Axions and neutrinos in astrophysics and cosmology

Pierluca Carenza

Dipartimento Interateneo di Fisica "Michelangelo Merlin" INFN Bari

November 6, 2019

Outline

- Accomplished and ongoing projects
- Exams
- Schools, conferences, collaborations and talks

Medium modification of axion emission: Impact on the SN 1987A bound

P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martinez-Pinedo and A. Mirizzi, "Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung," JCAP **1910** (2019) no.10, 016 [arXiv:1906.11844 [hep-ph]].

SN1987A: neutrino signal

 $\sim 10^{53}\,{
m erg}$ emitted as neutrinos with energy $\sim {\it O}(15\,{
m MeV})$ in $\sim 10\,{
m s}$

Axion production in SNe

M. S. Turner, Phys. Rev. Lett. 60 (1988)

SN axions are produced by nucleon-axion bremsstrahlung

in the One Pion Exchange (OPE) approximation and neglecting the pion mass, the matrix element is

$$S imes\sum |\mathcal{M}|^2 = rac{64}{3}g_a^2m_N^2\left(rac{g_A}{2f_\pi}
ight)^4$$

Beyond the OPE approximation

- \blacktriangleright Non-zero pion mass in the propagator $\rightarrow \sqrt{3m_NT} \sim m_\pi$
- \blacktriangleright Two-pions exchangeightarrow Important around $2 {
 m fm} \simeq 1.5 m_\pi^{-1}$
- Effective nucleon mass $\rightarrow m_N^*(\rho)$
- ▶ Multiple nucleon scatterings→ Nucleon spin fluctuations

Bounds on axion couplings and mass for KVSZ model in our SN model at $t_{\rm pb}=1\,$ s.

$C_{ap} = -0.47$; $C_{an} = 0$	$g_{ap}~(imes 10^{-10})$	$m_a \ (meV)$	$f_a(imes 10^8 \text{ GeV})$
OPE	8	10	5.5
OPE+MS	9	11	4.9
OPE+corr. (no MS)	32	42	1.4
OPE+corr.+MS	33	43	1.3

A more accurate bound can be obtained by SN simulations

DFSZ axion bound

Dynamical evolution of axion condensates under stimulated decays into photons

work in progress with A. Mirizzi and G. Sigl

Axion-photon interaction

The axion-photon vertex is described by

$$\mathcal{L}_{ ext{int}} = -rac{\mathcal{G}_{a\gamma}}{4} \phi \mathcal{F}_{\mu
u} ilde{\mathcal{F}}^{\mu
u}$$

The $a
ightarrow \gamma \gamma$ decay rate is

$$\Gamma_{\rm dec} = \frac{g_{a\gamma}^2}{64\pi} m_a^3 = 10^{-24} \, {\rm s}^{-1} \left(\frac{m_a}{{\rm eV}}\right)^5$$

And the axion can be considered stable with respect to the lifetime of the Universe $\sim 10^{17}\,{\rm s}$

Enhancing the axion-photon interaction

The axion decay can be stimulated by photons

$$egin{aligned} \Gamma_{\mathrm{eff}} &= \Gamma_{\mathrm{dec}}(1+f_{\gamma})^2 \simeq \Gamma_{\mathrm{dec}}\left(1+2f_{\gamma}
ight) = \ &= \Gamma_{\mathrm{dec}}\left(1+rac{8\pi^2\phi_0\,n_{\gamma}}{m_a^2 g_{a\gamma}n_a}
ight) \end{aligned}$$

and for $n_\gamma\gg 1$ the effective rate is proportional to $g_{a\gamma}$ and not to $g_{a\gamma}^2$ as for the spontaneous decay

Kinetic equations

For this system we obtain

$$\dot{N}_{\mathbf{k}} = 2 \left[b^{\dagger} C_{\mathbf{k}} + b C_{\mathbf{k}}^{\dagger} \right]$$
$$\dot{C}_{\mathbf{k}} = \left(\frac{2}{N_{a}} + N_{\mathbf{k}} \right) b$$
$$\dot{b} = -\int d^{3} \mathbf{k} C_{\mathbf{k}}$$

where N_a is the initial number of axions, N_k is the photon number, C_k photon pair correlator and b is the axion annihilation operator.

Period of axion-photon conversion

The axion conversion time is $T\sim 2/\mu$, $\mu=g_{a\gamma}\phi_0m_a/4$

Possible relevance in early Universe and axion clumps

Exams and conferences

Exams:

Promozione della ricerca

- How to prepare a technical speech in English
- Programming with Python
- Standard model and beyond
- Machine Learning Techniques in High Energy Physics
- ► C++
- Advanced Cosmology
- Hadron Physics
- Gamma-ray astrophysics

Schools attended:

 55th Karpacz winter school of nuclear astrophysics, Karpacz (PL), 24-02-2019 / 02-03-2019

Conferences:

- 15th Patras workshop on ALPs, axions and WIMPs, Freiburg (DE), 03-06-2019/07-06-2019
- Workshop Axions in the lab and in the cosmos, Geneve (CH), 15-07-2019/ 19-07-2019

Scientific collaborations:

- Universita' degli Studi di Ferrara, Ferrara (IT) M. Lattanzi and F. Forastieri, 31-03-2019/03-04-2019
- GSI Helmholtzzentrum f
 ür Schwerionenforschung, Darmstadt (DE) - G. Martinez-Pinedo and G. Guo, 08-07-2019/12-07-2019

Talks:

- 55th Karpacz winter school of nuclear astrophysics, Karpacz (PL) - "Reexamining the SN1987A bound on axions"
- 15th Patras workshop on ALPs, axions and WIMPs, Freiburg (DE) - "Improved axion emissivity from a supernova and the SN1987A bound"
- GSI Helmholtzzentrum f
 ür Schwerionenforschung, Darmstadt (DE) - "Improved axion emissivity from a supernova and the SN1987A bound"

Thanks for your attention