.

Let u (x , t) be the fluid velocity vector. Inbothseries of simulations, the velocity field 
was initialized according to:

ux (x ,0) = 0, (3.133a)

uy (x,0) = U  sin(fc • x), (3.133b)

with U  = 0.01. When the fluid is not too far from the equilibrium (i.e., when the relax- 
ation time is small enough), the fluid evolves according to the Navier-Stokes equations. 
In the set-up of the shear waves problem, we have ux (x , t) = 0 and there is no spatial 
variation o f the velocity vector along the y direction. Under these circumstances and 
assuming that the fluid is isothermal and incompressible, the Navier-Stokes equations 
reduce to:

dtuy(x , t) -  v qd\uy(x, t) = 0. (3.134)

Assuming that for t > 0, uy(x , t) = u (t) sin(k • x), the solution is:

u (t) = Ue ~kv°t, (3.135)



x/X
Figure 3.6: Initial structure of a Taylor-Green vortex flow. Contour plot of the velocity field module is 
shown, with superimposed velocity stream lines.

where v0 is the analytic kinematic viscosity.
We fixed the value o f the kinematic viscosity in FD units at v0;FD = r FD = 5 x 10-4, 

and the simulations were performed for various values o f N x = N LU. For a given value 
o f v FD and number oflattice nodes N x, we used Eq. (3.117) to obtain the corresponding 
value o f t Lu, in order to simulate the exact same system with the CS and FD models. For 
the FD model we used a time step o f (8 1)FD = 5 x 10-4 and lattice spacing (8 s)FD = 1/Nx. 
In the CS model, the time step (8 t)Lu = 1/\/3 corresponds to (8 t )FD = 1/Nx\/3 ^ 5 x 
10-4 x (1155/Nx), which for 20 < N x < 60 is around 20 to 60 times larger than the time 
step employed in the FDLB implementation.

In order to perform a quantitative analysis, a numerical fit o f Eq. (3.135) was per­
formed, which allows the parameter v app to be extracted. The measured values o f v app 
are reported in Table 3.2 with the corresponding relative error. The latter is plotted in 
Fig. 3.5, showing a second order convergence for CS and a fifth order one for FD and 
confirming the expected numerical accuracy o f the used models. It is worth noting that 
at N x = 20, the relative error when the CSLB method is employed is roughly 3.5 times 
smaller than the one corresponding to the FDLB method. The relative error o f the FDLB 
results becomes smaller than that corresponding to the CSLB method when N x >  30.

D am pingof2D  Taylor-Green vortices
We now consider the damping o f 2D Taylor-Green vortices.

The system is initialized as follows:

ux = U  sin(kx )cos(ky ),

uy = - U  cos(kx)sin(ky ), (3.136)

where the amplitude is U = 0.01 and the wave vector is k = (k , k), with k = 2n/X = 2n.
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Figure 3.7: Relative error of the measured kinematic viscosity Vapp expressed with respect to the expected 
analytic value v q ,  extracted from the numerical simulations of the decaying Taylor-Green vortices, ex­
pressed with respect to the number of nodes Nx. A second order convergence is recovered for the CSLB 
method, while for the FDLB method, the convergence is of fifth order.

Similarly to the shear wave case, if we assume that for t > 0, Eq. (3.136) holds with 
the amplitude U  replaced by u(t), then

u(t) = U e~2kv01. (3.137)

Fig. 3.6 shows the initial structure o f a Taylor-Green vortex flow. The flow maintains the 
same structure while decaying exponentially.

We fixed again the value o f the kinematic viscosity in FD units at v0;FD = 5 x 10-4, 
and the simulations were performed on square lattices having various number o f nodes 
N x = N y = N lu = N. The measured values of vapp, obtained by numerically fitting the 
simulation results with Eq. (3.137), are reported in Table 3.3 alongside the correspond- 
ing relative error.

The latter is plotted in Fig. 3.7, showing again a second order convergence for CS and 
a fifth order one for FD with respect to the number o f nodes. At N  = 20, the relative error 
obtained using the CSLB model is about 7 times smaller than the one corresponding 
to the FDLB results. The relative error of the FDLB results becomes smaller than the 
corresponding CSLB error when N x >  40.

Liquid-vapor interface
Finally we want to compare FDLB ans CSLB in the case of a multiphase fluid system, 
in particular a liquid-gas system. In order to simulate this fluid system we use a lattice 
Boltzmann model with a van der Waals equation of state. Thermodynamics enters the 
model via a free-energy dependent term, added as a body force to the LBE [205], and a 
redefined equilibrium distribution functions as in [33] so that the fluid locally satisfies 
the van der Waals equation of state:

... 3pT  9 2
p w = — ------- p2 (3.138)
H 3 - p 8 h



c s lb f d l b

t LU Nx v app Rel. err. v app Rel. err.
0.2986 20 0.0005078 0.0157 0.0005548 0.1096
0.3036 30 0.0005036 0.0072 0.0005079 0.0158
0.3086 40 0.0005018 0.0037 0.0005019 0.0039
0.3136 50 0.0005010 0.0020 0.0005006 0.0013
0.3186 60 0.0005007 0.0014 0.0005002 0.0005

Table 3.3: Apparent kinematic viscosity vapp, expressed using the FD adimensionalization, measured as 
a numerical fit of Eq. (3.137) in the context of the damping of the Taylor-Green vortices.

x /L
Figure 3.8: Comparison between CSLB and FDLB of a liquid-vapor interface.

where p is the fluid density and T  the temperature. More details on the LB implemen­
tation and a study on the kinetics of the phase separation are presented in Appendix 
A.

The key to a successful simulation o f liquid-gas systems is the faithful representa- 
tion of the interface [204] between the two phases. This is well described by the approx- 
imate solution [205]

p (x  ) = p v + P l -  Pv 1 tanh
x

V2k/(1/T -1 )
(3.139)

where k is the parameter that controls the interface width and p l and p v are the 
equilibrium density values of the liquid and vapor phase obtained via the usual Maxwell 
construction.

We performed simulations in 2d using both CSLB [34] and FDLB [173]. Density is
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Figure 3.9: Stability of two hybrid LB codes, for a polar binary mixture, treating the stress tensor by a 
full-force approach (squared/yellow dots) and a mixed approach (circle/blue dots). The codes are stable 
for parameters under their corresponding curves. Simulations were performed on a computational grid 
of size 64 x 64, checking stability for 105 LB iterations.

initialized as follows:

(p (x) = p i if x < xQ
P Q (3.140)

p (x) = p v otherwise,

where p l and pv are the values of the density to the left and to the right o f the initial dis­
continuity, on a system of size L = 2Q48, which is located at x = xQ = L /2. Temperature 
is fixed to T = 0.95, that is below the critical value for phase separation T  = 1. The initial 
density profile relax towards the tanh form displayed before. Fig. 3.8 shows results o f 
the comparison for two different values o f the interface parameter k .

From this comparison we can argue that both LB models, FDLB and CSLB, are able 
to simulate the same physical system, in the range of validity o f the Navier-Stokes equa­
tion. Furthermore, since the collision-streaming algorithm is less computationally ex- 
pensive one can argue that is indeed the optimal choice in this regime. When the con­
tinuum hypothesis breaks (e.g rarefied gases) the CSLB is no longer a suitable choice 
and FDLB is the way to go.

3 . 8 .  S t a b i l i t y , e f f i c i e n c y a n d  p a r a l l e l i z a t i o n

In the previous Sections we presented different LB algorithms for the treatment o f the 
hydrodynamics of complex and active fluids. We will comment here on the stability o f 
two different d2Q9 hybrid LB codes solving the equations o f an active polar binary mix­
ture (the hydrodynamics is solved by means o f LB while the order parameter dynamics 
is integrated by a finite difference algorithm implementing first order upwind scheme 
and fourth order derivative accuracy), described by the free energy in Eq. (5.1), treat­
ing the symmetric part o f the stress tensor with two different approaches. The first is



a mixed approach, where the symmetric part o f the stress tensor enters in the defini- 
tion of the second moment o f the distribution functions (see Eq. (3.65)) while the anti- 
symmetric part is treated by means of the forcing term p i (see Eqs. (3.90) and (3.92)). 
In the second approach the total stress tensor is treated by means o f the only forcing 
term. To compare the stability o f the two algorithms we fixed the mesh spacing and the 
time resolution (Ax = 1, A t = 1), and we let vary the relaxation time t and the intensity 
of active doping Z appearing in the active stress tensor (2.11). The results o f the stability 
test in Fig. 3.9 show that the full-force approach is definitely more stable than the mixed 
one. In this latter case the code is found to be stable for t > 0.715 in the passive limit 
(Z = 0) while to simulate active systems (Z > 0), the relaxation time must be accurately 
chosen to ensure code stability. In the full-force approach the code is found to be stable 
for t > 0.5, almost independently of Z.

The rest of this Section is devoted to a brief discussion of some performance aspects, 
such as efficiency and parallelization o f the LB codes used for the results presented in 
Chapter 4-5. LBM is computationally efficient if compared to other numerical schemes. 
The reason lies in the twofold discretization of the Boltzmann equation in the physical 
and velocity space. For instance, computational methods such as finite-difference (FD) 
and pseudo-spctral (PS) methods require high order o f precision to ensure stability [56] 
and to correctly compute non-linearities in the NS equation (2.16). This introduces 
non-local operations in the computational implementation that reduce the throughput 
of the algorithm. LBM, on the contrary, is intrinsically local, since the interaction be­
tween the nodes is usually more confined, according to the particular choice o f the lat­
tice, while non linearities of the NS equation is inherently reproduced at the level o f the 
collision operator. For instance, while the number o f floating point operations needed 
to integrate the hydrodynamics equations on a d -dimensional cubic grid is ~ L d for 
LBM, it is instead o f order ~ (ln L )L d for pseudo-spectral models [178]. Nevertheless LB 
algorithms are definitely much more memory consuming, since for each field to evolve, 
one needs a number of distribution functions equal to the number o f lattice velocities. 
From this perspectives, the hybrid version o f the code is somewhere in the middle be­
tween the two approaches, since it allows one to exploit both computational efficiency 
and simplicity typical o f LB approaches and, at the same time, to keep the amount of 
memory to be allocated at runtime lower than that necessary for a full LB treatment.

LB algorithms are particularly suitable for parallelization. The reason still lies in the 
local character o f LB, since at the base of the efficiency o f any parallelization scheme is 
the compactness of the data that must be moved among the different devices that take 
part in the program execution. Parallelization approaches involvingbothCPUs, i.e. MPI 
or OpenMP, and GPUs, such as CUDA and OpenCL, or even both (CUDA aware MPI) 
can be used when dealing with LB [98]. Most o f them, such as OpenMP or GPU-based 
approaches, aim at rising the amount of floating operations per unit time, while a dif­
ferent technique consists in splitting the global computational domain in sub-domains 
and assign each o f them to a different computational unit (usually threads o f one or 
more processors). This is usually done with MPI.

Fig. 3.10 shows the results of a strong scaling test performed on a hybrid code inte- 
grating the hydrodynamics of a polar binary mixture [12, 136], implementing the full- 
force algorithm used for the stability analysis. This test consists in changing the amount 
of processors used to perform a certain task, while keeping fixed the size of the compu-
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Figure 3.10: Speed-up, as defined in the text, versus number of processors for an MPI parallelized hybrid 
LBM code, coupled to the dynamics of a concentration scalar field and a polar vector field. Simulations 
were performed in 2d on a square computational grid (5122) and in 3d in 1283 cubic domain, on different 
HPC farms: Archer UK National Supercomputing Service (http:llwww.archer.ac.uk/), CINECA Marconi - 
Skylake partition (http:llwww.hpc.cineca.itl) and ReCas-Bari (https:llwww.recas-bari.itl).

tational grid and measuring the speed-up, namely the ratio of time spent to perform the 
operation with only one processor over the time taken when more processors are used. 
Simulations were performed both with d2Q9 (hollow dots) and d3Q15 (full dots) lat­
tice structures on different computational infrastructures (Archer (red), Marconi (blue) 
and ReCas (green)). While for a few number of processors the scaling is approximately 
linear, thus close to the ideal linear behaviour (black line), as the number of processors 
increases, it progressively deviates from the ideal scaling law. This is due to a num­
ber of issues that may depend both on the infrastructure characteristics (bandwidth, 
cache size, latency, etc.) and on the program implementation (bottlenecks, asynchrony 
among processor, etc.). Moreover, code scalability is found to be significantly better in 
three-dimensional grids than in their bidimensional version. This is because the frac- 
tion of time spent by the 3d code to perform parallel operations (sending and receiving 
data, reduction operations, synchronization, etc.) is consistently reduced compared 
with its 2d counterpart.

http://www.archer.ac.uk/
http://www.hpc.cineca.itl
http://www.recas-bari.itl




4
S e l f  P r o p e l l e d  D r o p l e t s

Geometrical constraints and spontaneous flow are known to significantly alter the hy­
drodynamics of active fluids. In the past LB simulations have shown, for example, that if 
a sample of active gel is sandwiched between two parallel plates, the onset of a sponta­
neous flow crucially depends on the anchoring of the director field at the walls [124]. If 
the active fluid is confined in a spherical geometry, for instance in a droplet, the physics 
is even richer, as Joanny and Ramaswamy [92] have theoretically demonstrated. Active 
stress can in fact generate flows driving the spreading process of a droplet, whose shape 
is significantly affected by the nature of topological defects. Recent experiments have 
shown that the presence o f an active fluid can favour droplet self-propulsion through 
several mechanisms, based on chemical reactions [2, 218], spontaneous symmetry break- 
ing and Marangoni effects [57, 80, 87, 160]. Such experiments motivated numerous the­
oretical studies, with the aim o f developing minimal models capable o f capturing fea- 
tures of particular relevance in biology (as active droplets can mimic the spontaneous 
motion of cells [10, 16, 66, 191]) or in the design of bio-inspired materials [87, 160].

Most of the studies conducted so far regarded two-dimensional systems, and de- 
spite they managed to unveil some important attributes o f active droplets, the axial- 
symmetric approximation still precludes to investigate many other properties that only 
full 3D system can exhibit [147]. For instance, the effect of chirality- a generic feature 
of most biological matter [152, 221] -  can be properly addressed only in fully three- 
dimensional environment. A  right-left asymmetry may arise at either the microscopic 
or macroscopic level, and be due to thermodynamic (passive) or non-equilibrium (ac­
tive) effects. For instance, a microtubule-motor mixture breaks chiral symmetry in two 
ways. First, microtubules are intrinsically helical [219]. Second, kinesin or dynein mo- 
tors exploit ATP hydrolisis to twist their long chains and apply a nonequilibrium ac­
tive torque on the fibres they walk along [206]. Similarly, bacteria such as Escherichia 
coli, but also sperm cells, are equipped with long helical flagella. Motor proteins an- 
chored to the cellular membrane generate torques to impart rotational motion on the 
flagella, whose helix generates a flow in the viscous environment leading to cell propul­
sion [148, 157]. Understanding the outcome of the interplay between chirality and ac­
tivity is an important and timely question and most of this Chapter will be devoted to 
the analysis o f results obtained for a chiral nematic active droplet in a newtonian back­
ground.



Figure 4.1: Active nematic droplet. Small Contractile activity (here (  = -0.0001) is able to put into motion 
a nematic droplet with homeotropic anchoring. During the initial relaxation of the droplet, a disclination 
ring is formed inside the droplet (contour plot of the biaxiality parameter in panel (a)), and relax in a 
configuration characterized by the presence of a hedgehog at the center of the droplet, as discussed in 
Chapter 2. Due to active pumping the disclinations line slightly moves (panel (b)), breaking the spherical 
symmetry, and the droplet starts to move. Self propulsions is sustained by splay instability (as can be 
appreciated looking at the order parameter stream lines in panel (d)), that creates a net flow from the 
back of the droplet towards the front (panel (c)).

To understand the physics at the base o f droplet motility, the first two sections pro- 
vides a overall picture o f dynamical regimes in an active liquid crystals droplet, to ad- 
dress the mechanism o f spontaneous symmetry breaking. In Section 4.3 the role o f 
chirality is taken into account and I will show there how the interplay between active 
forces and chiral features is key to turn rotation into propulsion. Finally, in Section 4.4 a 
scalar model for active droplets is studied to spot out the role o f compressibility in self 
propulsion.

4 .1. S p o n t a n e o u s  s y m m e t r y  b r e a k i n g  a n d  s e l f - p r o p u l s i o n

The physics o f an active gel under spherical confinement has been often described in 
terms o f the continuum Eqs. (2.16)-(2.21)-(2.23), presented in Chapter 2. Such model 
can reproduce spontaneous division and motility (Giorni et al. [66] have demonstrated 
that) o f an active nematic droplet surrounded by an isotropic Newtonian fluid -  a situ- 
ation closely resembling the functioning o f living cells. In particular for 2d contractile



Figure 4.2: Active nematic droplet in turbulent regime. For Z = -0.01 the nematic droplet enters in 
a regime characterized by the formation of disclinations loops (panel (a)), as those shown for passive 
cholesteric droplets in Chapter 2. The droplet sets in a chaotic motion characterized by irregular rotation 
(as can be seen looking at the components of the angular velocity in panel (b)), and trajectory (panel (c)).

active nematic droplet, in presence o f homeotropic anchoring, motility results from 
the combination o f the initial elongation o f the droplet (whose stability is guaranteed 
by a balance between viscous and pressure forces and the surface tension) and the in­
stability o f the active fluid to deformations o f the LC pattern. When, for instance, the 
contractile active stress is strong enough, splay instability dominates over relaxation 
first leading to axial symmetry breaking, then triggering the formation o f spontaneous 
flows promoting self-propulsion. Eventually active stress may even overcome the sur­
face tension: in this case the droplet over-stretches and splits in two daughter droplets 
that may undergo a similar dynamics leading to a chain process that ends when the size 
of the daughter droplets becomes too small to sustain activity-induced deformations o f 
the liquid crystal pattern. The generic mechanism o f motility o f active droplets has 
been investigated both analytically in [209] and numerically in [191] by using the polar 
theory described in Chapter 2. Here it is shown that the self-propulsion o f a contractile



droplet stems from the spontaneous symmetry breaking o f polarity inversion symme­
try, which, in turn, triggers the formation of intense splay distortions that act as a source 
of kinetic energy, leading to motion. Symmetry breaking can be viewed as a continu- 
ous nonequilibrium phase-transition from a non-motile to a motile state observed for 
a sufficiently high activity. This model offers a simplified example of a cell, as a droplet 
containing an actomyosin solution, and suggests that motility can arise solely because 
of myosin contractility, rather than from its combination with actin polymerization, as 
often occurs [16]. The same hydrodynamic theory has been used to model the physics 
of an active polar droplet confined on a solid substrate, a situation resembling that of 
a crawling cell [192] . Here the droplet is made of an active polar fluid with contractility 
throughout, but actin polymerization confined in a layer close to the substrate. Such 
minimal description has been proven capable of capturing shapes (such as the lamel- 
lipodium [16, 194]) exhibiting self-motile regimes (such as oscillatory modulations of 
shape [16, 194]) by only considering a few key ingredients, i.e. actin polymerization, 
myosin contractility and interface anchoring. More specifically, planar anchoring in- 
duces rotational motion in contractile droplets, while normal anchoring has the same 
effect in extensile ones. In both cases rotation stems from an active torque, due to a pair 
of bulk elastic distortions whose formation is controlled by a careful balance between 
activity and interface anchoring conditions. The same nemato-hydrodynamic theory 
has been used to model the physics of an active polar droplet confined on a solid sub­
strate, a situation resembling that of a crawling cell [192].

To better illustrate the mechanism behind the spontaneous symmetry breaking we 
start by showing some results regarding a 3d contractile nematic droplet with homeotropic 
anchoring. This same situation was studied, as already said, in 2d by Giomi et al., and 
in 3d for polar systems by Tjhung et al. [191].

We use the continuum model for nematic liquid crystals introduced in Chapter 2, 
considering homeotropic anchoring. The dynamical equations governing the evolu- 
tion o f the system have been discussed in Chapter 2, namely Eqs. (2.16), (2.21) and 
(2.23). These are solved in 3D with the hybrid LB method described in section 3.4. In 
addition we made use o f a parallel approach implementing Message Passage Interface 
(MPI) to parallelize the code. We divided the computational domains in slices, and 
assigned each o f them to a particular task in the MPI communicator. Activity is in­
troduced through a coarse grained description o f force dipoles [65]. These result in a 

non-equilibrium stress tensor that can be expressed as o aJp = - Z 0 Qap.

In this system, the main control parameter is the dimensionless activity 9 = (R 2 /K, 
(with R the radius o f the droplet and K  the elastic constant o f the LC) which measures 
the relative contribution o f activity and elasticity.

Small Contractile activity is able to put into motion a nematic droplet with homeotropic 
anchoring. Fig. 4.1 refers to the case Z = -10 -4. During the initial relaxation of the 
droplet, a disclination loop is formed inside the droplet (contour plot o f the biaxiality 
parameter1 in panel (a) o f Fig. 4.1), and relax in a configuration characterized by the 
presence of a hedgehog at the centre of the droplet, as discussed in Chapter 2. Due to 
active pumpingthe disclinations line slightly moves (panel (b) ofFig. 4.1), breaking the

1 The degree of biaxiality of the LC has been computed by following the approach of Ref. [21] as the second 
parameter of the Westin metrics cp = 2(A2 -  A3), where A1( A2 and A3 (with A1 > A2 > A3) are three 
eigenvalues of the positive definite diagonalised matrix Gap = Qap + 8ap/3.



spherical symmetry, and the droplet starts to move. Self propulsions is sustained by 
splay instability (as can be appreciated looking at the order parameter stream lines in 
panel (d)), that creates a net flow from the back of the droplet towards the front (panel 
(c) o f Fig. 4.1 ).

Enlarging contractile activity the nematic droplet enters in a regime characterized 
by the formation of disclinations loops (panel (a) ofFig. 4.2), as those shown for passive 
cholesteric droplets in Chapter 2. The droplet sets in a chaotic motion characterized by 
irregular rotation (as can be seen looking at the components of the angular velocity2 in 
panel (b) ofFig. 4.2), and trajectory (panel (c) Fig. 4.2).

In the next section we will consider the case o f extensile activity and tangential an­
choring, and show how in this case the spontaneous symmetry breaking mechanism 
only leads to a spontaneous rotation, or a chaotic regime for high activity.

4 . 2 .  N e m a t i c  d r o p l e t  w i t h  a c t i v e  f o r c e  d i p o l e  a n d  t a n ­

g e n t i a l  a n c h o r i n g : s p o n t a n e o u s  r o t a t i o n

We now describe the dynamics of a nematic droplet, with active force dipole, with tan­
gential anchoring. This is a useful limit to which the chiral results will be compared. As 
the dimensionless activity 9 is increased, three possible regimes arise. For low values 
of 9 the droplet is static, and the director field attains a boojum-like pattern, with two 
antipodal surface defects of topological charge +1. This is one o f the patterns which 
can be found in confined passive nematics with tangential anchoring, and satisfies the 
hairy-ball theorem [52] which states that the sum of the topological charges o f a vec- 
tor field tangential to a closed surface is equal to its Euler characteristic (which is +2 
for a sphere). As activity is increased, this quiescent phase gives way to another regime, 
where the droplet spontaneously rotates in steady state (Fig. 4.3, Movie 13) . The qui­
escent droplet has spherical symmetry , whereas it deforms in the rotating phase, at- 
taining the shape o f a prolate ellipsoid o f revolution (Fig. 4.3a,b). The director field 
on the droplet surface exhibits bending deformations, typical o f extensile suspensions, 
that strengthen at the equator -  thus acting as a momentum source (see yellow arrow in 
Fig. 4.3a) -  and power stable rotational m otion . The flow has the pattern of a single vor- 
tex inside the droplet, which is stronger close to the surface. The rotational flow exhibits 
quadrupolar symmetry in the equatorial plane, and is compensated by a counteracting 
velocity field outside the droplet -  ensuring overall angular momentum conservation. 
The rotational velocity, w, is linearly proportional to the activity Z. This scaling can be 
rationalised by dimensional analysis, or by equating the torque per unit volume intro­
duced by activity, which should scale as Z, to the one which is dissipated, given by j 1 w, 
where y 1 is the rotational viscosity.

For still larger 9, the droplet rotates and moves in a chaotic manner (Fig. 4.3e). This 
regime is the droplet analogue o f what is known as active turbulence [183, 198] -  the 
chaotic dynamics observed in an active nematic fluid. In the chaotic regime, motion 
is random and the cylindrical symmetry of the droplet shape is lost (Fig. 4.3b). De-

2 . Ar x Av
The angular velocity of the droplet has been computed as: w = J dr/> , where Ar = r -  R and

Av = v -  V, being R and V respectively the position and the velocity of the center of mass of the droplet.
3Movies are described in Appendix D, and can be found at the following link: https://www.dropbox.
com/sh/qs7fbvk8p2ttcst/AAC988090RnPSYLhsX8sf13ua?dl=0

https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0


Figure 4.3: Active nematic droplet. Panel (a) shows the configuration of the director field n on the droplet 
surface for the case in the rotational regime at Z = 10-3. Two stationary + 1 boojums are formed at antipo- 
dal points in the x direction. The inset in panel (a) shows the director field in proximity of the boojum 
framed with a white box. Bending deformations occur transversally to the long axes of the droplet and 
generate an active force in the direction of the yellow arrow, thus powering rotational motion in the yz 
plane. Panel (c) shows the velocity field on the equatorial cross section of the droplet, depicted with a 
dashed white line in panel (a). The flow, induced and sustained by energy injection due to the bend- 
ings in the nematic pattern, exhibits quadrupolar symmetry. In panel (b) the spherical and cylindrical 
deformation parameters are used to characterize the transition from the quiescient state to the rota­
tional regime then to the chaotic regime. These have been computed as computed as dmin/dmax and 
dmin/dmed respectively, with dmax ^ dmed ^ dmin the time-averaged eigenvalues of the positive-definite 
Poinsot matrix associated to the droplet. Analogously panel (d) shows the angular velocity and the free 
energy as the activity parameter Z is varied. Panel (e) shows the trajecotry of the centre of mass of an 
active nematic droplet for Z = 2 x 10-3. For the same value of the active parameter panel (f) shows the 
the director field on the surface of the droplets. In this regime half integer defects continuously form ad 
annihilate.

fect dynamics on the surface is also erratic, and we observe the nucleation o f addi- 
tional defects (Fig. 4.3f ), not present in the quiescent or rotating regimes. These defects 
are topologically the ends o f disclination lines which often depin from the surface and 
pierce the interior o f the droplet (Suppl. Movie 2). The onset o f the chaotic regime 
is due to the fact that the energy coming from activity can no longer be dissipated by 
a regular rotation, but is used up to generate additional defects on the surface. As the 
chaotic regime sets in -  characterized by the loss o f cylindrical symmetry -  concurrently 
the free energy o f the system decreases (Figs. 4.3d), signalling that the shape change is 
thermodynamically favoured. The subsequent increase in F  at larger d is due to defect 
nucleation.

So far we have shown how splay instability is able to sustain self-propulsion in a ne­
matic contractile droplet with homeotropic anchoring. We discussed previous results 
on this set-up and showed some results obtained with our implementation o f the LB 
solver discussed in Chapter 3. Using the same approach we have shown how bending 
instability is responsible o f putting a nematic extensile droplet with tangential anchor-



ing into rotation. In this latter case we now ask if it is also possible to have self propul­
sion. The answer will be yes as long as chiral symmetry is broken. This will be discussed 
in the next section.

4 . 3 .  R o t a t i o n  a n d  p r o p u l s i o n  i n  3 d  a c t i v e  c h i r a l  d r o p l e t s

We want now to uncover what happens if chiral symmetry is broken. Here we use a gen- 
eralized version of the nematic model introduced in Chapter 2 to account for chirality:

dV
a k
4 /  (/  -  /0) + y ( V / r

+ An 1 X(/) Q2 -  X /  Q3 + X /  Q4
3 4

+ KQ  [ (V • Q)2 + (V x Q + 2q0Q)2] + W (V/) • Q • (V/) (4.1)

where the constants a,k/ define the surface tension and the interface width among the 
two phases, whose minima are found in 0 and / 0. The liquid crystal phase is confined 
in those regions where x / )  = X0 + Xs/  > 2.7, with x 0 = 10xs = 2.5. The gradient terms 
in Kq account for the energy cost o f elastic deformations in the one-constant approx- 
imation. The number of twists o f the cholesteric helix is controlled by the parameter 
q0 = 2n/p0 (q0 > 0 for right-handed chirality) through the pitch length p0. In order to 
compare the cholesteric pitch with the size of the droplet p0 = 4R/N. Where N is the 
number of n twists the cholesteric liquid Crystal would display over a distance o f 2R if 
not confined. Tangential anchoring is obtained for W  > 0. Again the dynamical equa­
tions governing the evolution of the system are the same discussed in Chapter 2, namely 
Eqs. (2.16), (2.21) and (2.23). We performed 3d LB simulations with the same hybrid LB 
method described in section 3.4, with MPI implementation for parallelization. The val­
ues of free energy parameters used 4 are a = 0.07, k/ = 0.14, A 0 = 1, Kq = 0.01, and 
W  = 0.02. The rotational diffusion constant r  is set to 2.5, while the diffusion constant 
to M  = 0.1.

As stated in the introduction of this Chapter, chiral symmetry can be broken at two 
levels. The first one regards the intrinsic chirality o f the system, which can be mod- 
elled by the free energy (4.1). The second level is the active one. To do so we have to 
take into account both force and torque dipoles [65], in our coarse grained description. 
These result in a non-equilibrium stress tensor that can be respectively expressed as

a af _
afi = -Z / Q afi (force dipoles) and a^fi = -Z e afi^dv(/Q^v) (torque dipoles), where /  is

the concentration of active material, eafi  ̂the Levi-Civita tensor, while Z and Z are pro- 
portional to the strength of active force and torque dipoles respectively. Positive values 
of Z correspond to extensile force dipoles, whereas if Z < 0 the force dipole activity is 
contractile. For active torque dipoles, a negative value of Z corresponds to an inward 
pair of torques, similar to that used to open a bottle cap. Conversely, Z > 0 correspond 
to an outward torque pair, similar to that used to close a bottle cap. Unless otherwise 
stated, here we restrict for concreteness to the case where Z > 0 and Z < 0.

3

4The same values have been used to produce the results presented at the beginning of this Chapter. When 
homeotropic anchoring has been considered in the previous sections W = -0.01 has been chosen.



Figure 4.4: Screw-like propulsion in a chiral droplet with active force dipoles. Panels (a-e) show snapshots 
at different times of a chiral active droplet for the case at N  = 2 and Z = 10-3. The contour-plot of the 
biaxility parameter on the droplet surface serves to identify the position of the two +1 defects, labelled 
with Greek characters a and fi, whose configuration can be appreciated by looking at panel (f). The 
screw-like rotational motion generates a strong velocity field in the interior of the droplet in proximity 
of the two defects. The velocity field has been plotted in panel (g) on a plane transversal to the plane 
of rotation of the two defects (dashed line in panel (f)). The inset shows the contour plot, on the same 
plane, of the Qxx component of the Q-tensor, exhibiting an arrangement similar to the radial spherical 
structure. Panel (h) shows the time evolution of the angular velocity of the droplet for some values of (. 
The inset shows the mean angular velocity and the translational velocity of the droplet as a function of Z 
both for N = 2 and N = 3. Panel (i) summarizes the droplet behaviour as a function of Z and N .

4.3.1. C h o l e s t e r i c  d r o p l e t  w i t h  a c t i v e  f o r c e  d ip o le s :  s c r e w l ik e  

p r o p u ls io n

We now consider the case of a cholesteric droplet, still with active force dipoles only. 
The two key control parameters are now 6  and N. For a fixed value o f N, increasing 
Z again leads to three possible regimes, as in the nematic limit. For sufficiently large 
cholesteric power (e.g., N  = 2, Fig. 4.4, Movie 3), the first active regime encountered is, 
however, fundamentally different from the rotating phase o f active nematics. Now the 
surface defect pattern is a pair o f nearby +1 defects, reminiscent of a Frank-Price struc­
ture5  which is seen in passive cholesterics, but only with much larger N  (N  > 5 [110]). 
The configuration o f director field which we observe is known as radial spherical struc-

5Frank-Price structure has been observed in passive cholesteric droplets for high twisting power qR > 1. 
It consists of a hedgehog with an attached s = +2 defect line of length R.
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Figure 4.5: Disclination dance in a chiral droplet with active torque dipoles. Panels (a-d) show snapshots 
of the droplet and the disclination lines for the case at N  = 1 and Z = -5 x 10-3. The four +1/2 defects 
rotate in pairs in opposite directions (top defects rotate anti-clockwise, while bottom defects rotate op- 
positely). As the defects rotate the two disclination lines first create a link (b), then they recombine (c) 
and finally relax into a configuration close to the initial one (a) but rotated. The angular velocity, null on 
average, oscillates from positive to negative values as shown in panel (e). Here the time evolution of the 
free energy shows that F  oscillates with a double frequency. Inset shows the behaviour of wy and F  in 
the region framed with the black box. Marked dots here denote the points corresponding to the snap­
shots. Panel (g) shows that oscillation frequency and mean free energy linearly depend on the intensity 
of active torque Z.

ture [164, 222], with some additional distortions in the cholesteric layers due to activity 
(as suggested by the inset in Fig. 4.4g that gives an insight into the cholesteric arrange­
ment in the interior o f the droplet). There is a suggestive analogy between this structure 
and a magnetic monopole -  representing the radial orientation o f the helical structure 
at the droplet centre -  with its attached Dirac string [102, 222] , joining the centre o f the 
droplet with the defect pair. In our simulations the latter represents the region o f max­
imal layer distortion and energy injection, as suggested by the intensity o f the velocity 
field, plotted in Fig. 4.4g.

The two surface defects rotate around each other: as they do so, the pair periodically 
separates and reconvenes (Movie 3). At the same time, the droplet undergoes a global 
rotation with oscillating angular velocity (Fig. 4.4h). Remarkably, this time the rotation 
is accompanied by a translation along the direction o f the rotation axis -  thereby re- 
sulting in a screw-like motion, with the axis o f the rototranslation parallel to the Dirac 
string. This motility mode is compatible with the chiral symmetry o f the system, which 
introduces a generic non-zero coupling between rotations and translations. Strong de- 
formations induced by the two close rotating +1 defects are responsible o f the intense 
flows that develops internally at the droplet and is maximum at the rear (see Fig. 4.4g) 
thus powering propulsion. Symmetry o f the flow corresponds to that o f a macroscopic 
pusher. Mechanistically, therefore, activity is required to power droplet rotation, and 
chirality is needed to couple rotation to motion. As the motion is screw-like, the lin­
ear and the angular velocity are proportional to each other -  a similar argument to that



used for active nematics also shows that they should both scale approximately linearly 
with Q, and we found this to hold for our simulations (Fig. 4.4h, inset).

A phase diagram in a portion o f the (N , Z) plane is shown in Fig. 4.4i. The results, not 
depending on the (random) initial conditions, show that for small activity the droplet 
sets into a quiescent regime independently of the cholesteric power: this is character- 
ized by weak bending deformation o f the LC network on the droplet surface, which are 
not enough to power any self-sustained motion. As activity is increased different be- 
haviours arise: for null or weak cholesteric power (N  ^ 1) stationary rotational motion 
sets up while screw-like propulsion needs the defects to relocate to one hemisphere 
creating a dipolar pattern. This is found to be only possible for a limited range o f Z and 
only for N  = 2,3. Indeed, at higher cholesteric power (N  ^ 4), the droplet sets into the 
chaotic phase even at intermediate activity, a regime characterized by defect nucleation 
and disordered droplet motility that can be found at any N  for sufficiently large values 
of Z.

4 .3.2. C h o l e s t e r i c  d r o p l e t s  w i t h  a c t i v e  t o r q u e  d ip o le s :  r o t a t i o n  

a n d  d i s c l i n a t i o n  d a n c e
We next consider the case o f a cholesteric droplet with active torque dipoles. These 
are able to introduce a nonequilibrium twist in a nematic droplet [188], whose hand- 
edness may reinforce or oppose the handedness o f the thermodynamic twist, which is 
determined by q0. The strength of the nonequilibrium twist can be measured by the 
dimensionless number Q = |Z|#/K, whilst that of the equilibrium one can be assessed 
by N .

We find that the most interesting dynamics, in the case o f a right-handed twist (q0 > 
0), occurs for Z < 0 (torque dipole corresponding to bottle cap opening, leading to a 
conflict between the nonequilibrium and equilibrium twist). In this situation, for N  = 1, 
we find that the droplet is pierced by two disclination lines which end in + 1/2 surface 
defects at Z = -5  x 10-5. The droplet regularly alternates opposite sense rotations, along 
±j>, which are tightly regulated by the disclination dynamics (Fig. 4.5, Movie 46) . The 
helical axis is here approximately parallel to z, with the director almost parallel to x  in 
the centre o f the droplet.

At the beginning of the rotation cycle shown in Fig. 4.5, the disclinations wind once 
around each other in a right-handed fashion. Equivalently, if we were to orient both the 
disclinations along the positive y axis, we can associate the single crossing visible in the 
projection of Fig. 4.5a with a positive writhe [6] (as the top disclination can be super- 
imposed on the bottom one via an anticlockwise rotation). As the system evolves, due 
to the internal torque dipoles, the pair o f surface defects in the top hemisphere rotates 
counterclockwise, while that in the bottom hemisphere rotates clockwise (Fig. 4.5b). 
This motion increases the winding of the disclinations, until they rewire to form two 
separate right-handed helices (Fig. 4.5c -  if we were to extend the two disclinations 
along z:, they would be unlinked). The regular switches in the sense o f droplet rotation 
beat the time o f the disclination dance visualised in Fig. 4.5a-d and Suppl. Movie 4. 
Rotation inversion occurs just at the time when the defect rewiring happens as the ef­
fect of the top/bottom asymmetry in the disclination configuration: these are regions of

6Movies are described in Appendix D, and can be found at the following link: https://www.dropbox. 
com/sh/qs7fbvk8p2ttcst/AAC988090RnPSYLhsX8sf13ua?dl=0

https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0


strong deformation leading to greater energy injection, thus strengthening the vortical 
flow in the corresponding hemisphere and leading to the consequent oscillation o f the 
angular velocity. We find that the evolution o f the angular velocity mirrors that of the 
overall free energy o f the system, with a small time delay: we argue that this is because 
the stress stored in the elastic deformations plays a large role in powering the motion. 
Moreover, the frequency o f the free-energy oscillation is twice that o f the angular veloc­
ity f w (see panels (e-f)), a behaviour in line with the fact that configurations in panel (a) 
and (d) are specular with respect to the rotation plane and energetically equivalent.

Unlike in the active nematic case, where rotation is powered by force dipoles, here 
the dynamics is driven by torque dipoles.

Figure 4.6: Active torque dipoles. Panel a shows a snapshot of the droplet and the disclination lines for 
the case at N = 2 and Z = -7 x 10-3. In this case the droplet sets into rotational motion (notice the 
difference of the order of magnitude of the angular velocity in panel d with respect to the analogue cases 
presented in the main text for a droplet fuelled by force dipoles only). Panel b and e show the case at 
N = 2 and Z = - 10-2, characterized by the dancing of the disclination lines. Panel c shows a snapshot of 
the droplet and its disclination lines for the case at N = 4 and Z = - 10-2, in the chaotic regime - see panel 
f -  characterized by nucleation of surface defects (panel c).

The scenario concerning the properties o f a cholesteric droplet fuelled by torque 
dipoles, is highly sensitive to both the active doping and the twisting number N. In- 
deed, the dynamics described so far at N  = 1 is stable only for a limited range o f activity 
(5 x 10-3 «s |Z| ^ 12 x 10-3). Small values o f |Z| (< 5 x 10-3), are not enough to excite the 
splitting o f the two boojums and generate instead bending deformations o f the LC pat­
tern at N  = 1, similar to those shown in Fig. 4.3a. In this case the droplet sets into a sta- 
tionary rotational motion characterized by small angular velocity (M  ~ O(10-6)) (Fig. 
4.6). If activity exceeds a critical threshold, |Z| > 12 x 10-3, nucleation o f further defects 
on the droplet surface leads to droplet deformation with consequent chaotic dynam­
ics (Fig. 4.6). The competition between active and equilibrium chirality has important 
effects when N  is changed. Indeed, a further key dimensionless number to determine



the behaviour of a cholesteric droplet with active torque dipoles is Z/(q0K), or equiv- 
alently, the ratio between the pitch and the “active torque length” K /Z. The latter can 
be thought of as the nonequilibrium pitch, or the modulation in twist due to the action 
of the active flow. We would then expect that for larger q0 (i.e., larger N  at fixed R ), a 
rotating regime as in Fig. 4.5 can be obtained by increasing Z (Supp. Fig. 1). Our simu­
lations confirm, indeed, that the range o f stability of stationary rotation widens as N  is 
increased, while the set up of the mirror rotation regime moves towards more intense 
|Z|. Nevertheless, if N  ^ 4, the droplet directly moves from the rotational to the chaotic 
regime, analogously to what happens in a cholesteric droplet fuelled by force dipoles 
only.

It is notable that the disclination dance which we observe at intermediate |ZI is also 
reminiscent of that seen experimentally in active nematic shells [81, 96, 219] made up 
of microtubule-molecular motor mixtures. Despite the confined geometry is different, 
our results suggest that the underlying mechanism powering rotation observed in the 
aforementioned studies, may be related to torque rather than force dipoles.

4.3.3. OVERVIEW AND THE ROLE OF HANDNESS

Our simulations show that the interplay between activity and thermodynamic chirality 
in a 3D  fluid droplet leads to a strikingly rich phenomenology. This includes screw- 
like droplet motion -  for dipolar active forces -  and global rotation with periodic sense 
inversion -  for dipolar active torques.

Screw-like motion arises due to the coupling between thermodynamic chirality and 
a rotational flow, which is powered by extensile dipolar force activity due to sponta­
neous bend deformation at the droplet surface and its interior, compatible with tan­
gential anchoring. This motility mode is therefore a rototranslation that is similar to 
that performed by a helical propeller. For a fluid with active torque dipoles, instead, 
global rotations with intermittent sense arise when the active torque favours a different 
twist with respect to that introduced by the thermodynamic chirality. Here the rotation 
is coupled to the rotation of helical disclination lines which pierce the droplet interior.

For both screw-like and intermittent rotation, the surface defects arising due to tan­
gential anchoring play a fundamental role. For the former phenomenon, defect ro­
tation -  induced by activity -  is converted into translatory motion due to the under­
lying chirality. For the latter, disclination rewiring determine the change in rotation 
sense. The mechanisms underlying motility regimes are therefore defect-dependent, 
and qualitatively different from those analysed in [188], which occur in defect-free droplets, 
but are associated with large deformation o f the droplet shape.

We now ask what happens if we change the handedness o f the LC. A simple change 
of the sign of q0, keeping fixed N  and the strength of activity Z shows that left-handed 
chiral droplets (N  = 2,3), fuelled by force dipoles only, exhibit the propulsive mode at 
intermediate activity with an opposite direction o f rotation with respect to the cases 
previously discussed (Fig. 4.7). If the droplet is instead fuelled by active torque dipoles, 
we found the handedness of the LC to determine the handedness o f the helicoidal struc- 
tures formed by the disclination lines as in Fig. 4.5c: contrary to what happens for the 
case here presented, in a left-handed cholesteric droplet the two helices are found to 
arrange in a left-handed fashion, while the remaining properties (rotation inversion, 
coiling and recoiling dynamics, etc.) stay unchanged.
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Figure 4.7: Effectofthe change ofthe handedness oftheLC. Different components of the angular velocity 
m of a chiral (N = 2) droplet with only active force dipoles (Z = 10-3), with right-handed (q0  > 0) and 
left-handed (q0  < 0) chirality. Left-handed chiral droplets, exhibit the propulsive mode with an opposite 
direction of rotation with respect to the case of right-handed chirality.

It is o f interest to think o f the generic models presented in this section with respect 
to the dynamics o f self-motile and rotating living active gels, which are found in bacte- 
rial and eukaryotic cells. In both cases, the cytoplasm includes chiral cytoskeletal fila­
ments, composed o f either MreB or actin, which are dynamical helical fibre and which, 
in the absence o f any activity, would self-assemble into cholesteric phases. Additionally, 
molecular motors walking on such helical fibres will generically create active forces and 
torque dipoles, either in the bulk or in a cortex close to the surface. In some cases, such 
as that of Spiroplasma [103] bacteria, or o f single-cell parasites [111, 158], screw-like 
motility is observed. This has often been associated to the twisting or rotation of cy­
toskeletal filaments, which generates translatory motion, so that the underlying mech­
anism is that o f a helical propeller, as in our droplets in Fig. 4.4. Our results, together 
with those previously reported in [188], show that there are multiple motility modes 
which chiral active micro-organism may employ, and it would be o f interest to look 
more closely for analogues o f these in nature.

Our novel active cholesteric droplets may also be realised in practice by self-assembling 
active liquid crystalline droplets synthetically (a possible mapping between numerical 
and physical units has been provided in Table B.1 in Appendix B, based on similar (ne­
matic) experimental systems [81, 160]). This could be done, for instance, by using active 
nematics with a chiral dopant [160]. Although these systems usually form shells on the 
interface of an oil-water emulsion, we expect that the resulting motility modes would 
be qualitatively similar to those we found in our systems where the active component 
is fully three-dimensional. In these active liquid crystal shells, anchoring of the direc­
tor field (the microtubule orientation in [160]) is tangential as in our droplets, so defect 
topology should play a key role for both systems. Another potential candidate system
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is a cholesteric DNA or chromatin globule interacting with molecular motors [13, 17].

4 . 4 .  H y d r o d y n a m i c s  o f  c o n t r a c t i o n - b a s e d  m o t i l i t y  i n  

a  c o m p r e s s i b l e  a c t i v e  f l u i d

Having analysed the role of chirality in self-propelled droplets, which led us to discovery 
of a new motility mode, that can be in principle inegnerized, we want to look at the 
problem of motility in a more fundamental and simple way.

Models o f contraction-induced motility have been proposed in Refs. [41, 71, 155, 
190]. All these considered the case of an active droplet moving inside a simple (New- 
tonian) and passive outer fluid. In some cases, the material inside the droplet was an 
active liquid crystal, in which case the onset o f motility required rectifications o f orien- 
tational splay fluctuations of an order parameter linked to actin polarisation [41, 190]. 
Here instead we study by lattice Boltzmann simulations a simpler, single-phase, com­
pressible actomyosin system, where a high density droplet (actomyosin blob) simply 
emerges due to active contraction. For sufficiently strong activity, we find the self- 
assembled droplet swims inside a low density actomyosin background. The setup we 
consider could be studied experimentally with quasi-2d or 3d compressible actomyosin 
suspensions. Additionally, once the droplet emerges, the system is approximately equiv- 
alent to an active compressible actomyosin droplet swimming inside a generic com­
pressible and passive fluid (as the density of motors in the background is very small). 
Therefore, our results can be qualitatively compared to experiments studying the m o­
tion of cells or cell extracts within polymeric or viscoelastic fluids. Indeed, we show that 
the hydrodynamic flows in the region outside the droplet are reminiscent o f the flow of 
matrigel7 surrounding swimming cells.

4.4.1. H y d r o d y n a m ic  m o d e l
We model an actin suspension as a compressible fluid with local density p, and myosin 
via its concentration field 0. Rather than considering the case in which actin is enclosed 
in a droplet [71], we study a single-fluid set-up with a compressible actin gel initially 
uniform in the simulation domain. The dynamical equation o f motion for the actin 
density p is the continuity equation,

dtp + daP va = 0 ,  (4.2)

with va the velocity o f the actin fluid. The latter obeys the following Navier-Stokes mo- 
mentum balance equation,

dtp va + dfi(p va vp) = Fant + Factìve + Fànterface + Faiscous , (4.3)

where F^iscous = dfin(dp va + da vfi)] is the usual viscous term, with n shear viscosity o f 
the fluid. The term

Fin = -d a P l + daGp , (4.4)

accounts for pressure-driven flows. The quantity P l = p T  is the usual ideal pressure. 
The presence of the additional term proportional to G gives a compressibility propor- 
tional to T -  G . Hence G measures the deviation from the ideal behaviour o f the fluid,

7At least at large times, matrigel can be viewed as a viscous fluid rather than a solid.
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Figure 4.8: (a-c) Snapshots of the evolution of p, for a simulation in which p has been initialized randomly 
around 1(panel (a)), while 0 as a droplet of radius R = 3 (isoline for 0 = 1 in panel (a)), for Z = 0.1 and 
G = 0.95. (d) Contour plot of 0 with superimposed active force, for the same configuration shown in (c). 
The isoline for p = 2 is plotted in white.

being temperature fixed in our simulations. The third term

F r rface = kpda (V2 p) (4.5)

represents interfacial forces, with the constant k controlling the surface tension o f actin 
(which controls the width o f interfaces between high and low actin densities). The pres- 
ence o f the active component (myosin motors with local density 0 ), and its effects on 
the fluid, are encoded in the final term,

F active = zd a 0  , (4.6)

which accounts for an active isotropic pressure -  if Z > 0 this active pressure is contrac­
tile. The parameter Z measures the strength o f myosin-induced contraction. Contrac­
tility depends also on the concentration o f myosin motors 0 , which evolves according 
to the following advection-diffusion equation:

dt0  + V.(0v) = D V20 -  B V2p -  K (V2)20  . (4.7)

Here the local advection velocity of myosin equals that o f actin, meaning that all 
motors are permanently attached to the actomyosin gel. The parameter D  is the myosin 
diffusion coefficient, while K  controls the myosin surface tension, quantifying the abil- 
ity o f the myosin droplet to oppose deformation. The term proportional to B is an effec- 
tive non-equilibrium term, whose effect is to ensure that myosin remains enclosed in
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Figure 4.9: (a) Contour plot of the density p with superimposed velocity field, for G = 0.88 and Z = 0.3. 
The colour code here is the same of that displayed in Figure 4.8. (b-main figure) Plot of the quantity 
$(x) -  $(-x), at different times, and (b-inset) $ profiles along the x-direction at different times, for the 
same case of figure (a). The cyan curve corresponds to the time when the droplet starts moving along the 
x-direction.

actin domains. Higher order gradients terms can in principle be added, but they would 
not alter the following results. The study is conducted by varying G (“compressibility 
modulus”) and the activity parameter Z-

The equations of motion are solved by means o f a hybrid lattice Boltzmann (LB) 
scheme, as the one described in Chapter 3.

Simulations have been performed on a periodic square lattice o f size L = 128, for the 
2d case, and a periodic cubic lattice o f size L = 128 for 3d simulations. Unless otherwise 
stated, initial conditions are $ = 1 inside a droplet o f radius R i = 3, and 0 outside, while 
p set equal to p = 1 inside a droplet o f radius R2 = 15, and p = 0.4 elsewhere. Parameter 
values are, T = 0.97, k = 0.1, D  = 10-3, B = D , K  = 10-3. All quantities in the text are 
reported in lattice (simulation) units.

4.4.2. CONTRACTION INDUCED CLUSTERING AND M OTILITY 
We start by presenting the results o f our 2d simulations.

The first finding is that contractility alone is able to create a droplet o f active fluid 
(actin, represented by p ) even in the absence o f a free energy favouring phase separa- 
tion in the passive limit (Z = 0). Initialising the system with p = p0 + 5p , where p0 = 1 
and 5p some small random fluctuations, whereas $  (motor concentration) initially set 
to 1 inside a droplet o f radius R1 = 3 and zero elsewhere, nucleation o f a droplet at the 
centre o f the system is observed. Droplet formation occurs for any value o f the activity 
Z. This clustering phenomenon is due to the interplay between myosin contraction and 
the cross diffusion term proportional to B in Eq. (4.7), which recruits myosin to regions 
o f high actin concentration. Similar results are obtained with $  fluctuating around a 
uniform value. In all cases, we observe the formation o f a single droplet in steady state. 
Some snapshots o f the evolution o f the actin density field p are reported in Figure 4.8, 
together with the steady state contour plots o f both p and $.

In addition, for every value o f the parameter G there is a critical value o f activity Z 
for which motion occurs. To become motile, the droplet first needs to polarise, breaking 
the circular symmetry in the myosin distribution. The asymmetry in $  can be quanti- 
fied by analysing the quantity ($ (x) -  $  ( -  x)), with x  a position along a line oriented with



Figure 4.10: (a) Criticai value of the radius of the droplet Rc as activity varies (continuous curves), for 
G = 0.95 (main figure), and G = 0.9 (inset), and the result ofthe fit (dashed lines) with the proportionality 
law reported in the text(Eq. 4.9).(b) Steady state center of mass velocity V as activity varies, for G = 0.95 
(mainfigure), and G = 0.9 (inset).

the direction o f motion, and passing through the centre o f mass o f the actin droplet. 
For an isotropic droplet, we expect (0(x) -  0 (- x ) )  to be identically zero. Figure 4.9(b) 
shows how the myosin field asymmetry develops over time for G = 0.88 and Z = 0.3 
(a case for which we have motion). At early times 0  is nearly symmetric (red curve in 
the main plot), whereas later myosin redistributes until an asymmetric steady state is 
reached (cyan curves in the main and inset of Fig. 4.9(b)), and the droplets starts to 
move (brown curve in the inset o f Figure 4.9(b)).

Figure 4.9(a) also shows the velocity field o f our compressible active system. Inside 
the droplet, the active contractily-driven flows rearrange to give a simple directed flow. 
There is an opposing flow outside the droplet, which is required for overall momentum 
conservation (as there are no boundaries or other momentum sinks). The counter- 
acting flow involves a number of vortices which upon azimuthal averaging give a net 
flow in the direction opposing that o f the droplet motion. Whilst vortex patterns are 
associated with spurious microcurrents in a passive phase-separated systems in lattice 
Boltzmann simulations [203], the magnitude of the flow is over an order of magnitude 
larger in our active case, and the pattern is different as the vortices in front and behind 
of the droplet are much larger.

To better investigate this point we compared the azimuthal flow of the active droplet 
with that of a passive liquid droplet. Tho do that we performed LB simulations of a van 
der Waals fluid (as explained in Chapter 3). We measured the averaged azimuthal flow 
v(0) in the droplet reference system. We fitted the profiles with a truncated Legendre 
polynomial

f  (x) = a sin(x) + b sin(2x) + c sin(3x) + d sin (4x), (4.8)

that has been used to model the predefined axis-symmetric tangential velocity distri­
bution on the surface of self propelled spherical particles [114].

Fig. 4.11 shows the results for a self propelled active droplet (left) and for a sta- 
tionary liquid droplet. We note that the spurious active flow is well fitted while in the 
passive case it is not. In addition, the averaged velocity measured on a semicircle near



the droplet surface is o f order O (10 4), suggesting that there is, in the active case, a net
flow towards the droplet back, in the opposite direction of motion.

All these considerations suggest that the flow observed in the active case is not 
pathologically affected by spurious velocities, and on the contrary it has a reliable phys- 
ical meaning.

In experiments with cell swimming in a viscous fluid, for instance in a matrigel, the 
environmentisfully3-dimensional. Itisthereforeofinterestto askwhether contraction- 
driven flows can rearrange to yield motility in a periodic 3D geometry. To answer this 
question, we performed simulations in a cubic domain of size L  = 128. Remarkably, we 
find that also in 3d droplets -  again assembled through myosin-mediated contraction 
of the compressible actin fluid -  become self-motile for sufficiently strong activity. In- 
triguingly, the solvent flow counteracting droplet motion has now a different form (Fig­
ure 4.12). Two vortex-like structures originate from the poles perpendicular to the mi- 
gration axis and converge toward the droplet rear, while the outer fluid is pushed away 
in front o f the droplet. This pattern is similar both to that observed experimentally in 
cells “swimming” in 3d matrigel [147], and to that reported in previous numerical sim­
ulations of a self-motile active-liquid crystal droplet [193]. The emergence of this flow 
patterns is interesting, as our model is significantly simpler than the ones previously 
considered. We interpret the similarity in the flow patterns far from the droplet as due 
to the fact that the dilute actomyosin background within which the droplet moves may 
be viewed as an essentially passive viscous polymeric fluid (such as matrigel).

We argue that the mechanism giving rise to the symmetry-breaking instability o f a 
non-m otile configuration and ensuring directional motility o f a self-propelling cell, is 
a positive feedback loop, closely related to the one leading to actin accumulation (Fig­
ure 4.8). Here, after e.g. a fluctuation in actin density creates an asymmetryingradients, 
the flow generated by contraction is also asymmetrical, and recruits motors faster along 
the regions where gradients are steeper. This leads to further asymmetric contraction, 
and to a motile pattern due to the flow imbalance, hence creating an auto-catalytic 
effect [129]. The coupling leads to build motor concentration, which is limited by sur­
face tension and diffusion, resisting the runaway and providing a compensating term 
which is necessary to achieve a steady state. The droplet breaks symmetry and becomes 
motile when the activity parameter exceeds a threshold. The threshold behaviour orig- 
inates from the fact that the total myosin stress needs to overcome the effects of actin 
viscosity and myosin diffusion. Increasing activity for a given value o f G, or decreasing 
G for a given value of Z, the droplet assumes an accentuated elliptical form.

To understand more quantitatively the effect o f the model parameters on the droplet 
motion, we measured the radius o f the self-assembled actin droplet and its velocity in 
steady state, as a function o f the activity parameter Z, and for different values of the pa­
rameter G . The droplet radius at the onset of motion is plotted in Figure 4.10(a) for two 
values of G (G = 0.95 in the main figure and G = 0.9 in the inset). It follows to a good 
approximation an inverse square root law:

Such a dependency was suggested by linear stability analysis of a related problem [71] . 
Figure 4.10(b) shows a plot o f the center of mass velocity versus Z for two values of

(4.9)
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Figure 4.11: Azymuthal flows for a self propelled active droplet (left) and a stationary liquid droplet 
(right), with the results of the fit with the function given in the text (Eq. (4.8)).
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G (G = 0.95 in the main figure and G = 0.9 in the inset). A  phase diagram in the (G-  Z) 
plane is instead shown in Figure 4.12 b. The steady droplet velocity increases with activ­
ity and is bigger for higher values o f G. At the same time, decreasing the elastic modulus 
of the gel -  i.e., approaching the incompressible limit G = 0 -  leads to an increase in the 
activity threshold above which motion is observed. This is consistent with the intuitive 
expectation that active isotropic contraction cannot lead to motion in this limit (as it 
is simply equivalent to a redefinition o f the pressure). Here for the values of activity Z 
we are constrained by the stability of our LB implementation, and for the values o f G 
by the chosen values o f T . We checked that fixing T  to other values does not change 
the physical picture discussed, as it solely change the location o f the transition line to a 
motile droplet.

Finally it is useful to put in relation our parameters choice with the order o f magni- 
tude o f relevant quantities measured in real systems. Using A t = n/Zc and Ax = ^/D^IZc 
as time and space units, where Zc is a reference value for contractility, it is possible to 
get the order of magnitude of our model parameters. We set relevant length, time, and 
viscosity scales for cell extracts and actomyosin droplets as A t ~ 15, Ax ~ 1^m, and 
n ~ 10Pa 5 [139]. Hence D  ~ 1^m25-1, and Zc ~ 10Pa. The former value is close to the in 
vivo myosin diffusion coefficient, while for the latter we note that a myosin concentra­
tion of 0 0 ~ 1^M [139], creates a contractility o f Z ~ 2Zc.

To summarize, in this Section we have shown that myosin-driven contraction can 
lead to directed motion within a compressible active fluid. In particular, we have found 
that within a single compressible actomyosin fluid, the interplay between myosin con­
traction and cross diffusion is responsible for the self-organization o f an actin droplet. 
Motion requires symmetry breaking, which can arise due to a fluctuation. Once sym­
metry is broken, a positive feedback mechanism is responsible for the motion. Motors 
lead to asymmetric contraction, this recruits additional myosin by advection, which 
reinforces the contraction asymmetry. A  steady state is reached because o f the com- 
petition between this simple positive feedback on one hand, and diffusive and viscous 
effects on the other hand. Unlike previous work on contraction-driven motility, here we 
have focused on the effect of compressibility. We have found that compressibility has 
the effect to facilitate motility, as it decreases the value of the isotropic contractile stress 
beyond which the droplet starts to move.
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Figure 4.12: (a) Isosurface at p = 2, with superimposed flow field for Z = 0.34 and G = 0.87, in 3D. (b) 
Phase diagram in the Z (activity)-G(compressibility) plane, for the transition to motile droplet.

We have also shown that the actin flow inside the droplet is a simple and directed 
one, whereas the counteracting flow in the compressible solvent has different shapes 
in 2d and 3d. In 3d, the pattern is reminiscent o f that observed experimentally for cell 
swimming in matrigel. This may be because in steady state the self-assembled droplet 
swims within a low density actomyosin background which can be approximately viewed 
as a passive compressible polymeric fluid.

Our results could in principle be directly tested experimentally by studying pattern 
formation in compressible actomyosin suspensions. They should also be relevant to 
the physics o f cell swimming inside gels with different compressibility.



5
M o r p h o l o g i c a l  a n d  r h e o l o g i c a l  

PROPERTIES OF ACTIVE EMULSIONS

So far we have analysed the behaviour of a single active droplet and the mechanisms 
leading to its self-motility properties, that are fundamental for the understanding of the 
functioning o f many biological systems, as we discussed in detail in the previous Chap­
ter. Another challenging topic in Active matter is understanding how active droplets 
mutually interact when they are suspended in a fluidic background. This is situation 
is actually the most common in nature, since active entities -  ranging from bacteria in 
culture to cells in a tissue -  exhibit the tendency to gather together forming large clus- 
ters. Active emulsions constitute a challenging class of systems with many potential 
novel applications. For instance, active emulsions may be used as building-blocks for 
designing novel active soft materials. An example may be an emulsion in which active 
matter is encapsulated in one o f the two phases, an expedient that may be used in de- 
vices for drug delivery. Biomimetic material may also be designed with suitable active 
matter systems so to create a soft tissue made up o f highly-packed active droplets capa- 
ble to resist to intense deformations. Thus, active emulsions may play a fundamental 
role in overcoming current major challenges affecting the design of active devices, such 
as controlling fuel arrival and waste removal [87, 160]; this is indeed an essential feature 
to create sustainable active materials, capable o f preserving their active properties over 
long periods of time.

Active emulsions are currently a matter of experimental study. Sanchez et al. [160] 
have recently produced an active emulsion with microtubule bundles activated through 
kinesin motor proteins. Here, the resulting nematic liquid crystal network is squeezed 
at the interface of an aqueous droplet emulsified in an oil background. As outlined in 
Chapter 1, the resulting active emulsions exhibit unexpected properties, such as au­
tonomous motility, which are not observed in their passive analogues. This seminal 
work paved the way towards microscopic confinement o f active matter.

Another challenging questions to be addressed regards the response of these active 
emulsions to external forcing. As discussed in Chapter 1, some bacteria suspensions 
display peculiar rheological properties, like super-fluidic regimes and even negative 
viscosities states.

From a numerical point o f view, one may think to make use of a suitable model to 
replicate the behaviour o f such experimental systems, by using for instance a multi-



Figure 5.1: (Left panel) Snapshot of 0 contour plot for a configuration in the stationary regime at Z = 0, 
for a system of size L = 256. The colour code displayed here is the same of all the contour plots in the rest 
of the work, where blue corresponds to passive phase (0 = 0) and red to the active phase (0 = 2). (Right 
panel) Voronoi tessellation for the same configuration in the (Left panel).

phase approach, where each droplet is described by a different field. A  different possi- 
bility is to consider the model presented in Chaper 2 (Sec 2.3.1). In order to model the 
presence of a surfactant that favours the emulsification of the binary mixture, it is nec- 
essary to allow for negative values of the elastic constant k, as discussed in Section 2.3.1.

Following this approach, I have studied how activity change the equilibirum mor­
phological and flow patterns in active polar emulsions. This will be discussed in Section
5.1.

I will also present results regarding the rheological repsonse of an active polar emul­
sion in Section 5.2. The declared root of this kind of approach is that morphology can 
play a key role in the control o f active fluids, as will be discussed in the following. The 
plethora of mesmerizing behaviours observed, and the transition between the various 
rheological regimes found can indeed be explained and controlled within our model.

5 . 1 .  M o r p h o l o g i c a l  c h a r a c t e r i z a t i o n  o f  a n  a c t i v e  p o ­

l a r  e m u l s i o n : a c t i v i t y  e n h a n c e d  h e x a t i c  o r d e r

The equilibrium properties of an active polar emulsion are encoded in the free energy 
functional described in Section 2.3.1:

F  [0, P] = f  d r { - 0 - 0 2(0 -  00)2 + ||V0|2 
40cr 2 

c 2 2 a ( 0  -  0 cr ) 2 a 4 k 2 
+ -  (V2 0 )2 -  -  — |P|2 + -  |P|4 + -  (VP)2 + pp  ■ V0| .

2 2 0cr 4 2

The first term, multiplied by the phenomenological constant a > 0, describes the 
bulk properties of the fluid; it is chosen in order to create two free-energy minima, one



Figure 5.2: (Main figure) Defects ratio (droplets without 6 neighbours over the total number of droplets 
in the configuration) vs activity, in the stationary time regime, for systems of size L = 256. The figurative 
dashed line stands for the fact that increasing activity it is no more possible a coherent defects analysis, 
due to the formation of asters first and completely non definite structures for strong activity. (Inset) 
Voronoi tassellation for two different values of activity(Z = 0.004 on the left and Z = 0.006 on the right).

(0  = 0) corresponding to the passive material and the other one (0  = 0 0) corresponding 
to the active phase. The second one determines the interfacial tension between the pas­
sive and active phase. The addition o f the Brazowski term proportional to c allows us 
to consider negative values of k, favouring the formation of interfaces throughout the 
system, and hence the emulsification o f the two phases. The third and the fourth terms 
control the bulk properties of the polar liquid crystal. Here a is a positive constant and 
0 cr = 0 0/2 is the critical concentration for the transition from isotropic (|P| = 0) to po­
lar (|P| > 0) states. The choice of 0 cr is made to break the symmetry between the two 
phases and to confine the polarization field in the active phase 0 > 0 cr. The term pro­
portional to (VP ) 2 describes the energetic cost due to elastic deformations in the liquid 
crystalline phase (see Table 2.1) in the single elastic constant approximation. Finally, 
the last term is a dynamic anchorage energy and takes into account the orientation of 
the polarization at the interface between the two phases. If fi = 0, P preferentially points 
perpendicularly to the interface (normal anchoring): towards the passive (active) phase 
if fi > 0 (fi < 0).

The continuous fields follow the evolution equations presented in Chapter 2, namely 
Eqs. (2.16), (2.21) and (2.23). These are solved in 2D with the hybrid LB method de­
scribed in section 3.4. In addition we made use of a parallel approach implementing 
Message Passage Interface (MPI) to parallelize the code.

Simulations have been performed on square lattice of size L = 256. The concen­
tration 0  ranges from 0  -  0 (passive phase) to 0  -  2 (active phase). Unless other- 
wise stated, parameter values are a = 4 x 10-3, k0  = - 6  x 10-3, c = 10-2, a = 10-3, 
kP = 10-2, fi = 0.01, r  = 1, f  = 1.1, 0 0 = 2.0, and n0 = 1.67. All quantities in the text



Figure 5.3: (Left panel) Contour plot of the concentration field 0 for a system of size L = 256, for Z = 
0.0076. (Right panel) Contour plot of vorticity magnitude with superimposed velocity field for the same 
configuration in the (Left panel).

are reported in lattice units. We initialized the system starting from a uniform phase, 
with 0 (r) = <0 > + 80(r), where <0 > = 0 cr is the conserved (area) averaged value of the 
concentration field and 80  is a small perturbation field favouring phase separation and

ranging in 0cr 0cr 
' 10 ’ 10 . The initial condition for the polarization field is completely ran- 

dom, being its orientation randomly distributed in the plane, while its intensity is ran- 
domly chosen in [0, 1].

In the symmetric case, as stated in Chapter 2, a passive emulsion would arrange 
in a lamellar phase. How the equilibrium properties, in this case, are affected by the 
presence of activity has been studied by Bonelli et al. [11]. A  moderate contractile ac­
tivity (e.g., corresponding to emulsions containing actomyosin as the active ingredient) 
sets up interfacial shear flows which enhance and speed up lamellar ordering. Increas- 
ing the strength of contractile activity disrupts the passive lamellar ordering to create 
emulsions of passive droplets within an active self-stirring background. Extensile ac­
tivity (for instance corresponding to mixtures where the active component is a bac- 
terial fluid) leads to the self-assembly of a poly-disperse suspension of active rotating 
droplets in a passive background.

In the next section we will present our results regarding an asymmetric (10: 90 ratio 
between active-passive phases) active polar emulsion.

5.1.1. A s y m m e t r ic  e m u ls io n
We now consider the case of asymmetric emulsions, in which the active phase repre- 
sents only the 10% of the overall composition.

When activity is off, at equilibrium, the system is characterized by an ordered array 
of droplets as can be seen looking at the contour plot of the concentration 0  in Fig 5.1. 
The droplets (and their centers of mass) can be easily pinpointed by putting a proper 
cutoff on the concentration field to distinguish active regions from passive ones. Each
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Figure 5.4: (Main figurer) Droplets mean angular velocity vs activity Z. In the (Inset) contour plots of the 
concentration field 0 for two values of activity Z = 0.008 on the left and Z = 0.009 on the right. As activity 
increases more asters are created and their angular velocity increases.

closed region o f lattice sites that falls beyond the cutoff, is identified as a droplet. A good 
choice for the cutoff, given our choice o f parameters is seen to be 0  ~ 1.5. Droplets are 
hexatically ordered -  i.e. they occupy vertices o f a triangular lattice -  besides the pres­
ence o f some defects in the droplet lattice, namely dislocations. Voronoi tessellation is 
used in order to unambiguously identify the nearest-neighbours network for the cen- 
ters of mass of each droplet. This allows for establishing a partitioning o f the space with 
one closed region for each center o f mass, according to the following rule: the region 
associated to the i -th droplet contains all the points o f the space that are closer to its 
center o f mass than to any other droplets. In Fig. 5.1 it is shown the use o f such anal- 
ysis. Droplets with 5 nearest neighbours are highlighted in yellow, while those with 7 
neighbours in blue.

Extensile activity
For non-zero, but still small (positive) values o f Z, the hexatic-droplet phase survives. At 
sufficiently high values o f Z, but still in the small activity regime, activity is able to reduce 
the number o f defects, driving the system in an almost completely ordered phase.

In fact, for Z = 0.006 and slightly larger values o f Z, activity is such to let the droplets 
rearrange in an almost defect-free final configuration. In Fig. 5.2 the defects ratio D  
(with respect to the number o f droplets) is reported as the activity varies, with cor- 
responding Voronoi tassellation for two iconic values o f Z. We see that for very small 
values o f activity, the hexatic order survives but there is no appreciable change in the 
number o f defects with respect to the passive limit (first figure on left in the inset o f 
Fig.5.2). However, for values o f Z around 0.006, or slightly larger, the hexatic order is 
enhanced as activity is such to remove the defects (figure on the right in the inset o f



Fig.5.2), corresponding to a minimum in the defects ratio (main plot in Figure 5.2). At 
larger values o f Z a change in the overall morphological behavior o f the mixture will be 
observed and the defects analysis looses significance.

Figure 5.5: Contour plot of the concentration field 0 for a system of size L = 256, for contractile activity 
Z = - 0.02.

Enlarging activity, during the evolution, aster-like1 rotating structures in the con­
centration field appear (Fig. 5.3). The characterization of their hydrodynamic state 
can be carried out by considering the vorticity magnitude and the velocity field, shown 
in the right panel o f Figure 5.3. From the vorticity magnitude it is evident that small 
droplets are steady while asters rotate, eventually incorporating small droplets in their 
neighbourhood. At smaller activity, this mechanism allows for the rearrangement o f the 
droplets configuration -  eventually leading to almost defect-free configurations -  while 
for stronger activity, phases o f droplets and big rotating droplets coexists (insets o f Fig. 
5.4 ), and their angular velocity2 increases with activity (main plot ofFig. 5.4).

For very intense values o f activity, the morphology is totally dominated by asters, 
as can be seen by looking at configurations in the inset ofFig. 5.4, where a lowering in 
the number of small droplets, accompanied by the increase in the number o f asters, is 
evident going from Z = 0.008 to Z = 0.009.

Contractile activity
Contractile activity (Z < 0) yet gives rise to a different behaviour, by setting up a local 
shear flow that pulls the droplets in the shear direction and, for sufficiently intense ac­
tivity, leads to their merging (see the contour plot in Fig. 5.5 for the case at Z = -0.02).

1We refer as aster-like droplets, big rotating droplets or simply asters to non-circular droplets which have 
the shape of an aster associated to the formation of vortices in the velocity field. Usually in the literature 
the name asters has been associated to polarization patterns [99].

2 Ar x Av
zThe angular velocity of the droplets has been computed as: m = J dr0 , where Ar = r -  R and

Av = v -  V, being R and V respectively the position and the velocity of the center of mass of each droplet. 
The measured angular velocity has been averaged over time and over the droplets in the system.



Figure 5.6: Contour plots of 0 at non-equilibrium steady states of extensile 10:90 (left) and 50:50 (center) 
and 75:25 (right) mixtures rispectively at activity Z = 0.008, Z = 0.004 and Z = 0.001 .

For more intense active doping, this mechanism affects the equilibrium configuration 
so strongly that is not any more possible to distinguish any kind of definite pattern 
[136] .

5.1.2. O v e r v ie w  a n d  3 D  m o r p h o lo g i e s

An active polar gel embedded in an isotropic passive fluid can manifest a wealth of 
structures by varying the relative amounts of the phases as well as the activity. So far, 
we have analysed an asymmetric composition 10 : 90. It is also interesting to look at 
what happen if the active phase is the majority one. If extensile activity is considered 
we observe a net change in the overall behaviour of the system. At low concentration of 
active material, the hexatic array of active droplets remains stable until a certain critical 
value is reached, depending on the total amount of the active component. Beyond this 
threshold droplets start to merge giving rise to big rotating droplets, driven by bend­
ing instability of polarization under extensile flows. As the fraction of active material is 
increased, keeping fixed the intensity o f active doping Z, the system eventually under­
goes demixing of the two phases. Remarkably, in highly asymmetric mixtures, where 
the majority is active, we found a background passive matrix, despite it is the minority 
component of the mixture (see Fig. 5.6).

Even in 3D the effect of activity on the morphology is highly surprising. We con- 
sider here a highly asymmetric preparation (10 : 90) of the mixture. In the passive limit 
(see central panel of Fig. 5.7), analogously to what happens in the bidimensional case, 
an emulsion of droplets of the minority phase arranges in a cubic lattice with some 
dislocations in the arrangement. Droplets do not merge due to the presence of a suit­
able amount of surfactant, but if the minority phase is made active this ordered lattice 
structure is easily lost, whoever activity is contractile or extensile. In the former case, 
droplets for small values of IZI are first stretched by the flow, then as active doping is 
increased, droplets start to merge giving rise to tubular structures that span the system, 
creating a bicontinuous phase (Fig. 5.7). The underlying mechanism is the same as de­
scribed in the bidimensional case. In the extensile case the morphological behaviour is 
relatively different from its bidimensional counterpart. If in 2d, bending instability in 
the polarization pattern acted as a source of vorticity, making droplets rotate, in 3d this 
is no more the case, since polarization is no more confined in a bidimensional plane 
and is free to rotate in space. Big amorphous ferromagnetic structures form in the sys-



Figure 5.7: Isosurfaces at 0 = 1.5 of concentration field 0 in 3d systems. The central panel shows the 
relaxed configuration consisting in a cubic array of droplets. If contractile activity is switched on (Z = 
-0.005) a tubular network of active domains form a bicontinous phase that spans the whole system. In 
extensile systems (Z = 0.008) ordered structures are lost in favour of amorphous and tubular shapes.

tem due to the increased effective surface tension. The thickening o f active materials in 
such domains leads to formation of lighter structures in the rest of the system (see right 
panel in Fig. 5.7).

5 . 2 .  R h e o l o g y  o f  a c t i v e  p o l a r  e m u l s i o n s

We now ask if the model so far considered can help to shed light on the peculiar rheo­
logical behaviours o f active systems reviewed in Chapter 1.

The reach scenario hitherto pictured is further enriched if an external shear is ap- 
plied in profound physical way. The interplay between local energy injection due to 
activity and the externally imposed shear flow is responsible for the appearance of uni- 
directional flow, intermittent viscosity states and even regimes characterized by nega­
tive viscosity states, as we will show in the following.

We considered flow in a channel with no-slip boundary conditions at the top and the 
bottom walls (y = 0 and y = L), implemented by bounce-back boundary conditions for 
the distribution functions [177], and periodic boundary conditions in the y direction. 
The flow is driven by moving walls, respectively with velocity vw for the top wall and
-  vw for the bottom wall, so that the shear rate is given by j  = .

Our choice o f parameters is such that the Schmidt number (Sc = PD where D  =

2 M a I0 4cr is the diffusion constant, where M  is the mobility and a the bulk free energy 
parameter (See Sec. 5.1)) is fixed at values typical for liquids, (~ 2000) where, in absence 
o f activity, lamellae show low resistance to the flow and can easily order. It was shown 
in [90] that at smaller Sc lamellar domains hardly align to the flow and may eventually 
undergo pearling instability, persistent even in the long dynamics.

Moreover neutral wetting boundary conditions were enforced by requiring on the 
wall sites that the following relations hold:

V± u = 0, V± (V20) = 0, (5.1)

where V^ denotes the partial derivative computed normally to the walls and directed 
towards the bulk of the system. Here the first condition ensures density conservation, 
the second determines the wetting to be neutral. As mentioned in the introductory 
chapters, in the case o f bacterial swimmers, it is commonly observed that, close to the



Figure 5.8: Linear velocity profiles and lamellar phase. Concentration contour plots at Eract = 0.057, Er = 
0.0030 and Eract = 0.058, Er = 0.0075 are respectively shown in panels (a) and (d). Here (and in the rest of 
this Chapter) red regions correspond to the active phase (0 ~ 2.0), while blue regions to the passive fluid 
(0 ~ 0.0). Panels (b) and (e) show a zoom of the regions highlighted by the black squares in panels (a) and 
(d). Black and white vectors respectively denote velocity and polarization fields in panel (e), while only 
the velocity field has been plotted in panel (b). Panels (c) and (f) show the averaged velocity profile and 
the time evolution of the shear stress (red and orange curves correspond to the cases considered in panel 
(a) and (d)). Black arrow in panel (f) points to a jump in the relaxation of axy, due to the annihilation of 
two dislocations. Note that in the present Figure, as well as in the followings, the colours of the velocity 
and the stress profiles have been chosen in relation to the colours of the corresponding region of the 
phase diagram ofFig. 5.17. In panels (c-f) the profiles have been plotted in such a way to make reference 
to the red/orange region of linear profiles.

boundaries, they orient along the wall direction [112]. In actomyosin solutions, the 
actin filaments can also be assumed to be anchored parallel to the walls due to focal ad- 
hesion [212] . Therefore, suitable boundary conditions for the polarization P is a strong 
anchoring condition with P aligned parallel to the walls

P  ±lwalls = 0, V i P  il1 walls = 0, (5.2)

where P i  and Py denote, respectively, normal and tangential components of the polar­
ization field with respect to the walls. In order to compare external and active forcing 
in our system, we make use of the Ericksen number, E r , and the active Ericksen num­
ber E ract as relevant adimensional quantities. The former is often used in the study of 
liquid crystals to describe the deformation of the orientational order parameter field 
under flow and it is defined as the ratio of the viscous stress to the elastic stress. In 
particular in lamellar systems a suitable choice is given by:

Er = M  , (5.3)
B



Figure5.9: Unidirectional motion. (a) Concentration contour plot at Eract = 0.29, Er = 0.031. (b) Contour 
plot of the vorticity ù = (dyvx -  dxvy )/2 (black corresponds to ù = 0 and red to ù = 10-2) in the region 
framed with black box in panel (a);purple lines represent velocity streamlines while the polarization 
field is plotted in white (for graphical clarity, only in the bottom active layer). (d) Contour plot of the 
concentration field at Eract = 0.29 and Er = 0.062 and (e) zoom of the region framed with black box 
in panel (d), with black lines representing v streamlines and P plotted in white. (f) Contour plot of the 
velocity field in the flow direction for the same case shown in panel (d), with few isolines plotted in white. 
Panel (c) shows {vx> for the two cases considered and also for the case at Eract = 0.172, Er = 0.0075.

where B is the lamellar compression modulus -  namely the energy cost for the variation 
of the lamellar width A = 2 n/x per unit length, whose expression in terms of the param­
eter o f the model is explicitly derived in the Appendix C. The active Ericksen number, 
suggested by Giomi for the first time in [70], is, in turn, defined as the ratio between the 
module o f the activity parameter Z and the compression modulus:

IZI
Eract = ^ . (5.4)

B

5.2.1. L in e a r  f l o w  a n d  s y m m e tr y  b r e a k in g  t r a n s i t i o n
Before presenting specific results case we summarize the morphological phenomenol- 
ogy arising in an active extensile polar lamellar system at varying the activity parameter 
(Z > 0) in absence o f any external forcing. Bonelli et al. [12] showed that the shear- 
free system is characterized by a transition at E ract «  0.11 from the lamellar phase to 
an emulsion with moving active droplets. The bending instability, typical o f extensile 
gels [169], favours this rearrangement. For E ract >  1 the system enters in a totally mixed 
phase, characterized by chaotic velocity patterns [136]. The following Sections will be 
devoted to present the different behaviours of the sheared system at varying both the 
intensity of active and external forcing.



Figure 5.10: Active shear stress close to a wall at Er = 0.0074, Eract = 0.172. The polarization field P (cyan 
arrows) exhibits a splayed profile under the mutual effect of strong anchoring to the wall (tangential) 
and to the interface (homeotropic), while the red arrow shows the direction of the imposed velocity vw. 
The angle 6  denotes the local orientation of the polarization, sketched by the magnified reference cyan 
arrow, with respect to the flow. White lines trace the interface (0 = 0cr) between active and passive 
phases. Passive (beige) regions are almost stress free, while negative stress in the boundary layer (black) 
corresponds to a net force opposite to the flow direction. Droplets have quadrupolar structures.

5.2.2. L in e a r  v e l o c i t y  p r o f i l e s  a n d  l a m e l l a r  p h a se .
The scenario just described is strongly influenced by an external shear flow. Due to the 
tendency o f lamellae to align with the flow, an applied shear, even small, is found to 
counter activity-induced bending, thus extending the range o f stability o f lamellar or­
der towards larger E ract (E ract <  0.18) with respect to its unsheared counterpart. Under 
this threshold and for a vast range o f shear rates, the system sets into a lamellar phase, 
as shown in panels (a) and (d) o f Fig. 5.8. The region with these properties is red in 
Fig. 5.17, where flow regimes found by scanning the E r -  E ract plane are summarized. 
At small shear, relaxation dynamics leads to the formation of long-lived dislocations 
in the lamellar pattern, as the one highlighted by the black box in panel (a) o f Fig. 5.8. 
Panel (b) o f the same Figure shows the detail o f the velocity field in the neighborhood 
of the dislocation. If j  is weak enough, defects are capable to consistently alterate the 
velocity pattern, since dislocations develop flows trasversal to the direction o f lamellar- 
alignment, thus leading to permanent shear bandings in the velocity profile (as shown 
by the red line in the inset o f Fig. 5.8c). At greater values o f shear rate, the superimposed 
flowis strong enough to eliminate dislocations (see for example panel (d) in Fig. 5.8 and 
Movie 13) , eventually leading to the formation o f disruptions that are much less effec- 
tive on the flow than dislocations, as confirmed by the linear behaviour o f the corre- 
sponding velocity profile. In this regime lamellae are globally aligned to the flow, while 
the polarization field, homeotropically anchored to the interfaces (panel (e) o f Fig. 5.8), 
is pointing towards the passive phase (blue regions in zoom o f panel (e)). Panel (f) 
compares the time evolution o f shear stress for the two cases considered. Dynamics at 
high shear leads to a smoother and faster relaxation towards lower values o f a xy. When 
the imposed shear is weaker, oscillations or jumps, as the one marked by an arrow at 
t = 6 x 106 in panel (f) o f Fig. 5.8, are due to the annihilation o f two dislocations.

3Movies are described in Appendix D, and can be found at the following link: https://www.dropbox.
com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0

https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
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Figure 5.11: Symmetric shear thinning profiles. Concentration (a) and active shear stress (b) contour 
plot for the case at Eract = 0.70, Er = 0.04. The colour code is the same of Fig.5.10. Red arrows denote 
the direction of the moving walls, and cyan ones the direction of the polarization, averaged within the 
active layers close to the walls. (c) Velocity (vx} (thick lines) and active shear stress profiles (a(acyt} (thin) 
averaged along the flow direction, for the case corresponding to panels (a) and (b) and analogous ones.

5.2.3. U n i d i r e c t i o n a l  m o t io n .
The behaviour becomes more complex when activity is increased. The combination o f 
activity and shear has dramatic consequences. The system undergoes a morphological 
transition from the lamellar phase towards an emulsion o f active material in a passive 
background, a behaviour also found by Bonelli et al. [12] at lower active dopings. Fig. 5.9 
shows two cases at E r = 0.031, E ract = 0.29 (top row) and E r = 0.062, E ract = 0.29 (bot- 
tom row) characterized by the formation o f a thick layer o f material close to one bound- 
ary (see dynamics in Movie 2), and small features on Brazovskii lengthscale A = 2 n/x 
coexisting with larger aggregates o f active material elsewhere. Such symmetry break­
ing is mediated and sustained by the formation o f these large active domains where 
bending polarization instabilities, typical o f extensile systems, act as a source o f vor­
ticity (see panel (b)). Big active domains are mostly advected by the intense flow close 
to the walls, as shown by purple velocity streamlines, differently from what happens in 
shear-free systems where polarization bending results into the rotational motion o f the 
bigger active droplets. Fig. 5.9c shows the related x -averaged velocity profile <vx} (grey 
curve): Instead o f the linear behaviour of Fig. 5.8c, one observes banded flows with the 
higher gradient in correspondence o f the wall with the active layer. Similar cases occur 
at different Er, E ract with deposition o f active material randomly on the top or bottom 
wall. Streamlines o f v  (in panels (b) and (e) o f Fig. 5.9) show that the inversion o f the 
fluid velocity takes place in correspondence o f the interface o f the active layer. The top- 
bottom symmetry breaking leads to a net flux o f matter in the flow direction and has 
been named unidirectional motion. Cases exhibiting such property have been plotted 
in grey in Fig. 5.17. Moreover, as shear is increased, the position o f flow inversion m i­
grate towards the bulk o f the system (see the dark grey profile at the larger Er in panel 
(c) and the corresponding vx contour plot in panel (f)). Unidirectional flow (grey region 
in Fig. 5.17) may occur with almost everywhere vanishing gradient o f (vx}, and in this 
case it will be called superfluidic [27] (see light grey profile in Fig. 5.9c). It is worth to 
mention that inviscid motion occurs in the model o f [82] only with symmetric profiles, 
with shear gradient all localized in the bulk.

Which are the mechanisms for the observed velocity profiles? And how to explain



the flow symmetry breaking transition? Due to complexity o f the system we can only 
partially answer to these questions. The velocity behaviour is strictly related to that of 
polarization close to the walls. Thick layers as the one in Fig. 5.9a,d and in Fig. 5.10 are 
characterized by the bending o f polarization due to competition between strong paral­
lel anchoring to the walls and perpendicular orientation to domain interfaces, lead- 
ing to a negative active shear stress contribution. This is shown in Fig. 5.10, where 
white/black regions correspond to positive/negative values and correspond to active 
domains, while beige ones are associated to the isotropic background and correspond 
to almost null values. Moreover, topological defects in the active layer are strongly in- 
hibited by elastic energy, as suggested by the uniform polarization pattern in the black 
bottom layer.

Within the active layer aayt ~ f 0 0(P eq)2sin29, where 9 denotes the local orienta­
tion o f polarization with respect to the imposed velocity (0 < 9 < n), thus generating 
an active force density in the flow direction (f^a<:t = d i ^ y ,  where d i denotes deriva­
tive in the direction normal to the walls). This can either reinforce the imposed flow 
if the polarization field is oriented as vw (since d i sin 29 > 0), or lead to a reduction of 
the fluid velocity if opposite (since di  sin29 < 0). However, between the two possible 
orientations, the one reinforcing the flow does not appear in the cases discussed so far. 
In order to clarify this point we define the average polarization P w on each wall -  it can 
be calculated as P w ~ {P|||walls>, where here {•> stands for the average over few layers 
close to the wall sites. For the unidirectional motion case, P w is null at the wall where 
the thick active layer is absent, so that we denote such polarization state as 0. If the 
polarization is opposite to vw, as in the bottom/top o f panel (b)/(e) of Fig. 5.9, we will 
indicate it with -. Following the notation just introduced, we will refer to the global 
states shown in Fig. 5.9 with 0-, independently of the top-bottom asymmetry.

5.2.4. S y m m e tr ic  s h e a r  t h in n in g  p r o f i l e s .

By further increasing both activity and shear rate, phase demixing is more pronounced 
(Fig. 5.11a) with the formation o f an emulsions of amorphous active domains in a pas­
sive matrix. Active layers form on both walls so that symmetry is restored also at level 
o f the velocity profiles (v x >, with gradients in the bulk o f the system lower than the im ­
posed one, as shown in panel c of Fig. 5.11 (thick lines). Symmetric cases exhibiting 
such phenomenology have been plotted in green in Fig. 5.17. Under these conditions, 
it may happen that the velocity gradient in the bulk o f the system is either everywhere 
vanishing or, eventually, opposite to the one externally imposed (negative viscosity), de- 
spite such states are found to be unstable in the long term (see Sec. 5.2.6). To explain the 
flow properties presented, we analyse the active shear stress profiles {aay> averaged in 
the flow direction (see thin lines in panel (c)). This confirms that the active stress is 
considerably different from zero only in the layer close to both walls, where it assumes 
negative values -thus leading to the sharp decrease o f the intensity of the flow in the 
same region -  while it is approximately null in the bulk. A contour plot o f the active 
stress is also shown in panel b of Fig. 5.11, showing that the P w polarization state at 
boundaries is in a -  configuration.

Such behaviour is also accompanied by shear thinning, typical o f extensile fluids as 
E ract is increased. This is analysed in Fig. 5.12 where the ratio between the apparent 
viscosity n = {a^y >/j (where {a^J > denotes the time average o f the total stress tensor),



Figure 5.12: Shear thinning in extensile mixtures. Ratio between apparent viscosity n (measured as 
(ax°y ) /Y) and shear viscosity n0, while varying activity for some values of the Ericksen number.

and the shear viscosity n0 has been plotted versus E ract. We varied E r  in the range 
E r  >  0.05, where viscosity states are found to be stable for any value of E ract. Viscosity 
mainly depends on the intensity of the active doping, while no substantial dependence 
is found on the shear rate if E ract <  0.6. This suggests that activity, inducing shear thin­
ning, is a parameter capable of controlling the rheological property of extensile suspen- 
sions.

5.2.5. A c t i v i t y  q u e n c h .

We further analysed the nature of the transition between the symmetric configurations 
at higher activity (green region in Fig. 5.17) and states with unidirectional flow at weaker 
activity, starting from a stationary states at E ract = 0.57 and quenching the activity to 
E ract = 0.28 at fixed E r  = 0.06. Panels (a)-(c) in Fig. 5.13 show the quenching dynam­
ics: starting from the symmetric configuration of panel (a) at E ract = 0.57, amorphous 
active domains progressively stretch in the flow direction and cluster on the bottom 
boundary (see panel (b)). This accompanies the melting o f the active layer close to the 
upper wall, finally generating the asymmetric configuration of panel (c) characterized 
by unidirectional flow. The evolution of velocity profiles is shown in panel (d). Panels 
(e)-(g) show the results of a similar experiment: this time we quenched the active pa­
rameter so to move from the grey region (E ract = 0.22) with unidirectional motion, to 
the red one (E ract = 0.057) with linear profiles, in Fig. 5.17, while keeping shear rate 
fixed at E r  = 0.01. After the quench droplets are no more stable, since the active doping 
is not strong enough to maintain the bending instability. A  lamellar phase progressively 
grows from the bottom o f the system, where most of the active material was initially 
found, towards the upper wall. The final configuration is characterized by a symmetric, 
defect-free lamellar configuration, with linear velocity profile, whose evolution can be 
appreciated by looking at panel (h).

5.2.6. I n t e r m i t t e n t  f l o w

Surprisingly, yet another behaviour appear in a vast region of the parameter plane at 
small shear, E r  <  0.04, and sufficiently large activity, E ract >  0.4, (blue in Fig. 5.17). 
Under this condition, the system is symmetric and exhibits an intermittent flow regime. 
This is to be related, once again, to the polarization state at the boundaries. Indeed, this
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Figure 5.13: Activity quench. Panels (a)-(c) show the evolution of the system after that Eract has been 
quenchedfrom 0.57 to 0.28, thus movingfrom the green region of Fig. 5.17 to the grey one, at Er = 0.06. 
The colours of the profiles have been chosen in accordance to the colour of the corresponding region in 
the phase diagram of Fig. 5.17. Labels (0 or -) at the top and at the bottom of initial and final panel denote 
the state of the polarization at the boundary. The evolution of velocity profiles is also shown in panel (d). 
Panels (e)-(g) show the same for the quench from the grey region (Eract = 0.22) towards the red region 
(Eract = 0.057) of Fig. 5.17 at Er = 0.01, with the evolution of velocity profiles in panel (h). Contour plots 
correspond to the first, third and last velocity profiles in panels (d) and (h)

time we find (unstable) configurations where P w is oriented in the same direction o f the 
imposed velocity, so that we will denote such state as +. The dynamics o f the system is 
characteried by jumps between ++, -+ and -- states.

Such intermittent behaviour is reflected in the evolution of the area averaged stress, 
as shown in Fig. 5.15a. Elastic contributions are on average constant, while active stress 
fluctuates around positive, negative or vanishing values. These are found to be largely 
determined by the portion o f the system closer to boundaries (see Fig. 5.15c). For each 
wall the sign o f active stress coincides with the one o f P w, so that positive and negative 
total stress correspond respectively to ++ and -- P w states, while total zero active stress 
comes from opposite P w contributions (-+ states). Viscosity jumps (Fig. 5.15 a) cor­
respond to the inversion o f the polarization on one of the two walls during evolution. 
The inversion of polarization on the boundaries, generally prevented by elastic effects 
and strong anchoring, can occur as a result o f catastrophic events, such as collision o f 
big domains with the active layer (see Movie 3,44) . This phenomenon is driven by the 
collision o f active domains against the boundary layers. In Fig. 5.16 we show, for the 
case at E ract = 0.57, E r  = 0.003, a series o f snapshots o f a change o f polarization on the 
bottom wall from the antiparallel alignment o f P with respect to the imposed velocity 
( -  state) to a parallel configuration (+ state). The overall dynamics o f the event can be 
better appreciated by looking at the attached Movie 3,4. Panel (a) o f Fig. 5.16 shows the

4Movies are described in Appendix D, and can be found at the following link: https://www.dropbox. 
com/sh/qs7fbvk8p2ttcst/AAC988090RnPSYLhsX8sf13ua?dl=0

https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0


Figure 5.14: Entropy production in multistable states. (a) Time evolution of the total shear stress and 
entropy production at Eract = 2.30,Er = 0.00074. Negative viscosity states, corresponding to —  con­
figurations of polarization at the boundaries, live longer than others. Entropy production s(t) assumes 
greater values in correspondence of these regions. Panel (b) shows time evolution of each contribution 
to entropy production and of the injected power. Each contribution to s(t) has been measured by inte­
grating on the computational domain the terms on the right-hand side of Eq. (5.13), while the injected 
power has been computed as the integral over the whole system of the quantity (v V) ■ a inj, where ainj 
is the sum of the stress on the fluid arising by the action of the active agents and the moving walls.

configuration at time t = 52380, before the event. Panel (b) shows a zoom at the same 
time o f a colliding active domain, characterized by a typical vortical pattern in the po­
larization field, with a + 1 defect, highlighted by a red square in panel (b). As the droplet 
merges with the layer, strong elastic interactions produce bendings of the liquid crys­
tal network (see panel (c) at time t = 53580). In panel (d) at a close subsequent time 
t = 56580, the system is still found in a homogeneous -  P w state on the wall, despite 
the polarization on the top part of the layer is now directed in the same direction o f the 
imposed flow. The +1 defect has disappeared due to the interaction with the wall, thus 
generating a complex rearrangement dynamics. As a result o f the advection and the 
elastic deformations, the polarization flap, directed along the flow direction and high­
lighted by the black box in panel (d), is pushed on the walls and adheres on it, resulting 
in a local change ofthe polarization state (see panel (e) attime t = 58286). After a similar 
event, not shown in Fig. 5.16, the overall hydrodynamic state changes, thus leading to a 
final homogeneous + state, shown in panel (f). We observe that flip dynamics generally 
takes place on time-scale of order ~ O (105) time-steps, much shorter than the lifetime 
of viscosity states that are found to be ~ O (107).

-- states typically live longer than others, as can be appreciated looking at the pdf 
of the total shear stress reported in Fig. 5.15b. The statistics of viscosity states has been 
constructed considering 40 different runs for the same couple of parameters E ract = 
1.14, Er = 0.0075. The typical length o f each run is o f about 107 lattice Boltzmann itera- 
tions. The data for the shear stress have been sampled under stationary conditions and 
then fitted with the sum of three normal distributions, centred at values marked with 
dotted lines in panel (b). These mean values are consistent with the average of the stress 
in the different states ofFig. 5.15a, and their probability of occurrence will correspond 
to the amount o f time that the system spends in each of them.

To go deeper in the characterization o f this behaviour we measured entropy pro­
duction during the system time evolution. Generally, in non-equilibrium systems, the
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Figure 5.15: Entropy production in multistable states. (a) Time evolution of stress contributions at Eract = 
1.14,Er = 0.00075. The total stress is plotted in transparent yellow, while the active one is the dark blue 
curve underneath. Panel (b) shows the pdf of the total stress (data from 40 independent runs, fitted by
3 normal distributions peaked at oxy = -0.0068,0.0009,0.0086). (c) Total stress close to bottom and top 
walls, respectively computed as o*-̂  = f  dx fLy_l dy oxy and o°w = f  dx/0l dy oxy, where l is the width of 
the layer. Here l = 15. Nevertheless, aslongas l < Ly/2, results remain unaltered. (d) Entropy production. 
Negative viscosity states, corresponding to -- configurations of polarization at the boundaries, live longer 
than others. Entropy production s(t) assumes greater values in correspondence of these regions. Each 
contribution to s(t) has been measured by integrating on the computational domain the terms on the 
right-hand side ofEq. (5.13).

entropy density Z(r, t) obeys the continuity equation

dtZ + V- (Zv) = s, (5.5)

where s is the rate of entropy production per unit volume, subject to the condition s ^ 0. 
This can be written in terms of generalized fluxes Ji and forces X i, as [40]

Ts = JìX ì , (5.6)

with T  the temperature -  fixed at in our simulations (T  = 0.5) since we are neglecting 
heat transfer. Thermodynamic forces are chosen as follows:

Xv =  (Vv)S = D, (5.7)

SF  ,
Xp = _ ™ =  h- (5.8)SP

SF
X  = V ̂  = VM> (5-9)

where F  is given by Eq. (5.1), D  is the strain rate tensor. Moreover, in our model the 
following linear phenomenological relations between forces and fluxes hold [99] :

Jv = 0 tot, (5.10)

Jp = dtP + (v -V)P + n  • P = 1  h + i D  • P, (5.11)

J0 = _ M V  (5.12)



Figure 5.16: Polarization flip. Contour plots of concentration field 0 for Z = 0.005 (Eract = 0.57) and j  = 
3.12 x 10-5(Er = 0.003). Panels (a) and (f) show the initial and final state, respectively, of the polarization 
at the bottom wall. Panels (b-e) show snapshots of the collision of a droplet with the bottom wall, which 
causes a local rearrangement of the polarization state. The red contour in panel (b) encloses a +1 defect 
in the polarization field pattern.

where we denoted with Ù the vorticity tensor, that is the antisymmetric part o f the gra­
dient velocity tensor. By substituting these relations into Eq. (5.6) we find that

1 2Ts = 2nD  : D  + ^ h  • h + M (V 0 )2, (5.13)

where we retained only those terms even under time reversal symmetry. We here iden- 
tify three contributions: the first one is the entropy production due to viscous effects, 
2^D : D, while the second (^h • h) and the third (M (V 0 )2) ones are respectively the 
molecular and the chemical terms, accounting for the entropy produced during the re­
laxation dynamics o f P and 0. This expression is quadratic in the thermodynamic forces 
and satisfies all required conditions, amongwhich invariance under Galilean transfor- 
mations as well as the second principle o f thermodynamics. In the stationary regime, 
entropy production must be equal to the energy injected into the system, due to the 
work o f the walls and active pumping. We emphasize that activity Z isa reactive param­
eter and therefore does not appear in the entropy production formula [100]. However 
activity influences the dynamics, acting as a velocity source through the active stress, 
thus contributing indirectly to dissipation. Fig. 5.14 refers to the case at Eract = 2.30 
and E r = 0.00074. In panel (a) the total stress and entropy production are compared. 
In the evolution o f the stress one recognizes two regions o f stability o f negative viscos­
ity, whose lifetime is O (107) LB iterations. These occur as an effect o f - -  polarization 
configurations at the boundaries. Entropy production s (t) assumes here greater val­
ues than in other viscosity state. Panel (b) compares the different entropy production 
contributions to the injected active power (blue line) that match the total entropypro- 
duction (green line) with an error o f -  3%.
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Figure5.17: Flowregimesinthe Er-Eract plane, as described in the text. Hollow marks denote simulation 
points.

Panels (a) and (d) of Fig. 5.15 compare the behaviour of the stress and entropy pro­
duction for Eract = 1.14 and Er = 0.00074. The evolution of the stress is characterized 
by two regions of stability of negative viscosity-whose lifetime is O (107) LB iterations -  
that respectively occur from t « 107 to 2.5 x 107, and from t « 3.2 x 107 to 4 x 107. These 
states have also the highest probability, as can be appreciated looking at the pdf of the 
total stress in panel (b) of Fig. 5.15. In Panel (d) the different entropy production con- 
tributions are shown. We first notice that the contribution due to diffusion/chemical 
(yellow line) is almost null. in addition, the viscous dissipation (blue line) is always 
greater than the contribution due to the molecular field (violet line). This suggests that 
the hydrodynamics of the system -  driven by active injection and external forcing -  is 
mainly countered by viscous dissipation phenomena. Moreover, the total entropy pro­
duction oscillates around two different values and jumps during time evolution, with 
the highest value corresponding to the negative viscosity states. This behaviour, with 
prevalence of -- polarization states is typical of all the intermittent cases (blue region 
in Fig. 5.17), and is compatible with a maximum entropy production principle (Max- 
Epp). various variational principles, related to entropy production rates, have been 
put forward to quantitatively select the most probable state in multi-stable systems. 
While much efforts have been spent in the search of a general principle and recent 
progress has been made [46] on a theoretical derivation of such a principle, questions 
about how this should be interpreted and applied have not been answered, especially 
for systems evolving far from thermodynamic equilibrium. In particular, a MaxEPP 
has been implemented as a selection criteria to study systems characterized by multi­
ple non-equilibrium stationary states [46] and very recently the Schlogl model [163] -  
that is a simple, analytically solvable, one-dimensional bistable chemical model -  has 
been used to demonstrate that the steady state with the highest entropy production is 
favoured [54]. In the system here considered, we found that entropy production s(t) is 
higher for the most likely —  states, suggesting that MaxEPP may act as a thermody­
namic principle in selecting non-equilibrium states.
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Figure 5.18: Morphology and shear bandings in contractile mixtures. (a-b) Contour plots of concentra- 
tion field 0 for Z = -0.007 (Eract = 0.8) and f  = 7.8 x 10-5,7.8 x 10-4 (Er = 0.007,0.074). (c) Correspond- 
ing averaged velocity profiles (blue and yellow curves). Orange and red curves correspond to the cases 
presented in Fig. 5. Linear trends have been marked with a continuous line (black or white) to ease visu- 
alization of shear bandings.

5 .2 .7 . OVERVIEW AND PHASE DIAGRAM
The various behaviours found in the active polar emulsion under shear have been sum- 
marized in Fig. 5.17, at varying Er and Eract. At small Eract, the system arranges in a 
lamellar configuration. In this range, at small shear rates, few persistent defects (dislo­
cations) give rise to slight deformations in velocity profiles (dashed-red region in Fig. 5.17) 
Increasing E r , dislocations are washed out by the flow and the system enters the region 
of linear velocity profiles (red region in Fig. 5.17). As activity is increased, morphology 
is characterized by a transition towards asymmetric configurations, with the formation 
of a thick layer of material close to one boundary, thus generating a non-vanishing flux 
of matter -  a behaviour addressed as unidirectional flow. Such regime is stable for a 
broad range of Er at intermediate active dopings (grey region in Fig. 5.17). By further 
increasing activity, at high shear rate, phase demixing is more pronounced and this has 
important consequences on the flow. Active layers form on both walls and symmetry is 
restored. Under these conditions, it may happen that the velocity gradient in the bulk of 
the system is either everywhere vanishing or, eventually, opposite to the one externally 
imposed (negative viscosity), despite such states are found to be unstable in the long 
term. The region with stable symmetric profiles is green in Fig. 5.17. Cases in the blue 
region are instead characterized by the jumping dynamics described in the previous 
section.

We also remark that the results presented in this Chapter strictly hold for bidimen- 
sional geometries -  as often happens in experimental realizations of active systems, 
where bacteria and cytoskeletal suspensions are usually confined at a water-oil inter­
face [48, 208]. In full 3d environments -  where both vortex stretching of the flow field 
and twisting of the polarization field are allowed -  the proliferation of degrees of free- 
dom may strongly affect the behaviour of the system that is indeed different even in 
absence of any internal and/or external forcing [24, 85].

We have showed how the competition between externally imposed shear and lo­
cal energy injection results in a wealth of different rheological behaviours, that can be 
explained in terms of specific dynamical mechanisms. As an example, jumps between 
velocity profiles with positive and negative gradients are due to collisions between large



active droplets or domains and active layers coagulated on the moving walls. The gen- 
eralized active gel model proposed in this work has allowed us to perform a fully 2d  
analysis, by keeping under control the time evolution of the important variables, such 
as the local concentration and the orientation of the active constituents. Thus we con- 
firmed, by varying both external and internal forcing, the existence of superfluidic and 
negative viscosity states found experimentally in bacterial suspensions [82, 119] whose 
first numerical confirmation by means of quasi-1d simulations was furnished in [118]. 
Moreover, we also found that a maximum entropy production principle holds in select- 
ing the most probable state in the intermittent viscosity regime.

Since most of the observed behaviours mainly arise due to the elastic properties 
of the order parameter, they are expected to stay valid also in nematic systems. This 
because the dynamics of polar systems differs from their nematic counterpart mainly 
for the allowed topological defects. THe hope is that this study can stimulate the design 
of new active materials and devices with pioneering applications.

5 .2 .8 . RHEOLOGY OF CONTRACTILE EMULSIONS
So far we have analysed the behaviour of a symmetric extensile (Z > 0) polar emulsion. 
One may ask what happens if we change the sign of activity. In this section we analyse 
the behaviour of a contractile (Z < 0) polar emulsion.

As reported at the beginning of this chapter, the shear-free symmetric system shows 
a transition from lamellar phase to an emulsion of passive droplets in an active matrix 
at Z ~ -0.007 (Eract = 0.80) [11]. This behaviour becomes more complex under shear.

As contractile activity is raised (IZI > 0.0035, Eract > 0.4) and the imposed shear 
rate is weak (Er < 0.030), the system sets into new morphological patterns. In the two 
regions close to the walls, an emulsion of passive droplets in an active background is 
formed (see panel (a) ofFig. 5.18 and ofFig. 5.19). A similar pattern was also found in 
shear-free contractile emulsions for |ZI > 0.005. A new feature due to the imposed shear 
is that a channel of isotropic fluid, populated by small droplets of active material, devel- 
ops in the middle of the system. This effect leads to slight shear-bandings, visible in the 
yellow velocity profile shown in Fig. 5.18(c) -  also including results of the cases shown in 
Fig. 5.19. As shear strength is increased, active droplets are progressively washed away 
from the isotropic channel and almost disappear for Er >  0.055 (panel (b) ofFig. 5.18



and of Fig. 5.19). Strong shear bandings is found in correspondence of the interfaces 
between the passive channel and the two regions characterized by presence of passive 
droplets dispersed in the active matrix, as shown by the blue line in panel (c) of Fig 5.18 
(asimilar (vx> profile is also found for the case at Eract = 0.456, Er = 0.067 (orange line), 
whose configuration is shown in Fig. 5.19(b)). For what concerns the rheological char- 
acterization, we confirm shear thickening for increasing activity (Fig. 5.19c), as found 
in other contractile fluids [59, 68, 124].

We now ask if activity alone is responsible for the formation of the channel. To this 
task, we performed a series of simulations starting from a configuration characterized, 
at stationarity, by the presence of a channel (left configuration in the first row from 
above in Fig. 5.20). If we switch off the externally applied shear, the system sets in a 
disordered lamellar array, as should be for the chosen value of activity. We then switch 
off activity and turn on again the imposed shear. What happens is that the system first 
creates a channel of polar droplet (right panel in central row of FIg. 5.20), that is found 
to be unstable in the long term, giving way to asymmetric configurations (left panel 
in the central row of Fig.5.20), resembling those discussed earlier in this Chapter for 
the case of extensile activity. To test if this system develops hysteresis feature, we now 
switch on activity again in both symmetric and asymmetric configurations. The lower 
row of Fig. 5.20 shows that activity is not capable of altering the initial configuration.



activity stabilizes the symmetric configuration

Figure 5.20: Is activity responsible for the channel formation? we performed a series of simulations start­
ing from a configuration characterized, at stationarity, by the presence of a channel (left configuration in 
the first row from above in Fig. 5.20). If we switch off the externally applied shear the system set in a disor- 
dered lamellar array, as should be for the chosen value of activity. We then switch off activity and turn on 
again the imposed shear. What happens is that during the evolution the system first create a channel of 
active droplets (right panel in central row of Fig. 5.20), but eventually the spontaneous symmetry break­
ing described earlier in the chapter, bring the system in a asymmetric configuration (left panel in the 
central row of Fig.5.20). We now switch on activity starting both from the symmetric and the asymmetric 
configurations. The lower row of Fig. 5.20 shows the results of this final step. The Symmetric configura­
tion is stabilized by activity, even if at stationarity the asymmetric one should be the final configuration 
for values of activity and shear rate considered.





6
CONCLUSIONS

In this thesis we have studied numerically different aspects of active fluids. First in 
Chapter 1 we have reviewed some experimental results concerning the two main fea­
tures of active fluids we have been mostly interested in: emergence of spontaneous flow 
and peculiar rheological properties, that do not have a counterpart in ordinary matter.

In Chapter 2 we have analysed the continuos theory on which we rely for the modeli- 
sation of such systems. In particular we reviewed De Gennes’ theory for Liquid Crystals, 
and we provided an overview on topological defects. We also introduced the dynami- 
cal equations of the theory. As an example of the success of such theories to model the 
behavior of an active fluids, we considered the phenomenon of spontaneous flow.

The numerical results presented in this thesis have been obtained integrating the 
evolution equations by means of a lattice Boltzmann approach, to whom is dedicated 
Capthr 3. After presenting the main features of LB, we also presented some results con­
cerning the comparison between two different LB schemes -  namely collision stream­
ing LB and finite difference LB. In this Chapter we have also reported some tests con­
cerning the numerical stability of the code and its scaling properties in parallel envi- 
ronments.

The rest of this dissertation is dedicated to some hot topics in the hydrodynamics 
of active matter. This is found to experience a certain number of interesting behaviour, 
ranging from spontaneous flows to negative viscosity. Understanding the Physics be- 
yond the non-equilibrium phenomena driving active systems is key for their imple- 
mentation in novel technological applications and for the understanding of more fun- 
damental topics in Soft Matter -  for instance the hydro-nematic interaction of topolog­
ical defects. To this aim, in Chapter 4 ,1 investigated the role of chirality in biological flu­
ids. In particular we have analysed the hydrodynamic instabilities of an active chiral ne­
matic droplet with tangential anchoring. We introduced activity as either a collection of 
dipolar forces or torques. Our simulations show that the interplay between activity and 
thermodynamic chirality in a 3d fluid droplet leads to a strikingly rich phenomenol- 
ogy. In the case of force-dipoles only we found a novel motility mode, whose screw-like 
propulsion arises as the effect of the non-trivial coupling between thermodynamic chi­
rality and the active flow powdered by deformation of the liquid crystal pattern. For a 
fluid with active torque dipoles, instead, global rotations with intermittent sense arise 
when the active torque favours a different twist with respect to that introduced by the



thermodynamic chirality. The resulting defect dynamics strongly resembles the one 
observed recently in experiments on active nematic shells thus suggesting that chiral- 
ity may play a fundamental role in the assembling and dynamical behaviour of actual 
experimental systems.

To characterize motility features of a droplet in a more fundamental way, I presented 
results coming from a compressible actomyosin system, where a high density droplet 
(actomyosin blob) emerges due to active contraction only. For sufficiently strong activ­
ity, we found the self-assembled droplet swims inside a low density actomyosin back­
ground. We thus conclude that motion requires symmetry breaking, which can arise 
due to fluctuations and hydrodynamic instabilities, in accordance to the kind of system 
considered. Once symmetry is broken, a positive feedback mechanism is responsible 
for the motion.

Finally, in Chapter 5 we presented results regarding the morphological and rheolog­
ical characterization of a active polar emulsion in bidimensional geometries. We con- 
sidered an emulsion made of an active polar component and a passive isotropic fluid 
for different preparations of the mixture. Even in this situation we found that weak 
activity is not capable to alter significantly the dynamics of the system, thus setting 
into a configuration made of an array of droplets if the mixture is asymmetric, or locally 
aligned lamellae if symmetric. In both cases we found that ordering arrests at early sim­
ulation times with some defects in the arrangements. For moderate values of activity, 
ordering does not arrest, since activity provides a perpetual source of energy that keep 
stirring the fluid thus favouring the elimination of defects. For strong activities, the flow 
develop chaotic features resembling the ones typical of hydrodynamic turbulence.

Having studied the different morphological and flow regimes we then characterized 
the rheological behaviour. To do so we confined the system between two moving walls. 
In order to compare external and active forcing in our system, we make use of the Erick- 
sen number E r , proportional to shear, and the active Ericksen number Eract as relevant 
adimensional quantities.

At small Eract, the system arranges in a lamellar configuration. In this range, at 
small shear rates, few persistent defects (dislocations) give rise to slight deformations in 
velocity profiles (dashed-red region in Fig. 5.17). Increasing E r , dislocations arewashed 
out by the flow and the system enters the region of linear velocity profiles (red region in 
Fig. 5.17). As activity is increased, morphology is characterized by a transition towards 
asymmetric configurations, with the formation of a thick layer of material close to one 
boundary, thus generating a non-vanishing flux of matter -  a behaviour addressed as 
unidirectional flow. By further increasing activity, at high shear rate, phase demixing is 
more pronounced and this has important consequences on the flow. Active layers form 
on both walls and symmetry is restored. Under these conditions, it may happen that 
the velocity gradient in the bulk of the system is either everywhere vanishing or, even­
tually, opposite to the one externally imposed (negative viscosity), despite such states 
are found to be unstable in the long term, leading to a situation where the system is 
characterized by jumps from superfluidic to negative viscosity states. Moreover, we 
also found that a maximum entropy production principle holds in selecting the most 
probable state in this intermittent viscosity regime.

Since most of the observed behaviours mainly arise due to the elastic properties 
of the order parameter, they are expected to stay valid also in nematic systems. This



because the dynamics of polar systems differs from their nematic counterpart mainly 
for the allowed topological defects. We hope that this study can stimulate the design of 
new active materials and devices with pioneering applications.
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h i g h l i g h t s

•  The morphology and the dynamics of an emulsion made of a polar active gel and an isotropic passive fluid is studied.
•  We focus on the case of a highly off-symmetric ratio between the active and passive components.
•  In absence of activity the stationary state is characterized by an hexaticaly ordered array of droplets.
•  Small amount of activity favors the elimination of defects in the array of droplets.
•  Rising activity new and interesting morphologies arises depending on whether the system is contractile or extensile.

a r t i c l e  i n f o  a b s t r a c t

We investigate numerically, by a hybrid lattice Boltzmann method, the morphology and the 
dynamics of an emulsion made of a polar active gel, contractile or extensile, and an isotropic 
passive fluid. We focus on the case of a highly off-symmetric ratio between the active and 
passive components. In absence of any activity we observe an hexatic-ordered droplets 
phase, with some defects in the layout. We study how the morphology of the system is 
affected by activity both in the contractile and extensile case. In the extensile case a small 
amount of activity favors the elimination of defects in the array of droplets, while at higher 
activities, first aster-like rotating droplets appear, and then a disordered pattern occurs. In 
the contractile case, at sufficiently high values of activity, elongated structures are formed. 
Energy and enstrophy behavior mark the transitions between the different regimes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The capability o f different system s o f using energy taken from their environm ent to go out o f therm al equilibrium , 
gives rise to a w ealth  o f behaviors [1]. They range from sw arm ing, self-assem bly, spontaneous flow s to other collective  
properties [2 - 5 ]. This boosted  a deep interest in addressing their study in order to look for possible n ew  physics, explore  
com m on features b etw een  different system s, and develop n ew  strategies in designing synthetic devices and m aterials w ith  
sm art properties.

Self-propelled objects represent a remarkable exam ple of active m atter. Starting from the sem inal m odel o f Vicsek [6 ] 
for sw arm s, it w as later realized that com m on features can be traced in several system s at different scales prom oting  
the introduction o f statistical m odels able to describe such behaviors [7 - 10 ]. Another exam ple of active m atter, sharing
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Chirality is a recurrent theme in the study of biological systems, 
in which active processes are driven by the internal conversion 
of chemical energy into work. Bacterial flagella, actomyosin fil­
aments, and microtubule bundles are active systems that are 
also intrinsically chiral. Despite some exploratory attempt to 
capture the relations between chirality and motility, many fea- 
tures of intrinsically chiral systems still need to be explored and 
explained. To address this gap in knowledge, here w e study the 
effects of internal active forces and torques on a 3-dimensional 
(3D) droplet of cholesteric liquid crystal (CLC) embedded in an 
isotropic liquid. We consider tangential anchoring of the liquid 
crystal director at the droplet surface. Contrary to w hat happens 
in nematics, w here moderate extensile activity leads to droplet 
rotation, cholesteric active droplets exhibit more complex and 
variegated behaviors. We find that extensile force dipole activ­
ity stabilizes complex defect configurations, in which orbiting 
dynamics couples to thermodynamic chirality to propel screw-like 
droplet motion. Instead, dipolar torque activity may either tighten 
or unwind the cholesteric helix and if tuned, can power rotations 
with an oscillatory angular velocity of 0 mean.

active fluids | liquid crystals | chirality | cell motility

Chirality is a generic feature of most biological m atter (1-3). 
A  right-left asymmetry may arise at either the microscopic 

or macroscopic level and be due to thermodynamic (passive) 
or nonequilibrium (active) effects. For instance, a microtubule- 
motor mixture breaks chiral symmetry in 2 ways. First, micro­
tubules are intrinsically helical (4). Second, kinesin or dynein 
motors exploit adenosine triphosphate hydrolysis to twist their 
long chains and apply a nonequilibrium active torque on the 
fibers they walk along (5). Similarly, bacteria, such as Escherichia 
coli, but also, sperm cells are equipped with long helical flag­
ella. Motor proteins anchored to the cellular membrane generate 
torques to impart rotational motion on the flagella, the helix of 
which generates a flow in the viscous environment, leading to cell 
propulsion (6, 7).

Biological fluids are active, as they are internally driven by 
the constant injection of energy, which prevents them from 
relaxing toward any thermodynamic steady state (8). A  simple 
and successful theory to model an active fluid is to approxi- 
mate each of its microscopic constituents (e.g., a microtubule 
or a single bacterium) as an entity that exerts a dipolar force 
on the environment (9). The dipole direction introduces ori- 
entational order resembling that of liquid crystals (LCs). The 
resulting active nematic has been found, both experimentally 
and numerically, to develop unexpected and striking behav- 
iors, such as spontaneous flow, active turbulence, and super- 
fluidic states (10, 11). Much effort has been spent in the last 
decades to capture the essential dynamics of active fluids, rang- 
ing from multiparticle models to continuum theories (12-14). 
The theory has been able to capture experimentally observed fea- 
tures, like turbulent-like patterns in 2-dimensional bacterial films 
(15) or spatiotemporal pattern formation and topological defect 
dynamics in active emulsions containing microtubule-kinesin 
mixtures (16).

Understanding the outcome of the interplay between chiral­
ity and activity is an important and timely question. In stark

contrast with the case of achiral active nematics, which has com- 
manded a lot of attention in recent years, much less is known 
about the dynamics of chiral active systems (17-19). Previous 
work has mainly focused on cases where chirality only enters 
the system because of activity in the form of a nonequilibrium 
torque dipole (17, 18). Instead, we consider here a system that 
is inherently chiral and apolar and therefore, can be modeled— 
in the passive phase— as a cholesteric liquid crystal (CLC) (20, 
21). Specifically, here we study a 3-dimensional (3D ) active CLC 
droplet with tangential orientation of the director at its sur- 
face. In this setup, an active nematic droplet can only sustain 
uniform rotational motion driven by bend deformations local- 
ized around the equatorial circle of the droplet (Fig. 1). Instead, 
an intrinsically chiral droplet displays a much richer dynami- 
cal behavior. First, we find that a force dipole activity enables 
a motility mode where the rotational motion of the surface 
defects is converted into propulsion. This mechanism requires 
chirality to reconfigure the pattern of surface defects. It is not 
possible in a nematic, where the symmetry in defect position pre- 
vents any translational motion. Second, a torque dipole activity 
sets up a sustained mirror rotation of 2 pairs of disclinations, 
which periodically adsorb onto and depin from the droplet sur- 
face. Again, no such state can be found in an originally nematic 
system. We also characterize how the active flow and orienta­
tion patterns evolve as the ratio between the droplet size and 
pitch increases.

The ordering properties within the CLC droplet are described, 
in the uniaxial limit, by the nematic tensor Q =  S (nn — I/3), 
where the director field n is a unit headless vector describ- 
ing the local average orientation of the components and S is 
a scalar field expressing the degree of order. The equilibrium

Significance

Chirality plays an important role in many biological systems. 
Biomolecules, such as DNA, actin, or microtubules, form heli­
cal structures, which at sufficiently high density and in the  
absence of active forces, tend to self-assemble into twisted  
cholesteric phases. We study the effect of activity on a droplet 
of chiral matter, finding a surprisingly rich range of dynamical 
behaviors ranging from spontaneous rotations to screw-like 
motion. The phenomena that w e uncover require both ther­
modynamic chirality and activity and are linked to the non- 
trivial topology of the defects that form by necessity at the  
droplet surface. It would be of interest to look for analogues 
of the motility modes found here in chiral microorganisms 
occurring in nature or in synthetic active matter.
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Abstract. We review the s ta te  of the a rt of active fluids w ith particular a tten tion  to hydrodynam ic con- 
tinuous models and to the use of Lattice Boltzm ann M ethods (LBM) in this field. We present the thermo- 
dynamics of active fluids, in term s of liquid crystals modelling adapted  to describe large-scale organization 
of active systems, as well as other effective phenomenological models. We discuss how LBM can be imple- 
mented to  solve the hydrodynamics of active m atter, starting  from the case of a simple fluid, for which 
we explicitly recover the continuous equations by means of Chapman-Enskog expansion. Going beyond 
this simple case, we summarize how LBM can be used to trea t complex and active fluids. We then  review 
recent developments concerning some relevant topics in active m atter th a t have been studied by means of 
LBM: spontaneous flow, self-propelled droplets, active emulsions, rheology, active turbulence, and active 
colloids.

1 Introduction

The goal of this paper is to  describe the use of the lattice 
Boltzm ann m ethods in the study  of large-scale properties 
of active fluids [1-7], also showing the recent progress 
in few relevant topics. Active fluids are living m a tte r or 
biologically inspired systems w ith the common charac- 
teristic of being composed by self-propelled (or active) 
units th a t burn  stored or am bient energy and tu rn  it into 
work giving rise, eventually, to  system atic movement. An 
example in natu re  is given by the cell cytoskeleton or, 
in laboratory, by synthetic suspensions of cell extracts 
w ith molecular m otors (e.g., myosin or kinesin) [8, 9]. 
Molecular m otors exert forces on cytoskeletal filaments 
(actin filaments and m icrotubules) [10] and trigger their 
m otion in the surrounding fluid. These forces, exchanged 
th rough transient and motile contact points between 
filaments and m otor proteins, result from the conversion 
of chemical energy, typically coming from ATP hydrolysis, 
into mechanical work.

Active systems show m any interesting physical proper­
ties, of general character, related to  their collective behav- 
ior, rem arkable especially when com pared w ith their ana- 
logue in passive or equilibrium  systems. P a tte rn  form ation 
is an example. A disordered array of m icrotubules m ay ar- 
range into spiral or aster configurations when the concen- 
tra tio n  of m otor proteins like kinesin is sufficiently high [8]. 
Suspensions of bacteria, despite their low Reynolds num- 
bers, can exhibit tu rbu len t flow pa tte rn s [11,12], charac-

a e-mail: G iu sep p e .G o n n ella@ b a.in fn .it

terized by traveling je ts  of high collective velocities and 
surrounding vortices. Active fluids can be classified ac- 
cording to  their swimming mechanism as extensile or con- 
tractile , if they respectively push or pull the surround- 
ing fluid. This difference m arks all the phenomenology 
of active fluids and, in particular, has im portan t effects 
on the rheological properties. A ctivity is either capable 
to  develop shear-thickening properties in contractile sys- 
tem s [13-17], or to  induce a superfluidic regime under su it­
able conditions in extensile suspensions [18-20]. Simula- 
tions of extensile active emulsions under constant shear 
have shown the occurrence of velocity profiles (for the 
com ponent of velocity in the direction of the applied flow) 
w ith inverted gradient (negative viscosity) and also jum ps 
in the sign of apparent viscosity [18-20].

O ther striking properties have emerged in the study  of 
fluctuation sta tistics [21-26] and of order-disorder phase 
transitions [6,27,28]. F luctuations and phase transitions 
have been m ainly analyzed in the context of agent-based 
models. The flocking transition  [29], for instance, was the 
first one to  be studied in a model of point-like particles 
moving a t fixed speed and w ith aligning interaction  [30]. 
A ctivity  alone actually  favors aggregation and can induce 
a phase transition , often called M otility-Induced Phase 
Separation (MIPS) [31]. This has been num erically stud- 
ied by using simple models of active colloids w ith excluded 
volume interactions and various shapes [32-39]. The parti- 
cle description has been also largely used in other contexts, 
to  sim ulate, for example, the self-organization of cytoskele­
ton  filaments described as semiflexible filaments [40].
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We present here a comparison between collision-streaming and finite-difference lattice Boltzmann 
(LB) models. This study provides a derivation of useful formulae which help one to properly 
compare the simulation results obtained with both LB models. We consider three physical problems: 
the shock wave propagation, the damping of shear waves, and the decay of Taylor-Green vortices, 
often used as benchmark tests. Despite the different mathematical and computational complexity 
of the two methods, we show how the physical results can be related to obtain relevant quantities.
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Abstract -  Cell m otility is crucial to  biological functions ranging from wound healing to immune 
response. The physics of cell crawling on a substrate is by now well understood, whilst cell motion 
in bulk (cell swimming) is far from being completely characterized. We present here a minimal 
model for p a tte rn  form ation within a compressible actomyosin gel, in bo th  2D and 3D, which 
shows th a t contractility leads to  the emergence of an actomyosin droplet w ithin a low density 
background. This droplet then  becomes self-motile for sufficiently large m otor contractility. These 
results may be relevant to  understand the essential physics a t play in 3D cell swimming within 
compressible fluids. We report results of bo th  2D and 3D numerical simulations, and  show tha t 
the compressibility of actomyosin plays an im portant role in the transition  to  motility.

C opyright ©  EPLA , 2019editor's choice

In tro d u ctio n . — U nderstanding how cells move 
around their surroundings is a fascinating question th a t 
has gained much a tten tion  in the recent past. Answering 
th is question would constitu te a substan tia l step-forward 
in dissecting the fundam ental mechanisms underlying 
biomedical problem s like wound-healing and tissue self- 
assembly during embryogenesis [1]. Spontaneous move- 
m ent and deform ation are physically driven by the cell 
cytoskeleton. T he cytoskeleton consists of protein fila- 
m ents and m otors which constantly  consume chemical en- 
ergy (A T P ) and convert it to  work. In  particu lar, actin 
filaments in teract w ith myosin m otors to  generate con- 
trac tion  forces in the cell, which can drive cell m otion and 
division [2-7].

Most of the research has focused, bo th  experim entally 
and theoretically, on cells m igration on a two-dimensional 
substra te  (crawling) [8-11], m ainly because such experi- 
m ental system s are easily accessible hence th is m otion is 
more readily observable. These studies have stim ulated 
the development of theories which now provide a detailed 
outline of some basic m igration mechanisms, including 
the form ation of lamellipodia arising from actin  polymer- 
ization at the cell front, adhesion-m ediated traction , and

actom yosin  contractility. The crawling m otility  mode re- 
quires actin  cytoskeleton to  be anchored to  the substrate 
th roughout focal adhesions, th a t are clusters of transm em ­
brane proteins binding to  the substra te  [8].

However some cells, such as breast tum or cells, can also 
“swim” in a straight line inside a 3D tissue or a polymeric 
fluid [12]. Unlike cell crawling, in th is case there is no 
solid surface present, and no cellular protrusion reminis- 
cent of a lam ellipodium  (the cell shape instead remains 
roughly spherical). The lack of protrusions suggests th a t 
actin  polym erisation m ay not be crucial for 3D cell swim­
ming. Indeed, myosin m otors contraction is believed to  be 
the sole responsible for cell polarisation and m otility  [12]: 
together w ith some experim ents on tum our cells [13], this 
observation suggests th a t cell swimming may be prim arily 
driven by myosin activity.

Models of contraction-induced m otility  have been pro- 
posed in refs. [5-7,14]. All these considered the case of 
an active droplet moving inside a simple (Newtonian) and 
passive outer fluid. In some cases, the m aterial inside 
the droplet was an active liquid crystal, in which case 
the onset of m otility  required rectifications of orienta- 
tional splay fluctuations of an order param eter linked to

58001-p1

http://www.epljournal.org


Pu
bl

ish
ed

 
on 

25 
Se

pt
em

be
r 

20
19

. 
D

ow
nl

oa
de

d 
by 

CN
R 

on 
11

/5
/2

01
9 

10
:0

2:
44

 
A

M
.

Soft Matter
ROYAL SOCIETY OF CHEMISTRY

PAPER View  Article Online
View Journal | View Issue

H> Check for updates

Cite this: Soft Matter, 2019, 
15, 8251

Rheology of active polar emulsions: from linear to 
unidirectional and inviscid flow, and intermittent 
viscosityf
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The rheological behaviour of an em ulsion made of an active polar com ponent and an isotropic passive 
fluid is studied by lattice Boltzm ann methods. Different flow  regimes are found by varying the values of 
the shear rate and extensile activity (occurring, e.g., in m icrotubule-m otor suspensions). By increasing 
the activity, a first transition occurs from the linear flow  regime to spontaneous persistent unidirectional 
m acro-scale flow , followed by another transition either to a (low shear) intermittent flow  regime with 
the coexistence of states with positive, negative, and vanishing apparent viscosity, or to a (high shear) 
sym m etric shear thinning regime. The different behaviours can be explained in term s of the dynamics of 
the polarization field close to the walls. A maxim um  entropy production principle selects the most likely 
states in the intermittent regime.

1 Introduction
Active gels1-3 are a new class of complex fluids with striking 
physical properties and many possible innovative applications.4-8 
As other kinds of active systems,9-17 they are maintained in their 
driven state -  far from thermodynamic equilibrium -  by energy 
supplied directly and independently at the level of individual 
constituents. Examples are suspensions of biological filaments, 
such as actomyosin and microtubule bundles, activated with 
motor proteins18-21 and bacterial cultures.22’23 The constituents 
of these systems have the natural tendency to assemble and align, 
thus developing structures with typical polar or nematic order. 
The combination of this property with self-motility capacity is at 
the origin of a wealth of interesting phenomena, not observable in 
the absence of activity,24 including spontaneous flow,1’25’26 active 
turbulence at low Reynolds numbers,22’27’28 and unusual rheo­
logical properties.3’29 Most of these behaviours were found in 
single component fluids, while mixtures of active and passive 
components have not been investigated too much so far.30

Complex rheological behaviours in active matter depend on 
the interplay between the external forcing and the circulating 
flow induced by active agents. For instance, the swimming

aDipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, 
via Amendola 173, Bari, I-70126, Italy. E-mail: livio.carenza@ba.infn.it 

bIstituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 1-70126 Bari, Italy 
c Center fo r  Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia,

00161 Rome, Italy
dIstituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy 
t  Electronic supplementary information (ESI) available. See DOI: 10.1039/ 
c9sm01288e

mechanism of pusher microswimmers, like E. Coli, produces 
a far flow field characterized by quadrupolar symmetry, in 
which fluid is expelled along the fore-aft axes of the swimmer 
and drawn transversely, thus leading to extensile flow patterns. 
These enforce the applied flow, in the case of flow-aligning 
swimmers, causing shear thinning.31 This may lead to the 
occurrence of a superfluidic regime with vanishing (apparent) 
shear viscosity, which was speculated in ref. 32 for the case of 
active liquid crystals close to the isotropic-nematic transition. 
Experiments33,34 and further theories35 confirmed that extensile 
active components are able to lower the viscosity of thin film 
suspensions. An effective inviscid flow was observed in ref. 36 and 
more recently in ref. 37, when the concentration and activity 
of E. Coli are sufficiently large to support coherent collective 
swimming. A related feature in extensile gels is the appearance 
of persistent uni-directional flows in experiments on bacterial 
suspensions38 and ATP-driven gels.39 Recently, numerical simula- 
tions in quasi-1d geometries and linear analysis of active polar 
liquid crystal models have shown the occurrence of vanishing and 
even negative viscosity states.40 However, a complete characteriza- 
tion of the rheology of fully 2d active compounds has never been 
accomplished so far, despite being fundamental to unveil 
dynamical mechanisms leading to the complex properties 
presented. We also mention that puller swimmers -  exerting 
a contractile force dipole on the surrounding fluid -  still 
generate a quadrupolar far flow field, but this time the fluid 
is expelled transversely to their body. This explains the shear 
thickening behaviour observed in experiments performed on 
suspensions of C. reinhardtii41 -  a species of micro-alga that 
propels itself by means of two flagella producing contractile

This Journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 8251-8265 | 8251
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The morphology of a mixture made of a polar active gel immersed in an isotropic passive fluid is 
studied numerically. Lattice Boltzmann method is adopted to solve the Navier-Stokes equation 
and coupled to a finite-difference scheme used to integrate the dynamic equations of the con­
centration and of the polarization of the active component. By varying the relative amounts of 
the mixture phases, different structures can be observed. In the contractile case, at moderate 
values of activity, elongated structures are formed when the active component is less abundant, 
while a dynamic emulsion of passive droplets in an active matrix is obtained for symmetric 
composition. When the active component is extensile, aster-like rotating droplets and a phase- 
separated pattern appear for asymmetric and symmetric mixtures, respectively. The relevance 
of space dimensions in the overall morphology is shown by studying the system in three 
dimensions in the case of extensile asymmetric mixtures where interconnected tube-like 
structures span the whole system.
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Abstract. In this paper an in silico study of the behavior of an active polar emulsion is reported, focusing on the case of a highly 
off-symmetric ratio between the polar (active) and passive components, both for the extensile and contractile case. In absence of 
activity the system is characterized by an hexatic-ordered droplets phase. We find that small extensile activity is able to enhance the 
hexatic order in the array of droplets with respect to the passive case, while increasing activity aster-like rotating droplets appear. 
In contractile systems activity creates shear flows and elongated structures are formed.

INTRODUCTION

Active matter is a class of materials whose constituents are able to consume energy to move or to exercise stresses 
locally [1]. Research in this field has been mainly focused on single-component active systems and to a lesser extent 
on the behavior of solutions of active and passive components. Binary fluids with an active component have been 
considered in [2, 3] and very recently [4] a model has been introduced, where emulsification of the active component 
is favored by the presence of surfactant added to the mixture. This model generalizes the active gel theory to describe 
the behavior of a mixture of isotropic passive and polar active fluids, and, by numerical simulations, it was shown that 
activity strongly affects the behavior of the mixture, leading to a variety of morphologies whose formation strongly 
depends on the intensity and the kind of active doping. Indeed, polar active fluids are said to be either extensile 
(e.g. bacterial colonies and microtubules bundles) or contractile (e.g. actine and myosin filaments) according to the 
nature of the stress exerted by the active component on its neighborhood. Introducing a parameter that represents the 
strength of the active stress acting in the system (see Section MODEL AND METHODS), intensity of active doping 
can be tuned. This corresponds experimentally to keeping under control the amount of ATP in active gels of bundled 
microtubles [5] or the amount of oxygen available, the concentration of ingredients, or the temperature in bacterial 
suspensions.

In this work we complement previous analysis by considering a highly off-symmetric mixture with a 10 : 90 ratio 
between the active and passive components, both for extensile and contractile systems. In this case the equilibrium 
state of the system is characterized by an ordered array of droplets of the minority phase positioned at the vertices of 
a triangular lattice. We will show that, in spite of the strong unbalance between the two components, activity greatly 
affects the morphology of the system, leading to the development of a wide range of patterns both for the concentration 
and the velocity field. A small amount of extensile activity favors the elimination of defects in the system, as shown by 
measuring the number of defects in Voronoi tessellation. Increasing activity, isolated droplets tend to merge forming 
big rotating droplets with an aster-like shape. In the contractile case activity promotes the rupture of the hexagonal 
phase and the appearance of a matrix of the active component in the passive flowing background, differently from 
what happens in the symmetric case[4].
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A
L i q u i d -V a p o r  P h a s e  s e p a r a t i o n

When a fluid, initially in a disordered state, is immediately cooled to a temperature be- 
low the spinodal line 1, in a region of coexistence between two phases, domains of the 
two different phases are formed and grow over time. In this case the phase separa­
tion takes the spinodal decomposition name. Typically the growth of such domains is 
a scale phenomenon, that is, there is a single length feature that tells the structure of 
the domains appears the same during the time evolution, when all lengths are rescaled 
with respect to l . The above is called thedynam ical scalinghypothesis, and is supported 
by results of numerical simulations and experiments for the structure factor and cor- 
relation functions. Typically the average domains size l (t) grows over time according 
to a power law, with an exponent a  that depends on the presence of hydrodynamic ef­
fects and on the number of order parameter components and whether it is conserved 
or not. For binary mixtures we can distinguish three different regimes [14], each char­
acterized by a specific physical growth mechanism, whose existence can be deduced by 
analysing the dynamics equations, Navier-Stokes equations and the order parameter 
evolution equation, and assuming that there is only one relevant characteristic length:

• diffusive
Immediately following a quench, i.e. a sharp decrease in temperature, the growth 
mechanism of domains is the diffusion of molecules from smaller domains, larger 
curvature, to larger domains with lower curvature. It can be shown that the expo­
nent with which the domains grow over time is in this case a  = 1/3

• Hydrodynamic viscous
When, during the phase separation process, hydrodynamics begins to be relevant 
but the speeds are small and vary little over time, we can assume that the inertial 
term in the Navier-Stokes equations is negligible. Thus imposing viscous forces 
to be balanced by interface forces, it is possible to show that, in this regime, a  = 1 
(as highlighted first by Siggia).

• Hydrodynamic inertial
For higher velocities, the relevant physical phenomenon becomes the balance

1 Curve in the temperature-density diagram, locus of points characterized by null second deirvatives of 
the Gibbs free energy.
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Figure A.1: Numerical phase diagram. Phase diagram, in the (T / Tc, p) piane, of liquid-vapor phase sepa­
ration. Squares and circles corresponds to numerical values, while continuum branches refer to theoret- 
ical prediction of the Maxwell construction.

between interface forces and inertial ones. Under this assumption one obtains 
a  = 2/3.

The inertial regime, for small viscosity values, and the viscous regime, for higher val­
ues of viscosity, have been observed numerically in an important workby Keadon et al.
[121], for 3D  binary mixtures. For single-component systems with Liquid-Vapor phase 
separation, where the order parameter is the density p, which is not locally conserved, 
only few results for 3D systems exist. Most of the work in past has been concerned with 
2D systems [171], and reported evidence of an inertial regime with a  = 2/3, and of a 
regime characterized by a growth exponent a  = 1/2 for sufficiently high viscosities. The 
only work that considered Liquid-Vapor phase separation in 3D is [105], where authors 
report evidence of only the inertial (a = 2/3) regime.

We performed 3D LB simulations of a van der Waals fluid as described in Chapter 3. 
In particular we used collision-streaming LB, where the only two relevant parameters 
are the relaxation time t, that controls the viscosity, and the interface parameter k , di- 
rectly related to the interface width and to the surface tension a. First we reconstructed 
numerically the phase diagram in the temperature-density (T /T c, p)2 plane. Results are 
shown in Fig. A.1, with the theoretical curves, obtained from Maxwell construction, for 
comparison. Results corresponding to larger interface width and higher temperatures 
show a better match with theoretical predictions. Overall results are in good agreement 
with density values obtained from Maxwell construction, though deviations become 
larger reducing temperature.

We now discuss the results concerning the kinetics of phase separation on systems 
of size 5123, summarizing them on a scaled plot. In the dynamical scaling hypothesis,

2 Tc is the critical temperature.
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Figure A.2: Domain size. Scaling plot in the reduced variables (l/l0, t -  tint/ t0), for 5123 LB simulations. 
Straight black and violetlines represent slopes 1/2 and2/3 respectively.

one can define units of length and time by

lo = n2/(a p ), to = n3/(a 2p), (A.1)

which are the only such units derivable from n, a, p. Data have been fitted, after the 
crossover region, with:

l (t) = ( t -  tint)a . (A.2)

Results are displayed, in the reduced variables (l/l0, t -  tint/ t0), in Fig.A.2.

A . 1 .  K i n e t i c s  a n d  m o r p h o l o g y

We focus here on two cases with t  = {0.5,2}, for T = 0.95 and k = 0.1, which give expo- 
nents 2/3 and and 1/2. Domain growth is reported for both cases in Fig. A.3a. Growth 
for t  = 0.5 (red curve) is clearly consistent with the slope 2/3. The grey curve on the 
same plot refers to the case t  = 2. In this case, phase separation is ,as expected, delayed 
with respect to the previous case, and after a long crossover, 3/10 of a decade before the 
cut-off, growth with an exponent a  -  1/2 starts. To better characterize the two different 
growth laws, we measured the separation depth S(t). It is defined as

s  = { p(x ) -  p0 }, (A.3)
P e q (x) -  P0

where p0 is the initial mean density, brackets indicate volume average, and

, . \ p l i qui d , if p(x) > p0 
P e q (x) = \  . .  . . (A.4)

(p vapor , if p(x) < p0.
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Figure A.3: Kinetics and morphology. (a) Domains length vs time. (b) Separation depth vs time. (c) Euler 
characteristic vs time. (d) Curvature vs time. All the plots refer to system sizes 5123.
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This quantity measures the "distance" of a single phase domains from their equi­
librium state. Fig. A.3b shows the temporal evolution of the separation depth, for 
t = 0.5(red line) and t = 2 (gray line), for T = 0.95 and k = 0.1. For t = 0.5 phase 
separation takes place in three recognizable steps. First, there is a time delay, when 
no detectable phase separation takes place. Then, at the onset of phase separation, 
the process is very rapid and the separation depth “jumps” to a value greater than 0.6, 
meaning that the system reaches local equilibrium shortly after sharp interfaces are 
formed. Afterwards, in the third stage, phase separation proceeds much more slowly, 
as the density gradients within the single-phase domains are very small, while the den- 
sities of the two phases across any interface change only very slowly in time, asymp- 
totically approaching equilibrium at S = 1. For t = 2, after the time delay, when the 
first spinodal decomposition pattern is formed, the separation depth jumps to a value 
close to 0.55, and then increases much faster (before t = 1000) than in the previous case. 
This indicates that during this crossover domains reach, in this case, an even better lo­
cal equilibrium, resulting in an even slower growth(see grey curve in Fig. A.3a from 
t = 4000). The only remaining mechanism that can explain this slow growth is diffusion 
of interfaces, as one can also visually appreciate comparing snapshots of the system 
during the two regimes, presented in Fig.A.5.

The apparent impossibility to break the consecutiveness of domains reaching equi­
librium and growth, seems at the basis of the absence of the viscous growth in Liquid 
vapor systems. In fact, in the viscous regime, one should observe a separation depth



t
Figure A.4: Comparison between Euler characteristic and db-scan results. The db-scan measures directly 
the number of connected vapor domains. At the onset of phase separation both x and the db-scan mea- 
sure give the same results.

that growth more gradually after the time delay [201].
Going further in characterizing the different regimes we found, we measured the 

so called Minkowski functionals. the Euler characteristic x  (Fig. A.3c) and the mean 
domains curvature (Fig. A.3d). These have been measured following the procedure 
presented by Michielsen et al. [133]. The first step for the calculation of the so called 
Minkowski functionals is to transform the system at hand in a 3D cubic lattice filled 
with black and white pixels, with a suitable density cut-off.

For a 3d cubic lattice the four additive image functionals (Minkowski functionals) 
are the volume, the surface area, the mean breadth B (directly proportional to the mean 
curvature [133]), and the Euler characteristic x. In 3D x  equals the number of regions of 
connected black voxels plus the number of completely enclosed regions of white voxels 
minus the number of tunnels, i.e. regions of white pixels piercing regions of connected 
black pixels. The calculation of these morphological measures relies on the prelimi- 
nary determination of the total number of black voxels(cubes) nc, black-white faces n f , 
edges ne and vertices nv , so that:

V = nc , 2B = 3nc -  2 n f + ne , x  = - n c + n f -  ne + n v . (A.5)

The Euler characteristic x  can be directly related to the numbers of connected do- 
mains. This has been checked measuring the number of vapor connected domains 
through a dbscan algorithm[55]. The results obtained, for the two values of t we are 
considering in this section, are displayed in Fig.A.4, for a smaller system with L = 304. 
Comparing the Euler characteristic(main plot), to the number of connected vapor do- 
mains(inset), one can appreciate how the results are very close. The fact that the latter 
goes to zero after the jump, which corresponds to the start of phase separation, allows 
us also to do some other considerations, inspired by the work of Xu [64]. It can be ar-
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Figure A.5: Snapshots. Snapshots of the system during growth for the two cases considered in Fig.A.3. 
While during the inertial growth (first row) there is a change in domains shape, meaning that interfaces 
are still evolving in some ways, the diffusive growth (second row) it seems that interfaces are "frozen", 
and domains seem to grow with interface "diffusion".

gued that x  is negative (positive) if many disconnected black (white) regions dominate 
the system. Furthermore a vanishing Euler characteristic indicates a highly connected 
structure with equal numbers of black and white domains. Fig. A.3c shows the Euler 
characteristic for the two cases we are considering in this section. After a short time 
delay x  increases, indicating that the number of domains with p  > p  threshoid increases. 
These results demonstrate that the phase separation process is in progress. Immedi- 
ately after that, x  decreases to be less than zero, meaning that the number of domains 
with p  < p threshold to increase. We have chosen p threshold = P average. For both cases, 
curves tend asymptotically to zero, showing a highly connected structure with equal 
numbers of black and white domains. Looking at the plot we can say that, on the onset 
of phase separation, for t  = 0.5 we have more connected domains if compared to the 
case t  = 2. This remains true also during domains growth (inset of Fig.A.3c). The mean 
domains curvature(Fig.A.3d) is more negative for t  = 0.5 than for t  = 2.



B
M a p p i n g  w i t h  p h y s i c a l  u n i t s

Here we present a possible mapping for the continuum model for active cholesteric 
liquid crystals used in Chapter 4. The same is also valid for active polar emulsions con- 
sidered in Chapter 5.

By following previous studies [11], an approximate relation between simulation and 
physical units (for an active gel of cytoskeletal extracts) can be obtained using as length- 
scale, time-scale and force-scale respectively L = 1pm, t = 10ms and F = 1000nN. 
These are the typical scales of cell extracts and actomyosin [139]. A mapping of some 
relevant quantities is reported in Table B.1.

Model parameters Simulation units Physical units
Shear viscosity, n 
Elastic constant, Kq 
Shape factor, £
Diffusion constant, D = M a  
Activity, Z

5/3 
0.01 
0.7 
0.007 
0 -  0.002

1.67 KPas 
50 nN
dimensionless 
0.06 idm2s-1 
(0 -  20) KPa

Table B.1: Mapping of some relevant quantities between simulations units and physical units.





C
A d i m e n s i o n a l  n u m b e r s

In this Appendix we will furnish a derivation for the compression modulus B that we 
used to define the adimensional Ericksen number Er and the active Ericksen number
E r a c t .

In the following we consider the elastic coefficients for a binary mixture in the lamel­
lar phase, in which one of the component is an isotropic fluid and the other is a polar 
liquid crystal. One of them, the compression modulus, is used to define the adimen­
sional Ericksen number Er and its active counterpart Eract, in terms of the model pa­
rameters. The analytical treatment generalizes that given in [90] for a simple lamellar 
fluid.

Itis first convenient to rewrite the Landau-Brazovskii free-energy functional of Eq. (5.1) 
in a more symmetric form, in terms of the field — = 0  -  0 cr, as

b —4 + ^ | v — |2 + c  (V2—)2 
2 T 2 *  2 1 n  2F ^ ,P] = f  d r | —2 + ^  —4 + y ! v —|2 + 2 (v2—Y

. (C.1)a  2 a  4 kp 22 — |P|Z + 4  |P|4 + y  (VP) + PP • V—

Eq. (5.1) of Chapter 5 can be obtained with a = - a / 0 2cr, b = a /0 Acr and 0 0 = 2 0 cr. At 
equilibrium, the chemical potential x  and the molecular field h  must vanish:

SF
X = —  = a— + b—3 -  k^V2— + cV4— -  aP  -  PV • P = 0, (C.2)

SF 2 2
h = —  = - a —P + aP 2P -  kpV2P + PV— = 0. (C.3)

oP
We then take the single mode approximation [90], exact if considering only gradient 
terms in the above expressions,

— = — sin(K y), (C.4)
where the amplitude — and the wavenumber k of the modulation have to be computed. 
Our simulations confirm that, as long as bulk parameters are small if compared to the 
elastic ones, the concentration field is modulated in a sinusoidal fashion. By substi- 
tuting Eq. (C.4) into Eq. (C.3), and neglecting non linear contributions, we find that Py 
must satisfy the equation

d2yPy = -  p“ 1Zsin(Ky), (C.5)



whose periodic solutions, with lamellar width A = 2nlK, are given by

P
Py = C + — cos(K y  )

K
(C.6)

where C is a constant and
P = /3ij/lkP. (C.7)

In order to find the coefficients C , /  and the wavenumber k , we substitute profiles of y  
and Py in Eq. (C.1), integrate over the lamellar wavelength A and minimize with respect
to k, that is found to be y  \k(p\l2c, the same as for the polarization-free case. Thus we 
rewrite the free-energy density as

where we defined a$ = k^l4c and aP = fì2lk P. Minimization of f  with respect to C gives 
C = 0. Then, by further minimizing f  with respect to y , we find

This result shows that lamellar ordering occurs for a < acr = a$ + aP. Thus, polarization 
enlarges the range of stability of the lamellar phase with respect to the Brazovskii theory, 
where lamellar ordering occurs if a < a$.

We now introduce the elastic coefficients related to the free-energy cost of devia­
tions from the harmonically modulated profile. We perturb equilibrium profiles by in- 
troducing a layer perturbation field d(x, y), in terms of which the perturbated profiles 
become

The field d  is chosen so that its amplitude is much smaller than the lamellar width A, 
but its typical variation lengthscale is much wider.

Because of the slowly-varying behaviour of d, we flush out high-frequency modes to 
obtain a coarse-grained description of the model solely in terms of the layer displace- 
ment. This implies [90] that the following normalization condition holds:

(C.8)

(C.9)

y(x, y) = / s i n  [K(y -  d(x, y))], 
P

P (x, y) = —cos [K(y -  d(x, y))l.
K

(C.10)

(C.11)

(C.12)

where Lx and Ly are the linear dimensions of the system and the boundary conditions 
are assumed to be periodic in both directions. By substituting Eqs. (C.10)-(C.11) and



their derivatives in Eq. (C.1) and by retaining only the elastic contributions, namely the 
gradient terms, we find the following coarse-grained free-energy functional:

Fcg W] d r k^K2 + 2c K4 +
kP

(dx W)2

+ k^K2 + 6ck4 + ] (dyW)2 + ck2(V2W)2
kP

I
d r

Z 2 B 2 Y 2 2 
2(dx W)2 + 2  (dy W)2 + - (V 2W)2 (C.13)

where we have used Eq. (C.12), and Eq. (C.7) to get rid of P  In this expression we 
identify three contributions, combination of the three following effects: (i) stretch- 
ing/shrinking of the lamellar surface in the layer direction (x in this Section), (ii) com- 
pression/expansion ofthe lamellar layers in the gradient direction (y) and (iii) bending 
of the layers.

The coefficient of the derivative along the gradient direction is half of the compres­
sion modulus B and it gives the energy penalty per unit surface due to a change in the 
layer width. Its explicit expression is then given by

B P2
kP

+
k 2  ̂k$

— (C.14)

Analogously we can define the surface tension Z as the energy penalty per unit surface 
due to the stretching of the layer as half of the coefficient in the layer direction

Z = P2
kP

k 2  ̂
k±  
2c

—2. (C.15)

It is worth noticing that, from one side, the liquid crystal network makes the lamel­
lar structure stiffer, since the compression modulus is strengthened with respect to the 
polarization-free model, while on the other side, it counterbalances the negative sur­
face tension of the lamellar phase. In ultimis, the coefficient of the laplacian term is 
half of the curvature modulus, which gives the energetic cost associated to an infinites- 
imal bending of a layer. It can be written as

(C.16)

2





D
M o v i e s  d e s c r i p t i o n

We give here a brief description of the movies cited in Chapter 4 (regarding the self 
propulsion and rotation of an active cholesteric droplet in 3d) and in Chapter 5 (re­
garding the rheological characterization of an active polar emulsion in 2d). Movies can 
be found at the following link: h ttps://w w w .dropbox .com /sh /qs7fbvk8p2 ttcst/ 
AAC988090RnPSYLhsX8sf13ua?dl=0.

D . 1 .  S e l f  p r o p e l l e d  c h i r a l  d r o p l e t

• Movie 1 Nematic Droplet in Rotational regime: The movie shows the dynamics 
of an active nematic droplet in the rotational regime (Z = 0.001). After an initial 
short transient the droplet sets into a stationary rotational motion around the 
axes joining the two boojums. Such motion is sustained by the energy injection 
due to the bending of the nematic field; this is more pronounced on the equato- 
rial plane of the droplet where the resulting velocity field is stronger and exhibits 
a quadrupolar structure. The dynamic state stays stationary at long simulation 
times.

• Movie 2 Nematic Droplet in Chaotic regime: Since early simulation times, the 
droplet noticeably deforms under the effect of activity (Z = 0.0015). Energy in­
jected is able to split each of the two boojums (+1 defects) at the poles into two 
+ 1/2 defects, for a total amount of 4 surface defects. These are connected in pairs 
by disclination lines inside the droplet (blue in the movie). Eventually, two defects 
of opposite topological charge may be created on the droplet surface, generating 
an extra disclination line in the bulk of the droplet. These move on the surface of 
the droplet until they find an oppositely charged defect and annihilate (a config- 
uration of two annihilating defects is clearly visible at time t = 1: 20). The droplet 
never sets into a stable or oscillatory steady state in the long term.

• Movie 3 Chiral Self-Propelling Droplet: If the LC droplet is chiral (N  = 2 in the 
movie) the surface defect configuration rearranges to form a configuration rem- 
iniscent of the Frank-Pryce structure, characterized by two +1 defects close to 
each other. Once the droplet starts rotating under the effect of the activity (Z =

https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0
https://www.dropbox.com/sh/qs7fbvk8p2ttcst/AAC988O90RnPSYLhsX8sf13ua?dl=0


0.0010), the fan-like pattern of the LC on the droplet surface converts the rota­
tional motion into propulsion. Thus the droplet moves with uniform rectilinear 
motion in the direction of the axis of rotation (y  in the movie)

• Movie 4 Disclination Dance in a Chiral Droplet Fueled by Active Torques: The dy­
namics of a chiral droplet (N  = 1 in the movie) activated by active torque dipoles 
(Z = -0.001) is characterized by the formation of four +112 defects on its surface, 
connected in pairs by two disclination lines. Energy injected by the activity fuels 
to the mirror rotation of the surface defects. This leads to the dancing dynamics 
of the disclination lines in the interior of the droplet that, during rotation, first 
cross each other, then merge and rearrange in a helicoidal fashion.

D . 2 .  M o v i e s  s h e a r e d  a c t i v e  e m u l s i o n s

• Movie 1: Linear velocity profiles and lamella.r phase. The movie shows the dy­
namics of an active emulsion at Eract = 0.057, Er = 0.015, in the red region of Fig. 
5.17. The system first undergoes domains formation on the Brazovskii length- 
scale. Regions close to the walls are characterized by fast aligning dynamics due 
to the intense shear flow, resulting in a well aligned lamellar order at early times. 
Alignment in the bulk is much slower: first lamellar domains are tilted with re­
spect to the imposed flow, then complete ordering is prevented by persistent 
disclinations. For instance we highlight the formation of a double buckle in the 
bulk at time t=0:51 that vanishes in the long term dynamics due to diffusion pro­
cesses. Finally the system sets into an almost perfectly aligned state, except for 
some pearlification in the bulk.

• Movie 2: Unidirectional motion. Starting from a disordered isotropic configura­
tion, the movie shows the dynamics of phase separation of the system at Eract = 
0.344, Er = 0.022. First an emulsion of active droplets develops in a passive back­
ground, while two active layers grow on both walls. The system soon sets in a + -  
polarization configuration (t=0:16), thus leading to unidirectional flow since the 
very early dynamics, when the system is still symmetric. The layer on the bottom 
wall, the one found in the -  P w state, progressively enlarges due to the merg- 
ing with active domains that populate the bulk. o n  the contrary the top layer 
progressively narrows, as it behaves as a reservoir for the 0  field. This leads to 
a top-bottom asymmetry in the concentration field. Eventually collisions of big 
domains on the top wall, as the one at time t=0:48, may momentarily arrest the 
narrowing of the top layer, but long-term dynamics is first characterized by insta- 
bilities that cancel out uniformity of the top layer (t =1:00), then by detachment 
of residual domains from the top wall. This, finally, leads to the formation of the 
stable 0 -  P w state. Analogous dynamics occur for any case in the grey region of 
Fig.5.17.

• Movie 3: Polarization flip. The movie shows the dynamics of the flip of polariza­
tion at the boundary for the case at Eract = 0.57, Er = 0.003, already discussed in 
Sec. 5.2.6. At time t=0:10 the two colliding domains, responsible for the polariza­
tion flip, have been highlighted with two black squares.



• Movie 4: Active stress in polarization flip. The movie shows the behavior of the 
active stress for the same case as in Movie 3. The colliding droplets have been 
highlighted with black squares. The scale of color is set as follows: beige for ap- 
proximatively null values of the active shear stress, white and black respectively 
for positive and negative values. Thus, white layers close to the wall denote + 
polarization states and black ones characterize -  configurations.

• Movie 5: Activity quench. The quenching dynamics from Eract = 0.57 to Eract = 
0.28 at fixed Er = 0.06 is shown in this movie, corresponding to the case in panels 
(a)-(c) ofFig. 5.13. Starting from a symmetric configuration, typical ofthe cases in 
the green region ofFig. 5.17, and reducing the activity we find that active matter 
is progressively collected on one of the walls (the bottom one in the movie), thus 
endingup in an unidirectional asymmetric configuration (greyregion ofFig.5.17).




