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Introduction

Quantum boundary conditions emerge in the description of bounded quan-
tum systems. The analysis of a physical system, indeed, usually discriminates
the behaviour of the bulk from the surrounding environment. In this sense,
boundary conditions are a crucial ingredient, interpreting the interaction be-
tween confined systems and the environment.
Boundary conditions are ubiquitous in every area of physics. For example,
there is a large class of problems involving a flow across the interface of two
separate media. In this case it is essential to postulate a sort of continuity
condition at the interface of the two media.
An example is provided by a sound wave trespassing a tube, whose cross
section may abruptly change. In this case, one requires that, where the
change occurs, there would be a continuity condition across the junction in
the pressure of the air disturbance. Thus, a boundary condition imposes
a fundamental restriction on the evolution for the system under considera-
tion. Similar situations may happen for electromagnetic fields at an interface.
When a wave enters a region and it encounters a boundary then, the propa-
gation of the disturbance is modified. Indeed, instead of a single progressive
plane wave in one direction, one finds waves in both directions. In this case
the continuity conditions estabilish a precise distribution of the energy in the
reflected and transmitted flux.
A slightly different example is provided by the vibrating string when its ends
are held fixed. In this case the condition of no motion at the ends is pre-
cisely a continuity condition at the boundary. Incidentally, this condition is
important because it introduces discreteness into the motion of the system.
Indeed, the so called Dirichlet boundary conditions for the vibrating string
limit the possible frequencies of simple harmonic vibrations in the string.
Though the former example belongs to the realm of classical physics, it as-
sumed an unforeseen importance already in the very early formulation of
quantum mechanics.
Indeed a free quantum particle on an impenetrable segment satisfies a wave-
like equation, the Schrödinger equation, and the discrete frequencies repre-
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Introduction ii

sent the energetic levels of the system.
Moreover, in physics, dynamics is usually expressed in terms of differential
equations, which are solvable under various boundary conditions. Indeed, the
dynamics of a bounded system requires information on the physical properties
of the material the boundary is made of.
In this framework we also find the aforementioned Schrödinger equation,
which encodes the dynamics of a nonrelativistic closed quantum system.
In the operatorial description of quantum mechanics, self-adjoint operators
are used to describe physical observables.
In some cases, physical reasoning gives a formal expression for the Hamil-
tonian and other observables as operators on a particular realization of the
Hilbert space such as L2(M), M being the configuration space.
Most physical operators are unbounded so we need to consider the domains
where they are defined. Usually, one starts looking for some symmetric op-
erator and tries to check whether it is essentially self-adjoint or not. In the
negative case, then, one is forced to study various self-adjoint extensions.
Moreover, in the spirit of the Stone theorem [RS75], self-adjoint operators can
be interpreted as the infinitesimal generators of the admissible transforma-
tions on the Hilbert space of physical states. For this reason unitarity plays
a stringent role in the evolution of the system. From a physical perspective,
it translates into the principle of conservation of probability, which imposes
that no net loss of probability may occur in a closed quantum system.
This work is divided into five chapters. In chapter 1 we start off with an
overview on the main topic of this thesis: quantum boundary conditions.
In this chapter we motivate the ubiquitousness of quantum boundary con-
ditions in the physical sciences. We emphasize, both on the classical and
the quantum side, the effective role they play in the modeling of physical
phenomena, ranging from electrostatics to acoustics, from thermodynamics
to nonrelativistic quantum mechanics.
Next, We delve into the analysis of the Casimir effect [Cas48]. Two conduct-
ing plates in the vacuum can attract each other even if electrically neutral.
We discuss how the choice of certain boundary conditions can alter the force
between the plates, which can be shown to be repulsive or even null [AM13;
AGM06]. The analysis is conducted on scalar fields and all the physical
ingredients can already be found on stage.
We move on to another field where quantum boundary conditions have shown
their relevance. It has been proposed that topology change in quantum grav-
ity may be explained in terms of modifications of the boundary conditions
in a early Universe [SWX12]. In fact, it has been proposed that space time
should not be considered as an immutable entity, rather as something trans-
forming under the laws of quantum mechanics. For this reason, we implement
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topology change mechanisms [Bal+95] by means of transforming boundary
conditions and show that these are entropy-increasing processes.
Next, we jump on to solid state physics and the quantum Hall effect. In 1980,
K. von Klitzing [KDP80] discovered new fascinating scenarios in the Hall
effect due to quantum behaviours. In particular, he observed the quantization
of electrical resistances in a MOSFET at low temperatures. Furthermore it
has been largely studied the connection between the quantum Hall effect and
the quantum boundary conditions to be imposed at the edges of the system
[QT87; IMT96; Akk+98]. In particular we focus on the modelization of the
edge currents, emerging as a boundary effect.
The Aharonov-Bohm effect [AB59] is the last example of quantum bound-
ary conditions provided in Chapter 1. The presence of a magnetic field in a
Young experiment with electrons causes a shift in the interference pattern.
A solenoid in the Aharonov-Bohm effect induces a perturbation in the con-
figuration space crossed by the electrons, which can be encoded by means of
boundary conditions [OP10]. We also discuss how different boundary condi-
tions generate different scattering cross sections, which can be experimentally
detected. With this idea in mind, then, one could understand which kind of
interaction can occur between the electrons and the solenoid, because mostly
it is not clear what boundary conditions can be realized in laboratories. The
first chapter ends with a brief overview on the mutual connection between
self-adjointness and quantum boundary conditions and a physical interpre-
tation in terms of scattering processes. In particular we give a look at the
parametrization of the self-adjoint extensions of the free quantum particle
Hamiltonian in terms of unitary operators.
In chapter 2 we get to the heart of the matter revealing the interrelation
between geometric phases and quantum boundary conditions. Specifically
we consider the case of a nonrelativistic free quantum particle confined into
a one dimensional box, whose walls can change in time [Di +16]. We focus
on a class of boundary conditions, which are consistent with the symmetries
of the system. Time-dependent boundary conditions problem are, in general,
very hard to tackle because the vector describing the system samples different
Hilbert spaces.
The boundary conditions chosen allow us to map the time-dependent problem
into a fixed domain one, where the whole set of computations for the Berry
phase can be led.
Interestingly, we find a non-trivial Berry phase in a setting different from
the one proposed by M. Berry [BW84]. Moreover the simplest model of
hyperbolic geometry emerges, adding an intrinsic geometrical flavour to the
evolution. Eventually we present some physical realizations and experimental
proposal of geometrical phases.
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In chapter 3, we analyze another dynamical problem involving boundary
conditions. Indeed, time dependent problems offer a wide range of applica-
tions from atoms in cavities to ions trapped in microwave cavities. In this
chapter we focus on an evolution à la Trotter. In other words we consider a
free quantum particle in an n-dimensional cavity with alternating boundary
conditions.
The physics inside the cavity is rapidly interchanged and we investigate the
emerging dynamics. The limiting dynamics can be encoded in a composition
law for the boundary conditions we started with. We start our analysis
with the one-dimensional formulation of the problem [Aso+13] and highlight
some of the features, which can be found even in the higher dimensional case.
Eventually, we generalize the one-dimensional case and give a final expression
for a composition law of boundary conditions inside the cavity.
In chapter 4 we analyze a different aspect involving quantum boundary con-
ditions. In particular, we try to understand how to generate physical systems
settled on a manifold with boundaries starting from spaces without bound-
aries. We are going to check that this can be achieved in different ways. First
of all we start with the case of a particle on a circle and after modding it out
by the parity action we obtain a free particle on an interval. We investigate
the emerging boundary conditions and analyze further generalizations. In
the second part, instead, we consider a different procedure. As a matter of
fact we start from specific examples and implement folding procedures. For
example, for a free quantum particle on the line, we fold the real line in two
copies of a half-line, which involves the doubling of the Hilbert space, or in
other words the introduction of an auxiliary space. This procedure unitarily
introduces a boundary in the system. We reconsider the case of a free particle
on a circle and fold the circle in two copies of a segment, doubling the Hilbert
space. In light of this doubling we discuss the relation between entanglement
and self-adjoint extensions of the Hamiltonians considered. We generalize
the examples studied framing them into a general framework. Eventually
the chapter ends with a discussion of Naimark’s theorem and generalized
self-adjoint extensions, where we prove that every symmetric operator ad-
mits a minimal extension with the introduction of an ancillary space.
In the last chapter, we describe the mathematical techniques behind the top-
ics we dealt with in the previous chapters. In particular, we investigate the
case of a free quantum particle in a cavity Ω. The Hamiltonian describing
such a system is an unbounded operator and a precise knowledge of its do-
main is necessary. Self-adjointness is a fundamental ingredient both from a
mathematical and a physical point of view, since it is essential for describing
quantum observables.
Moreover we classify all the possibile self-adjoint extensions of the aforemen-
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tioned Hamiltonian, comparing with the known results in literature. Eventu-
ally, we add some more ingredient on the form-representation theorem, which
links self-adjoint operators and quadratic forms. All the results discussed are
followed by the respective proofs.





Chapter 1

Quantum Boundary

Conditions: an overview

In this chapter we are going to introduce the reader to the role of boundary

conditions in Physical Sciences. In particular we will dwell on the quan-

tum realm, testing some phenomena where boundary conditions are not just

a mathematical construction but rather a physical key to understand the

physics playing behind.

In order to motivate the study of quantum boundary conditions we will dis-

cuss about the Casimir effect and the quantum Hall effect, stressing the

role played by quantum boundary conditions. Then, we will continue this

review with an analysis of topology change in quantum gravity and with

the Aharonov-Bohm effect. A concise mathematical motivation of quantum

boundary conditions will be given. The chapter ends with a physical inter-

pretation of boundary conditions with a scattering approach.

1.1 Quantum Boundary Conditions

Boundary conditions emerge as an effective description of a physical system

with its environment. In particular, when dealing with confined systems,

boundary conditions encode the information about the interaction between

the system and the rest of the universe through its boundary.

2



Chapter 1. Quantum Boundary Conditions: an overview 3

Figure 1.1: The introduction of a cylinder in the flow of a fluid perturbs the
configuration of the flow’s lines. Here depicted the flow past a cylinder for
various Reynolds numbers [FLS70].

Skimming through the The Feynman Lectures on Physics [FLS70] can pro-

vide an idea of the ubiquitous presence of boundary conditions already at

the classical level. They range from the reflection and refraction of light, to

waves in dense materials, from viscosity problems to the sounds produced

by the strings of a violin or by a drum. These problems usually emerge as

boundary value problems. A typical example from Electrostatics [Jac98] is

the evaluation of the the electrostatic potential Φ in the vacuum generated

by a distribution of charges on some conductors; namely one has to solve the

Laplace equation with a certain boundary configuration g:−∆Φ = 0 in Ω

Φ = g on ∂Ω
, (1.1)

where Ω is the vacuum space among the conductors.

It is well known that the solutions of this problem highly depend on the

boundary conditions g and on the geometry of the conductors. There can be,

in fact, a plethora of different physical situations ranging from the potential



Chapter 1. Quantum Boundary Conditions: an overview 4

generated by a single conducting sphere, to the potential generated by a

plane, or by a conducting plane with a hole.

They all mathematically translate into the resolution of a partial differen-

tial equation with boundary conditions [Eva10], and make use of different

techniques like the Green function, the method of images or variational ap-

proaches.

The Laplace equation describes a static situation. Clearly, something more

can be done studying dynamical equations like the heat equation or the wave

equation. For example, the heat equation settled in a region of the space,

say Ω ⊂ R3 reads:

∂t u(t, x)−D∆u(t, x) = f(t, x) x ∈ Ω , t > 0, (1.2)

where D is a constant. This equation describes, for example, the evolution

of the temperature u of a body confined in Ω under the source term f . Just

like the previous case we could think of measuring the temperature on the

boundary of the region Ω, or the thermal flux through it, which means that

we need to know the behaviour at the boundary at any time.

In any case, since this is an evolution problem in order to know the temper-

ature at any time t > 0 we will also need to know the initial temperature.

The heat equation can also be used to study some very basic phenomena in

the dynamics of populations. Indeed, suppose that a population is confined in

a one dimensional environment [0, L]. Very roughly if the population was not

confined in this space it would be subject to an exponential growth according

to the Malthus model, namely:

d

dt
u(t, x) = a u(t, x), (1.3)

which admits an exponential solution with a > 0. Yet people may tend to

escape from crowded regions (e.g. under adverse climatic conditions), and

this fact translates into a diffusion term in the evolution equation. Moreover,

we suppose that the external environment is ostile. This statement can be

translated with the use of boundary conditions, namely u(0) = 0 = u(L).
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Thus, the population density at time t > 0, at the point x reads:
∂t u(x, t)−D∆u(x, t) = a u(x, t) x ∈ (0, L) , t > 0,

u(0, t) = u(L, t) = 0 t > 0,

u(x, 0) = u0(x) x ∈ (0, L),

(1.4)

where u0 is the population density at t = 0.

Moving on to the wave equation, it is well known that the profile u of a

plucked string or membrane satisfies the equation:

∂2
t u(x, t)− c2∆u(x, t) = f(x, t) x ∈ Ω , t > 0, (1.5)

where c represents the velocity of propagation of the perturbation. In order

to study the evolution of the membrane one needs to fix the behaviour at the

boundary and the initial data (in this case even on the the velocity since we

are dealing with a second order differential equation).

Interestingly, the wave equation in one dimension can be used to determine

the pitches of musical notes. Indeed, consider an elastic homogeneous string

held strongly at its extremes (u(0, t) = u(L, t) = 0), which can be plucked

and makes very tiny oscillations with respect to the equilibrium configuration.

Then, its shape at time t > 0 in x has to satisfies the problem:

∂2
t u(x, t)− c2∆u(x, t) = 0 x ∈ (0, L) , t > 0,

u(0, t) = u(L, t) = 0 t > 0,

u(x, 0) = u0(x) x ∈ (0, L),

∂t u(x, 0) = v0(x) x ∈ (0, L),

(1.6)

where u0 and v0 are respectively the initial configuration and the initial

velocity. One could have used different boundary conditions, for example

Neumann boundary conditions:

∂xu(0, t) = 0 = ∂xu(L, t), (1.7)
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Figure 1.2: Here reproduced at distinct times the different shapes of u3(x, t)
for a string of length 1.

which physically means that each end point is not held fixed, but rather can

slide vertically without friction [Min+06a].

It can be proved that the solution of the problem in equation (1.6) is:

u(x, t) =
∞∑
n=1

un(x, t), (1.8)

un(x, t) = sin
(nπx
L

)[
an cos

(
nπc t

L

)
+ bn sin

(
nπc t

L

)]
, (1.9)

where an and bn are uniquely determined by the initial conditions. Here we

are not going to discuss the right hypotheses of convergence of the series,

for further details see [Fol09]. From a physical perspective each function

un(x, t) represents a vibrational motion of the string, also known as stationary

vibration. Every element of the string evolves periodically in time with a

frequency nπc/L. Moreover the frequency associated to un is n times the

frequency of u1, which is the fundamental frequency of the string.

For example the vibrating string could be a string of a guitar. From a musical

point of view the fundamental frequency represent the pitch of the note we

are listening to and its multiples, the higher harmonics, other octaves and

notes.

Thus, given a certain initial condition, the real motion of a string is a sum of
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Figure 1.3: Some of the fundamental frequencies of a circular membrane with
Dirichlet boundary conditions.

an infinite number of stationary vibrations, which can be well approximated

by a finite number of them. For this reason a plucked string usually makes a

sound given by a certain fundamental frequency and other harmonics, whose

amplitudes have a less important contribution, which make up the timbre of

that sound.

For example, in Figure 1.2 the instantaneous shapes of u3 are shown. In

particular, the string vibrates up and down but for the end points of the

string and the internal nodes. These characteristics can be found also for

a vibrating membrane and its fundamental frequencies (see Figure 1.3). In

particular we refer the reader to [Kac66] for and interesting reading on these

topics and on how to characterize the oscillation modes with respect to the

shape of the membrane.

It is fundamental to remark that all this discussion heavily relies on the

structure of the wave equation and on the boundary conditions imposed.

Up to now we have only analyzed the role of boundary conditions in a classical

situation. Boundary conditions show their relevance both classically and
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quantumly. Take for example a classical particle bouncing against a wall.

The dynamics of the particle cannot be described solely by the Hamiltonian

function:

H =
p2

2m
, (1.10)

where p represents the particle’s momentum and m its mass. Indeed, the

expression in equation (1.10) does not provide information on what happens

when the particle bounces against the wall.

In order to treat the bouncing back one needs to provide further information

about the elastic properties of the material the wall is made of. For example,

the particle could scatter elastically, meaning that it reverses its momentum

but the kinetic energy is conserved, or could have a sticky reflection, in

which case the particle loses energy in the bouncing back process. In the

most extreme case the particle could even stop and stick on the wall.

The region on the boundary interested in the reflection of the particle is

local, and only a small part of the wall is interested in the dynamics of

the collision. So, what can be understood is that the bouncing is described

phenomenologically, that is in terms of the elastic properties of the material

and is an extra ingredient to the theory.

There is a crucial difference between quantum and classical boundaries. In

the mechanical situation of a single particle bouncing back on a wall, only

a tiny part of the wall is physically involved in the process. The analogous

situation in quantum mechanics is different. Indeed, the wavefunction asso-

ciated to the particle satisfies the Schrödinger equation, which represents an

example of wave equations. For this reason, the whole wall, that is the whole

boundary, is involved in the bouncing process, and not only a small part of

it.

First of all, when we promote the Hamiltonian function to an operator we

naively obtain:

H = − ~2

2m

d2

dx2
, (1.11)

where ~ is the Planck constant. Unfortunately, unless one specifies the do-

main where the former operator acts, it is not possible to determine whether
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H could represent a good Hamiltonian and eventually determine a quantum

unitary dynamics.

As we are going to revise in section 1.6, observables in quantum mechanics are

represented by self-adjoint operators and, in particular, the self-adjointness

condition for the operator is encoded in the choice of suitable boundary

conditions.

Thus, in quantum mechanics the boundary behaviour is encoded in the

Hamiltonian and in the conservation of probability, in other words in unitar-

ity. These assumptions are based on physical principles and are much more

stringent than those from classical physics.

Interestingly, boundary conditions play an intriguing role not only in nonrel-

ativistic quantum mechanics, but in quantum field theory as well. In fact,

there is a plethora of physical systems involving, for example, photons and

electrons in a cavity, which can be studied in terms of quantum fields on a

bounded domain [AGM15].

In the next sections we are going to discuss some relevant physical situa-

tions where boundary conditions play a prominent role. In particular we are

going to start with a discussion of the Casimir effect, then consider models

of topology change which could be useful in quantum gravity. Eventually

the quantum Hall effect and the Aharonov-Bohm effect will be discussed,

stressing the role and the relevance of the quantum boundary conditions.

1.2 The Casimir effect

In this section we are going to discuss a physical situation where quantum

boundary conditions play a prominent role, the Casimir effect. In 1948

[Cas48] H.B.G. Casimir proved that two conducting plates in the vacuum

can attract each other even if electrically neutral. This apparently paradoxi-

cal situation can be explained in terms of quantum fluctuations of the ground

state of the fields confined between the two plates.

In the original formulation, Dirichlet boundary conditions were imposed for

the electromagnetic field on the plates, which, in other words, meant for the

fields to vanish on the conducting plates.
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In Quantum Field theory the vacuum energy of the fields, that is the energy

of the ground state, is ill defined unless one introduces a normal ordering

procedure on the operators [Wei05]. Wick’s prescription, in fact, forces the

subtraction of the infinite value of the vacuum energy, so that the expectation

value of the Hamiltonian operator in the ground state is zero.

We are usually interested in differences of energy, which let us a certain

freedom in the choice of the origin of energy scales. Casimir proved that a

proper definition of the ground state energy requires the knowldege of the

interaction of the fields with its environment. Indeed, experimentally, one

usually deals with confined systems, so that one can arrange the interaction of

the fields with the surrounding constraints in terms of boundary conditions.

For this reason, the vacuum energy is defined as the difference between the

energy of the ground state for confined fields and the one for free fields, after

a proper regularization. Then, a change in the boundary conditions on the

system induces a change in the vacuum energy.

As already said, in the first formulation, Casimir made use of Dirichlet bound-

ary conditions, which physically correspond to a zero tangential component

for the electric fields on the boundary, as one would expect for a couple

of conducting plates. The overall effect predicted was an attractive force

between the two plates, due to an increase of the vacuum energy with the

distance between the plates.

The phenomen was first observed in 1957 [Spa57], later confirmed under dif-

ferent setups [Bla+60; Sil66; TW68; SA73] and more recently in [Lam97;

MR98]. Besides the attractive behaviour it was shown also that, under dif-

ferent configurations, the plates could even repel each other [MCP09].

For the sake of concreteness we are going to discuss how different boundary

conditions affect the vacuum energy for a free scalar field [AM13; AGM06].

We are going to consider a static space-time, sayM = R×M , where M ⊂ Rn

is a bounded set with regular boundary ∂M . In other words, we are assuming

that there is a temporal coordinate globally defined. Moreover, since we will

be mainly interested in the Casimir effect, it is not restrictive to consider

M = Rn−1 × [0, L], whose boundary is ∂M = R(n−1) × R(n−1). With the

above assumptions the Hamiltonian operator describing a free massles scalar
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Figure 1.4: Two parallel plates, with their boundary conditions, affect the
vacuum fluctuations.

field φ is [Wei05] :

H =
1

2

∫
M

(
π(x)†π(x) + φ(x)†LUφ(x)

)
dx, (1.12)

where:

LU = −1

2
∆U +

1

2
m2, (1.13)

∆U , being a self-adjoint realization of the Laplace operator determined by

a unitary matrix U and π(x) is the conjugate momentum associated to

the field φ. For the mutual relation between self-adjoint extensions of the

Laplace operator and unitary matrices we refer to the extensive discussion

in Chapter 5. As a matter of fact, not all the unitary matrices can be used,

rather a subset of them, which is compatible with the symmetries of the

system. Moreover we recall that the following commutation relation holds:

[π(x), φ(x′)] = −i~δ(x− x′) for all x 6= x′.

It can be proved that the vacuum energy associated to the scalar field φ is:

EU =
1

2
trL

1
2
U , (1.14)
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which evidently diverges as long as LU is not a trace-class operator. Renor-

malization theory can be invoked in order to cure this divergent contribution.

We are not going to enter these details. To the curious reader we recommend

[AM13].

If we restrict our attention to the 1 + 1 dimensional case, we are considering

a field theory on the interval [0, L]. Then, different unitary matrices will im-

plement different boundary conditions for the vacuum energy. For example,

if one considers periodic boundary conditions for the field, say φ(0) = φ(L),

then, the vacuum energy reads:

Ep = − π

3L
. (1.15)

Instead for Dirichlet (φ(0) = 0 = φ(L)) or Neumann boundary conditions

(φ′(0) = 0 = φ′(L)) we get:

ED/N = − π

12L
. (1.16)

In both cases the vacuum energy is increasing with L, which corresponds

to an attractive force between the plates. Nevertheless one could consider

pseudo periodic boundary conditions φ(L) = e−iαφ(0), φ′(L) = e−iαφ′(0),

which can be obtained with the unitary matrix:

U = −
(

0 ei α

e−i α 0,

)
(1.17)

where α ∈ [−π, π]. In this case the vacuum energy reads:

Epp(α) =
1

2L

(
|α| − α2

2π
− π

3

)
. (1.18)

Interestingly this expression can take positive and negative values as well as it

could even be zero (see Figure 1.5). For this reason, for certain configurations

of the plates there could be no Casimir effect, when the energy is zero, or

even a repulsive force between the plates, when the energy is positive, as

experimentally observed in [MCP09].
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Figure 1.5: Here depicted the dependance on the parameter α of the vacuum
energy with pseudo periodic boundary conditions [AGM06].

For simplicity we only focused on a free massless scalar field in a one-

dimensional box. The previous discussion can be extended to higher di-

mensions and, according to the evenness or oddness of the dimension, one

can have different behaviours for the vacuum energies.

Moreover, it can be proved that the most intense attractive force between the

two plates is achieved when periodic boundary conditions are imposed at the

boundary. In this case the vacuum energy attains its minimum value. On

the contrary the strongest repulsive effect between the two plates is attained

with anti-periodic boundary conditions, which correspond to the maximum

value for the vacuum energy.

Before concluding, it is relevant to stress the role of the boundary conditions

in the dynamical Casimir effect as well.

When the boundaries are moving, in fact, the force exerted on the walls can

be dissipative [Bar93]. As a result, the dissipated energy is used to create

real particles inside the cavity. For example, in the context of the dynamical

Casimir effect, time dependent boundary conditions can generate photons

inside a microwave cavity.

Indeed, it has been proposed that parametric processes can be observed in

a system where a boundary condition of the electromagnetic field can be

changed in time. The dynamical Casimir effect can be mapped to the quan-

tum version of a parametric oscillator in special cases, which can exist in a
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Figure 1.6: Stable states inside a microfabricated quarter-wave coplanar
waveguide cavity. For further details about the experiment we refer to
[Wil+10].

number of stable dynamical states (See Figure 1.6).

In [Wil+10] they find a good agreement between the response of a cavity

with a time dependent boundary condition and the theory of a parametric

oscillator. Moreover, the quantitative agreement is good evidence that the

source of photon generation is the time dependent boundary. Of course, all

these ingredients are highly dependent on the boundary conditions imposed

on the walls, as studied in [AFM03; Min+06b; Min+06a; SE06]. Application

of the Casimir effect with a gravitational perspective and making use of

curved boundaries are to be found in [SS10]. For further readings on the

Casimir effect we highly recommend the review [PMG86]

1.3 Topology change and quantum

boundary conditions

In this section we are going to review some applications of quantum boundary

conditions in the realm of quantum gravity and topology change. For more

details see the survey [Aso+12] and references therein.

Notwithstanding more than a century has passed from the theoretical foun-

dations of quantum mechanics and general relativity, it has not been clarified

yet how space-time topology is supposed to enter the foundations of a quan-
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Figure 1.7: Two disjoint intervals as configuration space of a topology change.

tum theory. Some suggestions may come from quantum gravity and the

spin-statistics connection. Indeed, it has been proposed that the texture

of space-time could be considered as something alive which can shape itself

under the laws of quantum mechanics.

Apparently the unfolding of classical topology from the quantum realm is a

very subtle point as proved by the vast literature in the field, for example

see [Bal+83; Bal+91].

There is a general belief that a quantum version of gravity should be con-

sistent with the spin-statistics theorem. It seems reasonable that a change

in the topology of space-time could emerge due to spin-statistics connection

related to geons. As a matter of fact, geons emerge as solitonic excitations

of twisted spatial manifolds. A change in the topology of space-time is nec-

essary in order to get pair production or annhilation of geon and antigeon,

the antiparticle of a geon.

It is well known, for example, from relativistic quantum theories that a spin-

statistics connection is present in theories which admit creation and annhi-

lation processes [Wei05]. Seemingly a quantum theory of gravity may not be

compatible with some sort of spin-statistics theorem unless a change in the

topology is admitted.

With this aim in mind, in 1995 [Bal+95] some simple quantum models were

investigated. In particular, it was shown how a change in the classical un-

derlying topology can happen even in elementary quantum physics.

Here we are going to briefly recall some of the main results on topology change

shown in the paper. Let us consider two disjoint intervals, say Ω1 = (a, b)

and Ω2 = (c, d), with a < b < c < d, and define the composite space Ω as

the union of the two intervals, say, Ω = Ω1 ∪ Ω2, as shown in Figure 1.7.
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From a physical point of view we are considering a free quantum non-relati-

vistic particle which lives in Ω and which can tunnel, for example, from the

point b to the point c. All the possible interactions and linkings between the

endpoints are expressed in terms of boundary conditions, as we are going to

recall.

Let us fix a Hilbert space H = L2(Ω) and consider the Hamiltonian operator

describing a free particle:

H = − ~2

2m

d2

dx2
, (1.19)

where m is the mass of the particle and ~ the Planck constant. From a

mathematical point of view this operator is unbounded and, as such, it needs

to be settled on some suitable domain in H . In particular, the Hamiltonian

operator represents a physical observable, say the energy of the system, and,

as such, it has to be a self-adjoint operator, as prescribed by one of the

axioms of Quantum Mechanics.

For example, one could start from D(H) = C∞0 (Ω), the set of regular func-

tions with compact support in Ω. On this domain the operator is only sym-

metric and not self-adjoint. Nevertheless the operator in equation (1.19) is

a good candidate for a physical observable. So one looks for the self-adjoint

extensions of this operator. In order to do so one considers the boundary

form:

Γ(ψ, φ) = 〈ψ,H∗φ〉 − 〈H∗ψ, φ〉 (1.20)

and looks for all the possible boundary conditions that make the latter form

vanish. Indeed, after integrating by parts:

Γ(ψ, φ) =
[
ψ′(x)φ(x)− ψ(x)φ′(x)

]
∂Ω

(1.21)

is expressed in terms of the boundary values of the wavefunctions. It can

be proved [AIM05] that every possible (self-adjoint) physical realization of

the problem is uniquely determined by a unitary matrix, say U ∈ U(4).

In particular, fixed a unitary matrix U , then the corresponding domain of
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self-adjointness for H is:

D(HU) = {ψ ∈ H2(Ω) : i(I + U)ϕ = (I − U)ϕ̇},

where ϕ and ϕ̇ are the boundary data of the wave function ψ and are defined

as

ϕ :=


ψ(a)

ψ(b)

ψ(c)

ψ(d)

 , ϕ̇ :=


−ψ′(a)

ψ′(b)

−ψ′(c)
ψ′(d)

 . (1.22)

where the minus signs, which appear in the ϕ̇ vector, are chosen such that

the normal vector field on ∂Ω points outward. We recall that H2(Ω) is the

Sobolev space of square integrable functions ψ with square integrable first

and second derivative, respectively ψ′ and ψ′′. For the mathematical details

we refer to Chapter 5.

Moreover, any wave function ψ in the domain of HU satisfies the boundary

conditions

i(I + U)ϕ = (I − U)ϕ̇. (1.23)

For example, the unitary matrix:

U1 =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

 , (1.24)

generates the following boundary conditions:

ψ(a) = ψ(d),

ψ(b) = ψ(c),

ψ′(a) = ψ′(d),

ψ′(b) = ψ′(c).

(1.25)

which corresponds to a connected single circle (Figure 1.8).



Chapter 1. Quantum Boundary Conditions: an overview 18

Figure 1.8: Interpolation between different topologies determined by distinct
boundary conditions.

While the matrix:

U2 =


0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

 , (1.26)

determines a different behaviour at the boundary, say:

ψ(a) = ψ(b),

ψ(c) = ψ(d),

ψ′(a) = ψ′(b),

ψ′(c) = ψ′(d),

(1.27)

which corresponds to the topology of a couple of disconnected circles. (Figure

1.8)

These are extremal situations, which correspond to two totally different
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topologies. In particular one could interpolate between these two antipo-

dal situations and obtain intermediate situations, as shown in Figure 1.8.

It may be interesting to stress that every unitary matrix in U(4) determines

a domain of self-adjointness for the operator in equation (1.19), which let us

recover the topology of the classical configuration space Ω.

Using the Gel’fand - Naimark theorem [BR03] it is possible to retrieve from

D(HU) the underlying topological space. Indeed, the space Ω and its topol-

ogy can be recovered from the C∗-algebra generated by the continuos func-

tions in D(HU).

One could even do more and try to recover the differentiable structure of Ω.

For the interested reader we refer to [Bal+95].

The former construction can be generalized to higher dimensions. In partic-

ular, one could start with a couple of cylinders and check how topological

configurations can be achieved by imposing different boundary conditions.

For example we could have two separate cylinders, a single big torus or two

disjoint tori. The allowed topology changes are much richer in this case, since

one could even obtain an intermediate configuration of tori with holes. In

this sense, a further generalization to surface with different genera can be

done.

Indeed, by changing the corresponding unitary matrix one could obtain a

manifold with genera g1 + g2 starting from manifolds with genera g1 and g2.

We would like to end this brief summary stressing the motivations for topol-

ogy change in quantum gravity. So far we have discussed how to obtain

topology change by means of external parameters, namely the unitary ma-

trices which determine the self-adjoint extensions of the Hamiltonian oper-

ator. Indeed, these additional degrees of freedom can trigger a change in

the boundary conditions, which reflect in the change of the topology of the

underlying configuration space.

In [Bal+95] it is moreover discussed a resemblance of the previous mechanism

with the axion approach to the strong CP problem in Quantum Chromo-

dynamics [Pec08; Kim10]. In this case, in fact, the Hamiltionian operator

describing the theory admits a one-parameter family of boundary conditions,

namely U(1). The existence of these boundary conditions emerge in the term
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θTr(F ∧ F ) which appears in the dynamical action. Moreover, if one let the

boundary conditions change dynamically, then, the θ is promoted to an axion

field, which represents an additional fluctuating degree of freedom.

In any case the introduction of additional degrees of freedom is responsi-

ble for a change in the topology of whatsoever configuration space we are

considering.

Going back to quantum gravity, besides the spin-statistics connection there is

also another motivation for the introduction of topology change. It has been

speculated that Einstein’s formulation of gravity represents only an effective

model for a theory with additional degrees of freedom. Indeed, comparing

and contrasting with other known models it has been suggested that ambi-

guities in the quantization procedure for gravity are due to an underlying

structure and to its degrees of freedom. This ambiguity, for example, ap-

pears already in the Born-Oppenheimer approximation or in the two flavour

Skyrme model and is solved by the introduction of an internal microstructure.

In quantum gravity the eventual presence of geons highly complicates the sit-

uation and generates quantization ambiguities, which, from the experience

accumulated from molecular and particle physics, may be overcome introduc-

ing new additional degrees of freedom, responsibile for a topology change.

1.3.1 Models of Topology Change

A rather recent paper [SWX12] has renewed interest in the topic, showing

how unitary-preserving boundary conditions can be used to interpolate con-

tinuosly Hilbert spaces on different manifolds.

As already discussed in the previous section, topology changes are predicted

in the realm of quantum gravity. As a matter of fact, it has been suggested

that virtual processes may occur at very high energies causing an intense

fluctuation in the space-time structure. Clearly this speculation is very far

from being tested or even consistently supported by explict computations

from quantum gravity.

Nevertheless, staying within the field of quantum mechanics, it has been

suggested that, as discussed in the previous section, topology change may
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occur varying some specific parameters appearing in the Hamiltonian, which

encode the boundary conditions on the system.

In [SWX12] boundary conditions are implemented by means of projection

operators, as we are going to show, and we are going to discuss how a fission

of a mother interval into two daughter ones can be achieved, generating an

entanglement entropy production. Let us consider a free quantum particle

living on two separate half-lines, say, (−∞, a] ∪ [b,∞), described by the

Hamiltonian:

H = − ~2

2m

d2

dx2
, (1.28)

where m is the mass of the particle and ~ the Planck constant. From the

Schrödinger equation we get the probability current, say

j = i

(
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
)
. (1.29)

If no probability flows out of the ends of the interval, then we have to impose

that j(a) = j(b) = 0. Dirichlet, Neumann and Robin boundary conditions

are just examples of boundary conditions satisfying the former constraint at

the border. In particular, from a physical point of view, these are used to

describe a quantum particle confined either in (−∞, a] or in [b,∞) with an

initial probability of being in either one of them. This is not the full story.

The conservation law, ∇ · j = 0, allows a unitary dynamics through the

border. For example the identification boundary conditions are allowed:ψ(a) = ψ(b) ,

ψ′(a) = ψ′(b) ,
(1.30)

where ψ′ is the first derivative of ψ. In this case the two end points a and b

can be identified, getting the quantum mechanical behaviour of a free particle

on the real line. As already seen these two extreme situations can be encoded

into a general framework, for example using unitary operators (in this case

unitary matrices) at the boundary.

Alternatively one could use suitable projection operators, as we are going to

discuss.
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Let us denote by u the boundary data vector:

u =


ψ(a)

ψ(b)

ψ′(a)

ψ′(b)

 , (1.31)

and consider the matrix:

J =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (1.32)

Then, the continuity equation at the boundary can be written as: u†Ju = 0.

Suppose that u is a vector satisfying the previous equation, then it will

encode some behaviour at the boundary. Indeed, boundary conditions can

be implemented in terms of projections Π on the allowed vectors, say u = Πξ,

ξ being an arbitrary vector.

For example, Dirichlet boundary conditions are implemented by:

ΠD =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 , (1.33)

as it can be easily understood by a direct computation:

u =


ψ(a)

ψ(b)

ψ′(a)

ψ′(b)

 = ΠDξ =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



ξ1

ξ2

ξ3

ξ4

 =


0

0

ξ3

ξ4

 , (1.34)

where ξ1, ξ2, ξ3, ξ4 ∈ C. Similarly one can do for the identification boundary
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Figure 1.9: The pinching off of a closed baby universe. The circle on the left
is broken in P and Q. Then the points a and c, b and d are joined together in
the points R and S. Thus, two circles are obtained from one circle [SWX12].

conditions, say:

Π= =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

 . (1.35)

Thus the continuity equation can be recast as Π† J Π = 0, where Π is a two

dimensional projection, since only two boundary conditions are needed.

With this technology at hand one can interpolate between different boundary

conditions. For example, consider the following projection:

Π(θ) =
1

2


c2 c2 cs cs

c2 c2 cs cs

cs cs 1 + s2 −c2

cs cs −c2 1 + s2

 , (1.36)

where c stands for cos θ, s for sin θ and θ ∈ (π, π). Manifestly one gets

Dirichlet boundary conditions, for example for θ = π/2, and the identification

boundary conditions for θ = 0.

We note that Π(θ) is a projection on the linear space spanned by the vectors

(0, 0, 1,−1) and (c, c, s, s). So, by continously passing from ΠD to Π= one
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can describe a splitting operation, or, viceversa, by moving from Π= to ΠD

a joining of the underlying topological space. These ideas can be be imple-

mented to describe more complex topological changes, like the compression

and the contraction of a closed early universe shaped like a circle (Figure

1.9), working with known quantum mechanical systems.

These ideas of interpolating between different topologies can be effectively

extended to higher dimensions (Figure1.10). In higher dimensions technical

details emerge on the role of the wavefunction and its normal derivative at

the border (see Chapter 5).

Moreover, these surgery processes can generate entanglement. Consider, for

the sake of simplicity, the process of fission of an interval Ω = [0, 2π] in two

daughter intervals Ω1 and Ω2. Just like before we are going to consider a

free particle described by the free Hamiltonian in equation (1.19). We are

going to denote the mother interval’s coordinates with 0 ≤ x ≤ 2π and the

daughter’s ones with 0 ≤ y = x ≤ π and 0 ≤ z = 2π − x ≤ π. We are

going to keep Dirichlet boundary conditions at x = 0, 2π and y = z = 0

and adiabatically evolve from identification boundary conditions to Dirichlet

in x = y = z = π. This midpoint fission of the mother interval induces a

mapping between the respective Hilbert spaces and the corresponding bases:

L2(0, 2π)→ L2(0, π)⊕ L2(0, π), (1.37)

uk =
1√
2π

(
sin kx+ sin

2k − 1

2
x

)
→
√

2

π
sin ky ⊕ 0, (1.38)

vk =
1√
2π

(
sin kx− sin

2k − 1

2
x

)
→ 0⊕

√
2

π
sin kz, (1.39)

where k ∈ N. Then, if we start from the initial state
∑

k(αkuk + βkvk), an

observer on the first daughter interval will have access to the reduced density

matrix on its daughter interval, to which a non trivial von Neumann entropy

is associated, namely:

S(ρ) = −Tr(ρ log ρ) = −r log r − (1− r) log(1− r), (1.40)
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Figure 1.10: Continuous interpolation between quantum mechanics on two
spheres and quantum mechanics on a torus plus four disks. This can be
achieved with suitable boundary conditions [SWX12].
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where r =
∑

k |βk|2. Moreover S(ρ) is maximed when
∑

k |βk|2 = 1
2
.

This is not surprising since the von Neumann entropy represents the amount

of intrinsical uncertainty of a quantum state. Indeed, when we restrict our

attention and measurement processes to a singe interval we are depriving

the observer of the information on what is happening on the other daughter

interval.

From what has been discussed so far it is apparent how, even starting from

a fission process on a single interval, one can have an increase in the entropy

of a system due to a dynamical change in the topology.

1.4 The Quantum Hall Effect

In this section we are going to revise how boundary conditions emerge in the

quantum Hall effect and what physical consequences they induce. First of

all we are going to revise the classical version of this phenomenon.

The setup of the physical system is rather simple and it involves a two-

dimensional gas of electrons under the influence of an intense magnetic field.

The quantum Hall effect has proved to be useful in various areas of physics,

e.g. in metrology, where it was used to determine with great accuracy the

value of h/e2 [KE85; Poi+11]. Not only solid state physics but basically

every area of physics is connected to it. As a matter of fact the literature

inherent to it is vast and it ranges from classical and quantum gravity [Myu99;

Fab02; HOR04] to particle physics [Gre98; ZH01] and quantum computation

[PVK98].

The classical Hall effect

The classical counterpart of this phenomenon was discovered by E. Hall in

1879, and it is a consequence of the motion of charged particles in a magnetic

field. Consider a conducting strip on the x−y plane (as shown in Figure 1.11)

immersed in a uniform magnetic field B pointing in the z-direction. Suppose

that a constant current flows in the x-direction. Then, if we measure the

voltage at the ends of the strip (along the y-axis), we find a non zero value,
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Figure 1.11: A flow of electrons (1) induced by the battery (5) passes through
a metallic plate (2). A magnetic field (3) induced by a magnet (3) modifies
the classical trajectories of the electrons, inducing a perpendicular voltage,
known as the Hall voltage [Wik].

which is called the Hall voltage. This is the essence of the classical Hall

effect.

Indeed, as known from elementary physics reasonings, charged particles are

forced to move in circle under the action of a constant magnetic field at a

constant frequency:

ωB =
eB

m
, (1.41)

where e represents the electrical charge of the particles, while m their mass.

The frequency ωB is also known as the cyclotron frequency.

Using the Drude model and introducing an electric field E which accelerates

the charges in its direction we can further generalize the Ohm law, namely:

J = σE, where J is the current density and σ the conductivity tensor:

σ =

(
σxx σxy

−σxy σxx

)
. (1.42)

Thus, due to the introduction of a magnetic field the conductivity cannot
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be a single number, but rather a matrix. From the Drude model [Jac98] it

follows that:

σ =
σDC

1 + ω2
Bτ

2

(
1 −ωBτ
ωBτ 1

)
, σDC =

ne2τ

m
(1.43)

where τ is the scattering time, namely the average time between collisions of

the electrons, and it is related to friction in the system due to the impurities

of the material. Moreover, n is the density of the electrons, while σDC is the

conductivity without a magnetic field. What really matters for the Hall effect

are the anti-diagonal terms, which encode the information of a transversal

current.

Indeed, the electrical current along the x-axis is deflected in the y-direction

due to the magnetic field. This bending causes a charge separation between

the edges which induces an electric field along the y-axis. The latter keeps

on building up its intensity until the bending of the current along the x-axis

is canceled. This induced electric field is responsible for the Hall voltage.

From an experimental point of view what is really measurable are the re-

sistances, which can be calculated from the inverse conductivity matrix, say

the resistivity:

ρ =

(
ρxx ρxy

−ρxy ρyy

)
= σ−1 =

1

σDC

(
1 ωBτ

−ωBτ 1

)
=

(
m
ne2τ

B
n e

B
n e

m
ne2τ

)
.

(1.44)

Manifestly the off-diagonal terms are independent of τ meaning they capture

some fundamental property of the material. Moreover, from the experimen-

talist’s point of view one measures resistances, which depend on the geometry

of the conductor, rather than resistivities.

In the Hall effect, the two quantities coincide. Indeed, consider a conductor

of length L in the y-direction. If we apply a voltage Vy in the y-direction and

measure the current Ix along the x-axis, we get for the transverse resistance:

Rxy =
Vy
Ix

=
LEy
LJx

= −ρxy. (1.45)
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Figure 1.12: Prediction of ρxy and ρxx in the classical Drude model

The situation for Rxx is completely different, since, in that case the respective

lengths involved will not cancel out.

Eventually, the Drude model makes experimental predictions for the resis-

tivities (Figure 1.12), namely :

ρxx =
m

ne2 τ
, (1.46)

ρxy =
B

ne
. (1.47)

The quantum Hall effect

As history testifies, the former predictions were falsified under certain con-

ditions. For this part of the story we highly recommend [Kli05].

In 1980 K. von Klitzing [KDP80] discovered, due to quantum behaviours,

new fascinating aspects in the Hall effect. The experiment was conducted

on a MOSFET at low temperatures (namely 4.2 K) in order to suppress

disturbing scattering processes and at very intense magnetic fields. The use

of strong magnetic fields had already been employed in order to investigate

the inner structure of semiconductors.

Interestingly, the transversal resistivity, that is ρxy, does not have a linear be-

haviour as predicted by the classical model but it rather shows regular jumps

and large plateaus (Figure 1.13). Moreover, ρxx is almost everywhere zero

but in correspondence of the jumps. From the analysis of the experimental
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Figure 1.13: The integer quantum Hall effect. The Hall resistance changes
stepwise when the magnetic field B varies. Every step is indexed by an integer
ν, such that its height is inversely proportional to it. The lower curves with
peaks at every steps represents the Ohmic resistance[Sci].

data it was shown that:

ρxy =
2π~
e2ν

, ν ∈ N. (1.48)

The plateaus bring no additional information neither on the charge density

nor on the magnetic field nor on the geometrical structure of the device. The

measurement was so precise that the quantum of resistivity, that is 2π~/e2

is used as a standard in the measure of resistivity, for this effect is highly

stable and easily reproducible.

The integer nature of the resistivity can be explained in terms of the energy

spectrum of the electron gas [Lau81]. Indeed, electrons can accumulate on

a surface of a single crystal by an applied positive voltage at the gate and

consequently form a two-dimensional gas [Fow+66]. Even in the approxima-

tion of non interacting electrons, the energy of the free electrons is quantized

under an intense magnetic field. This is nothing but Landau quantization of
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energy levels for the Hamiltonian:

H =
1

2m

(
p2
x + (py + eBx)2

)
, (1.49)

in the Landau gauge [LL77]. The highly degenerate discrete spectrum reads:

Eν = ~ωB
(
ν +

1

2

)
, ν ∈ N. (1.50)

The former energy levels have gaps within and it is exactly when the Fermi

energy crosses one of the gaps that the quantum Hall effect comes on stage.

Of course, since the temperature is kept extremely low, then, excitations

across the gaps are not allowed.

From this explanation it follows that ρxy = 2π~/e2ν happens exactly when

ν Landau levels are filled.

Edge modes and quantum boundary conditions

Another interesting fact happens at the border of the system, with the ex-

istence of the so called edge modes. Electrons, and more generally charged

particles, tend to rotate in one and only one direction in a uniform magnetic

field. But what happens when they collide with the border? From a classical

point of view they are forced to bounce back and reflect in order to keep on

rotating in the direction forced by the magnetic field. Then, we observe an

overall skipping motion where the particles along one side of the boundary

move in a single and well determined direction.

For this reason every edge can carry a current, called a chiral current be-

cause electrons are forced to move in one direction determined by the relative

orientation of the magnetic field and the edge, even in equilibrium. These

effects were largely studied in [Hal82; Tho93; Mac90; Wen90; Wen91; Wen92;

MF94].

These states are very robust because there is a large energy gap between

the Fermi energy and the energy associated to states in the bulk. For this

reason disorder cannot mix edge states with states in the bulk so that some

current may escape from the edge region. In addition to that, chirality plays
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Figure 1.14: In this picture electrons in the bulk rotate anticlockwise. Elec-
trons near the boundary scatters at the edge, determining an overall clockwise
current [Pei79].

a fundamental role as well. Indeed, it prevents electrons from backscattering

at the edge even when disorder comes on stage. For these reasons the Hall

currents and the quantum version of the Hall effect are very robust as long

as the Fermi energy level lies in the gap between Landau levels in the bulk

[Hal82].

Moreover it has been largely investigated the connection between the physics

of the quantum Hall effect and the boundary conditions to be imposed at

the edges of the sample [QT87; IMT96; Akk+98].

Indeed there are mainly two directions while investigating the quantum Hall

effect: on the one hand one could be interested in the two dimensional char-

acteristics of the system which emerge in the bulk, on the other one could

be concerned about the one dimensional boundary effects. The chirality at

the edge plays a fundamental role in the choice of suitable boundary condi-

tions [Akk+98]. As already remarked, from a classical point of view, moving

electrons in a magnetic field are forced on circular trajectories.

In particular, if the electrons in the bulk rotate clockwise, then, the net

current at the boundary flows anti clockwise due to the skipping orbits of

electrons close to the edges [RB85] (see Figure 1.14).
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It is plain to see that, already classically, bulk and edge are distinguished

by the chirality relative to the boundaries. This distinction can be achieved

quantum mechanically with the aid of suitable boundary conditions to be

imposed on the Hamiltionian. The chiral boundary conditions are highly

dependent on the direction of the tangential velocity at the border.

In particular the Hilbert space splits into a direct sum of Hilbert spaces

with positive and negative chiralities. Consequently, under the action of

a magnetic field, the total Hilbert space splits in a Hilbert space for edge

states, say He and one for bulk states, namely Hb, so that the full Hilbert

space reads H = He⊕Hb. This splitting causes a separation in the spectrum

for the bulk and the edge component.

Interestingly, under chiral boundary conditions the bulk spectrum has a

ground state which corresponds to the lowest Landau level for a gas of non-

interacting electrons in an infinite plane and it is highly degenerate. The

degree of degeneracy consists in the total flux of the magnetic field through

the gas.

The edge spectrum, instead, is always discrete for any boundary with finite

length and, in the thermodynamic limit of long boundary, gets gapless.

For this model one considers a semi-infinite cylinder M (See Figure 1.15),

where chiral boundary conditions will be imposed. In particular the bound-

ary of M , say ∂M is a circumference of length l, so that M reads:

M = {(x, y) ∈ R2 |x ≤ 0 , 0 ≤ y ≤ l}. (1.51)

Moreover M is an oriented surface, that is, we suppose that M keeps always

on the left while walking around the border ofM . We suppose that a constant

magnetic field B > 0 is perpendicular to the surface. We will also a have

a longitudinal magnetic field such that its flux tube φ passes through the

cylinder. In this analysis the magnetic field B will play the role of a fixed

constant, while, φ a changing parameter.

A suitable vector potential describing this situation is:

A =

(
0, B x+

φ

l

)
. (1.52)
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For simplicity in the notation we are going to settle m = ~ = e/c = 1, where

m is the mass of the electron, e its electrical charge and c the speed of light.

With this convention the velocity operator reads:

(vx, vy) =

(
−i ∂
∂x

, −i ∂
∂y
−Bx− φ

l

)
, (1.53)

so that the Landau Hamiltonian is given by:

HL(φ) =
1

2
D†(φ)D(φ) +

B

2
, (1.54)

where,

D(φ) = ivx − vy =
∂

∂x
+

(
i
∂

∂y
+Bx+

φ

l

)
. (1.55)

Clearly this is only a formal expression for the Landau Hamiltonian, in order

to make it self-adjoint we need to impose boundary conditions on ∂M . These

boundary conditions will implement the chiral behaviour of the current at

the edges. Since vy(φ, 0) = −i∂y − φ/l commutes with D we separate vari-

ables and describe the chiral boundary conditions for the resulting ordinary

differential operators on the half-line, parametrized by m ∈ Z and φ ∈ R:

HL(φ) =
⊕
m∈Z

Hm(φ), (1.56)

2Hm(φ) = − d2

dx2
+

(
2πm− φ

l
−Bx

)
. (1.57)

If we define

Dm(φ) =
d

dx
− 2πm− φ

l
+Bx, (1.58)

then the chiral boundary conditions can be written as:(Dmψ)(0) = 0, if vy(φ, 0) = 2πm−φ
l
≤ 0,

ivxψ(0) = 0, if vy(φ, 0) = 2πm−φ
l

> 0.
(1.59)

Classically an electron in the bulk rotates clockwise, so that its velocity near

the boundary does not agree with the orientation of the boundary itself. For
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Figure 1.15: Here represented the semi-cylinder described in equation (1.51).
On the upper-left part the unrolled cylinder is shown, with opposite side
identified. We recall that the magnetic field B is orthogonal to the surface,
while the fixed flux φ passes through the cylinder.
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these electrons the first kind of boundary conditions are imposed, that is

(Dmψ)(0) = 0. These boundary conditions, called spectral boundary condi-

tions, depend on m and they represent an interpolation between Neumann

and Dirichlet boundary conditions.

On the contrary a skipping particle agrees with the orientation of M . For

this reason Neumann boundary conditions are imposed for positive velocities.

The Hamiltonian in equation (1.57) with the boundary conditions given by

(1.59) is self-adjoint.

Moreover the bulk Hilbert space is generated by the family {e2πimy/lfm(x)},
where fm are the eigenfuctions of the Hamiltonian with spectral boundary

conditions. The edge Hilbert space, instead, is its orthogonal complement.

As expected, the spectrum of this operator depends on the boundary condi-

tions chosen. Indeed, the energy of the ground state for the bulk reads B/2,

which corresponds to the lowest Landau energy level in the plane and the

degeneracy equals the total magnetic flux.

In addition to that, the edge spectrum is purely discrete for any finite bound-

ary length l. In the thermodynamic limit the edge spectrum gets gapless and

one can associate from the curves appearing in the spectrum a linear disper-

sion law. For this reason there is a unique sound velocity associated to the

chiral edge currents, which reads
√
B/π.

Playing with the boundary conditions, then one can obtain different phys-

ical consequences. Dirichlet boundary conditions, ψ(0) = 0, generate an

explicitly solvable spectral problem. Nevertheless there is no net separation

between the bulk and the edge, no unique velocity for the edge currents and

no macroscopic degeneracy appears for the ground state.

An interesting comparison can be made with APS (Atiyah-Patodi-Singer)

boundary conditions [APS75] which read:(Dmψ)(0) = 0, if vy(φ, 0) = 2πm−φ
l
≤ 0,

ψ(0) = 0, if vy(φ, 0) = 2πm−φ
l

> 0.
(1.60)

For these boundary conditions states with different chirality are sharply sep-

arated, as expected. However the edge states have a small density near the
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Figure 1.16: A schematic illustration of the Aharonov-Bohm experimental
setup.

boundary and tend to be pushed away from the boundary. This goes strongly

against the robustness of the quantum Hall effect.

Interestingly, the chiral boundary conditions are linked to the Laughlin states,

which were introduced by Laughlin [Lau83] in order to explain the fractional

quantum Hall effect. We refer the interested reader to [Eze08].

1.5 The Aharonov-Bohm effect

Another interesting phenomenon where the boundary conditions play a fun-

damental role is the Aharonov-Bohm effect [AB59].

In this quantum-mechanical effect a charged particle is influenced by an elec-

tromagnetic potential although it is confined in a region with no electric or

magnetic field. This has no classical explanation since what really matters

at the level of the classical equations of motion are the magnetic and electric

fields generated by those potentials. For this reason, the motion of a classical

charged particle is unaffected in a region where the magnetic field is zero,

although the vector potential A is not.

From a quantum mechanical point of view, instead, there is a coupling be-

tween the complex phase associated to the wave function of a charged particle
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Figure 1.17: A shift of the electrons’ interference pattern due to the vector
potential associated to the magnetic field threading the solenoid.

and the electromagnetic potential, rather than the associated fields [Dir31a].

So that, even if a charged particle passes through a region where there is no

magnetic field, then the phase associated to its wave function gets affected.

The existence of this phase can be demonstrated by means of interference

experiments.

We are going to briefly recall the experimental setup. The Aharonov-Bohm

experiment is schematically illustrated in Figure 1.16. An electron source is

placed at the point P , while in the middle a double slit with a solenoid sits

next to it. In the point C, instead, there is a screen to observe interference

patterns. The solenoid is shielded so that no electrons can penetrate it. We

suppose that the radius of the solenoid is infinitesimally small.

If one keeps the total magnetic flux fixed, say Φ =
∫
S
B · d~S, S being the

section of the solenoid, then one can choose the electromagnetic potentials

in this form:

A =

(
− yΦ

2πr2
,
xΦ

2πr2
, 0

)
, A0 = 0 (1.61)

so that
∫
S
∇ × A = Φ and B = ∇ × A = 0 outside the solenoid. In this

configuration the vector potential does not vanish outside the solenoid while

the magnetic field does. From a classical point of view, as already stressed,

the magnetic field generated by the solenoid cannot influence the motion of
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the electrons because the Lorentz force vanishes on the path of the beam.

Instead, from a quantum mechanical point of view, it generates a shift in the

interference pattern. Indeed, a wave function in a spatial region where there

is a non zero vector potential A reads:

ψ = ψ0 e
i e
~ c

∫
A(~x)d~x, (1.62)

where ψ0 is the wave function with zero vector potential and the integral is

taken along a path starting in P and ending in the point we are interested

in, for example the point Q on the screen.

In order to determine the interference pattern in Q, one considers the super-

position:

Ψ = ψ1 + ψ2 = ψ1,0 e
i e
~ c

∫
γ1

A(~x)d~x
+ ψ2,0 e

i e
~ c

∫
γ2

A(~x)d~x
, (1.63)

which can be proved to equal:

Ψ =
(
ψ1,0 e

i e
~ cΦ + ψ2,0

)
e
i e
~ c

∫
γ2

A(~x)d~x
, (1.64)

where Φ, is the solenoid flux defined above. Then, the interference pattern

reads:

|Ψ|2 = |ψ1,0|2 + |ψ2,0|2 + 2 Re
(
ψ∗1,0ψ2,0 e−

i e
~ cΦ
)
. (1.65)

Evidently, one can observe a shift in the usual interference pattern due to

the presence of the solenoid, which appears in the term with the magnetic

flux Φ.

The effect was first experimentally checked in 1960 [Cha31] using an experi-

mental apparatus similar to the one described above. Then, it was confirmed

in 1962 [MB62] and later on under several different configurations using op-

tical and electron holography [Ta82] and toroidal permalloy [Ta86]. More

recently, instead, the Aharonov-Bohm effect was tested in quantum interfer-

ence devices [NB09] and graphene rings [Sa86].

The solenoid in the Aharonov-Bohm effect induces a perturbation in the



Chapter 1. Quantum Boundary Conditions: an overview 40

Figure 1.18: Experimental evidence of the Aharonov-Bohm effect. On the left
interference pattern with fringe shifts [MB62]. On the right the experimental
setup by Tonomura et al. [Ta86]. In this case the dashed lines make the
electrons’ shift visible.

configuration space crossed by the electrons, which can be encoded by means

of boundary conditions. In order to discuss the role of boundary conditions

for the Aharonov-Bohm effect see [OP10].

The objective here is to characterize all the possible boundary conditions

on the border S of the solenoid consistent with the structure of quantum

mechanics. Moreover we are going to deal with regular realizations, whose

domains are subspaces of H2(S ′), where S ′ = R2 \S is the region outside the

solenoid and H2(S ′) is the second Sobolev space on S ′.

As in the previous discussion we suppose that the solenoid, of radius a, is

centered at the origin of the x-y plane, with its axis on the z direction. We

suppose that a stationary current through it generates a uniform magnetic

field confined in the interior of the solenoid. We suppose that a spinless

particle with mass m = 1/2 can move in S ′ and cannot interact with the

magnetic field. Denoting with A the vector potential associated with the

magnetic field and setting ~ = 1, then the Hamiltonian for the charged
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particle reads:

H =
(
p− e

c
A
)2

p = −i∇ (1.66)

where e is the electric charge, c the speed of light, and the domain of the

Hamiltonian reads D(H) = C∞0 (S ′), the space of regular functions with

compact support in S ′.

This operator is not self-adjoint but solely symmetric [OP10]. Indeed, as

long as we do not take into account the interaction of the charged particles

with the boundary then, the Hamiltonian operator cannot describe a physical

observable. Indeed, the space C∞0 (S ′) does not contain information of the

interaction of the wave functions with the solenoid.

Usually Dirichlet boundary conditions are imposed on the solenoid [OP08].

Nevertheless, this is not the full story because there may be different inter-

actions between the particles and the solenoid. These different interactions

can be encoded in different boundary conditions, as we are going to discuss.

Indeed, it will be important to select those boundary conditions that describe

a particle moving in S ′ and which cannot penetrate the solenoid, but can only

interact with its boundary. From a quantum mechanical point of view, we

need to select the boundary conditions which realize self-adjoint realizations

of the Aharonov-Bohm Hamiltonian, and which reproduce this interaction

with different interface materials.

Let us consider the vector potentialA in polar coordinates (r, θ) in the plane,

such that:

A = (Ar, Aθ) Ar = 0 Aθ =
Φ

2πr
, (1.67)

for r ≥ a and where Φ is the total magnetic flux through the solenoid. This

symmetric operator admits self adjoint realizations since its deficiency indices

are both equal and infinite [RS75].

Moreover we are not going to deal with every possible self-adjoint extension,

rather we will mainly interested in those whose domains are subspaces of

H2(S ′). Due to the symmetry of the system we are going to consider planar

sections of the solenoid.

As discussed in section 1.3 the lack of self-adjointness of a symmetric operator
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is directly linked to the boundary form associated with it, namely:

Γ(ψ, φ) = 〈ψ,H∗φ〉 − 〈H∗ψ, φ〉, (1.68)

for all ψ and φ ∈ D(H∗). Passing to polar coordinates (r, θ), the boundary

form reads:

Γ(ψ, φ) = a

∫ 2π

0

dθ

(
∂ψ

∂r
(a, θ)φ(a, θ)− ψ(a, θ)

∂φ

∂r
(a, θ) (1.69)

+ 2iψ(a, θ)(A · r)φ(a, θ)

)
.

It can be proved with the technique of the boundary triples [BGP08] that all

the self-adjoint realizations of the Aharonov-Bohm Hamiltonian in H2(S ′)

are parametrized uniquely by unitary operators on L2(S), namely

HUψ = H∗ψ ψ ∈ D(HU), (1.70)

D(HU) =

{
ψ ∈ H2(S ′) : i(I + U)ψ(a, θ) = (I − U)

∂ψ

∂r
(a, θ)

}
. (1.71)

For example:

• If U = I, then we get Dirichlet boundary conditions:

D(HU) =
{
ψ ∈ H2(S ′) : ψ(a, θ) = 0

}
= H2(S ′) ∩H1

0 (S ′). (1.72)

These boundary conditions have already proved their usefulness in the

physical description of the phenomenon [OP08; Rui83].

• If U = −I, then we get Neumann boundary conditions:

D(HU) =

{
ψ ∈ H2(S ′) :

∂ψ

∂r
(a, θ) = 0

}
. (1.73)

• U = −exp(−i u(θ)), where u is a measurable function on S. If 1 +U is
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Figure 1.19: A comparison between different scattering sections with different
boundary conditions [OP10].

invertible, or equivalently if the function

f(θ) = i
ei u(θ) − 1

ei u(θ) + 1
(1.74)

is well defined, real and measurable, then the corresponding extension

reads:

D(HU) =

{
ψ ∈ H2(S ′) :

∂ψ

∂r
(a, θ) = f(θ)ψ(a, θ)

}
. (1.75)

These are nothing but Robin boundary conditions.

Up to now we have discussed the case of a solenoid with a finite radius, say

a > 0 and the regular self-adjoint realizations of the system.

With these results at hand one can study scattering processes with different

boundary conditions. For example the case of Dirichlet boundary conditions

was investigated in [Rui83].
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More generally, different boundary conditions generate different scattering

cross sections, which can be experimentally measured. With this idea in

mind, then, one could understand which kind of interaction can occur be-

tween the electrons and the wall, because mostly it is not clear what boundary

conditions are realized in laboratories.

Figure 1.19 shows qualitatively what was mentioned. On the left it is rep-

resented the low-energy behaviour of the differential cross sections obtained

with different boundary conditions. In this case they almost behave the same

way, so it is not possible to tell which boundary conditions have contributed

the most. Differently, on the right the same differential cross sections are

plotted at higher energy. Interestingly enough there is a sharp separation

between them, so that different boundary conditions can be experimentally

told apart. For a further discussion of the different cross sections and their

comparison we refer the reader to the aforementioned paper [OP10].

These results can be compared with the ones in [AT98; DS98], where the

radius of the solenoid is shrinked to 0. In this case the deficiency indices

are equal to 2 and the self-adjoint realizations are parametrized in terms of

2×2 unitary matrices. Scattering cross sections in the presence of zero radius

solenoids are also discussed in [AT98; AB59; DS98; Hag90; PR11].

Other interesting results on the interplay between boundary conditions and

the Aharonov-Bohm effect can be found in [ESV02], where all the admissible

boundary conditions are determined and classified and in [GER09], where

the role of the charge transport at the edge of a Hall system in terms of heat

is analyzed.

1.6 Why self-adjointness? The global theory

of quantum boundary conditions.

Up to this point we have made a large use of words like self-adjointness

and quantum boundary conditions, stressing their physical relevance without

entering too much into details.

In Chapter 5 we are going to deal with all the rigorous details and results
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Figure 1.20: Why self-adjointness?

which have been hidden under the carpet so far.

For now, we would only give a brief introduction about the connection which

resides between self-adjoint operators and quantum boundary conditions.

In particular, it is well known that in quantum mechanics the physical ob-

servables are represented by self-adjoint operators, mainly for two reasons.

The first one is kinematical and resides in the spectral theorem.

By the spectral theorem [RS75] it is well known that every self-adjoint opera-

tor H admits a unique decomposition in terms of projection valued measures,

Ω 7→ PH(Ω), and its spectrum is real:

H =

∫
R
λ dPH(λ). (1.76)

The spectrum of a self-adjoint operator is, for this reason, linked to the

measurable values of the associated observable.

Self-adjoint operators are also necessary from a dynamical point of view. As

a matter of fact, Stone’s theorem [RS75] estabilishes a one-to-one correspon-

dence between (strongly continuous) one-parameter unitary groups and self-

adjoint operators. For this reason self-adjoint operators are interpreted as

the infinitesimal generators of the admissible transformations on the Hilbert

space of physical states.

In particular, the dynamics of a closed quantum system is governed by a
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unitary group V , whose generator is the Hamiltonian operator H:

V (t) = e−
i t
~ H , t ∈ R. (1.77)

Usually, the starting point is looking for an operator which could be a good

candidate for representing an observable. Then, one starts searching for some

symmetric domain of definition and tries to check whether the closure of the

respective operator is self-adjoint. In the negative case one is forced to study

various (if any) self-adjoint extensions of the operator under examination.

Interestingly, for some operators the self-adjoint extensions can be para-

metrized in terms of boundary conditions. Moreover, different boundary

conditions for the same Hamiltonian operator correspond to distinct physi-

cal systems since they exhibit different spectra and dynamics.

Indeed, from the axioms of Quantum Mechanics, it is well known that the

spectrum of a self-adjoint operator representing an observable is linked to its

measurable values.

Here we briefly recall some of the main results used up to this point in

order to characterize the physical realizations of the Hamiltonian in terms of

boundary conditions.

For the sake of concreteness we will discuss only the one-dimensional case

[AIM05]. For further generalization we refer to Chapter 5.

Consider a free quantum particle confined in a one dimensional segment

Ω = (0, 1). This situation is effectively described in the Hilbert space L2(Ω)

by the Hamiltonian operator:

H = − ~2

2m

d2

dx2
, (1.78)

where m is the mass of the particle and ~ the Planck constant. This operator

is solely symmetric on D(H) = C∞0 (0, 1) and, as such, it cannot represent a

physical observable. Nevertheless it is a good candidate and, for this reason,

one looks for its self-adjoint extensions.

We recall that the adjoint of H, say H∗, acts as in equation (1.78) in the

distributional sense on a larger domain, that is D(H∗) = H2(Ω), the space of



Chapter 1. Quantum Boundary Conditions: an overview 47

square integrable functions whose first and second distributional derivative

are square integrable as well. In particular, every self-adjoint realization will

be obtained as a restriction of D(H∗) with certain boundary conditions:

D(H∗) ∩ {suitable boundary conditions}. (1.79)

First of all, making use of von Neumann’s theory, one can prove that H

admits self-adjoint extensions because its deficiency indices are equal [Neu55].

Then, it can be proved [AIM05] that the set of self-adjoint extensions of H

is in one -to -one correspondence with the group of 2× 2 unitary matrices.

Namely every physical realization of H, say HU is given by a unitary matrix

U , such that its domain reads:

D(HU) = {ψ ∈ H2(Ω) : i(I + U)ϕ = (I − U)ϕ̇},

where ϕ and ϕ̇ are the boundary data of the wave function ψ and are defined

as

ϕ :=

(
ψ(0)

ψ(1)

)
, ϕ̇ :=

(
−ψ′(0)

ψ′(1)

)
. (1.80)

where the minus signs, which appears in the ϕ̇ vector, is chosen such that

the normal vector field on the boundary ∂Ω = {0, 1} points outward. Choos-

ing different unitary matrices one obtains distinct boundary conditions: For

example:

U = I, ψ(0) = 0 = ψ(1), Dirichlet; (1.81)

U = −I, ψ′(0) = 0 = ψ′(1), Neumann; (1.82)

U = −σ1, ψ(0) = ψ(1) , ψ′(0) = ψ′(1), periodic; (1.83)

U = σ1, ψ(0) = −ψ(1) , ψ′(0) = −ψ′(1), antiperiodic. (1.84)

where σ1 is the first Pauli matrix. Dirichlet and Neumann boundary con-

ditions are particular cases of local boundary conditions. The respective

unitary matrices are diagonal and they do not mix the boundary values at

the border. The nondiagonal ones, like U = σ1, describe nonlocal boundary
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Figure 1.21: A change in the topology induced by non diagonal unitary
matrices.

conditions, which mix the values at the border.

In order to preserve unitarity, or in other words “what comes out from one

end of the interval must return to the other one”, we need to bend the

interval so that the interval endpoints become the two sides of a junction.

Thus, passing from a diagonal U to a non diagonal one, we are changing the

underlying topology from an interval to a circle (see Figure 1.21 and Figure

1.22). If the junction is impermeable, the walls are completely reflecting,

otherwise there could be some probability flux across the junction, from one

wall to the other. For example, consider the matrix

U = −
(

0 e−iα

eiα 0

)
, (1.85)

which describes pseudo-periodic boundary conditions:

ψ(1) = eiαψ(0), ψ′(1) = eiαψ′(0). (1.86)

When passing through the junction, the wave function acquires a phase α.

If α = 0 we return to periodic boundary conditions, and the underlying

topology is the one of a circle. Otherwise, if α = π we get antiperiodic
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Figure 1.22: After the bending, the functions defined over the interval trans-
form as in figure.

boundary conditions. This phase encodes the properties of the junction like

the material it is made of, or its width. In particular, as we are going to

discuss in the next chapter, these effects can be used in a Josephson junction

and in superconducting quantum interference devices in order to get different

quantum boundary conditions [Pol+09; Paa+09].

Eventually, the following non-diagonal unitary matrix describes a delta like

potential settled on a point of a circle with intensity g [TFC00; FT01;

CFT01]:

Ug =
1− i g
1 + g2

(
ig 1

1 ig

)
. (1.87)

The boundary conditions associated to this unitary matrix can be used to

describe effectively the quantum dynamics on a circular superconducting

quantum device (SQUID) with a Josephson junction. It is exactly the non-
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diagonal nature of Ug which takes into account the tunneling effects across

the junction.

1.7 Physical interpretation of boundary

conditions: a scattering approach

In the previous section we classified all self-adjoint extensions of the Laplacian

on an interval and, in particular, we met again with Dirichlet and Neumann

conditions. It is legitimate to ask what would be the physical meaning of

these conditions. We also analyzed the role of boundary conditions in the

light of unitary preservation, and stressed the necessity of deforming the

interval topology into the circle one, in order to make the transition“what

comes out from one end must return to the other” a physical one (Figure

1.22).

We would like to show, through the use of scattering techniques, what is the

physical meaning of the requests made so far, e.g. the vanishing of the wave

function or of its derivative at one endpoint. We take the Laplacian defined

over its maximal domain on an interval [0, 1], that is H2[0, 1], and study what

happens in a neighbourhood of 0.

In order to do so, we consider a plane wave e−i k x, which is in H2[0, 1], coming

from the right (region I), which in part gets reflected (region I) and in part

transmitted (region II). (Figure 1.23)

Let R be the reflection coefficient and T the transmission one, so that the

wavefunction can be written as:

ψ(x) =

ψI(x) = e−i k x +Rei k x x ∈ I,

ψII(x) = Te−i k x x ∈ II
(1.88)

We start analyzing the physical meaning of ψ(0) = 0. By imposing this
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Figure 1.23: Scattering of a plane wave e−ikx against one of the boundary’s
ends.

condition in (1.88) we find that:R = −1

T = 0
. (1.89)

Physically this means that the plane wave scatters against a hard wall, no

transmission takes place, and it is completely reflected. In the reflection

process it acquires a π phase like in the classical case of scattering of light

against a mirror. In the physical interpretation of ψ(0) = 0, we can always

think of bending our interval into a ring with a junction that consists of an

infinitely high wall.

Next, we move on to ψ′(0) = 0 and find that:R = 1

T = 0
. (1.90)

In this case as well, the incoming wave gets completely reflected by a hard

wall, but in this case in the reflection process it does not acquire any addi-

tional phase.
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In Chapter 2 we will prove that there exists a non trivial geometric phase

for a free particle described by a Laplacian with the following boundary

conditions:

ψ(0) = ηψ(1), ηψ′(0) = ψ′(1). (1.91)

We have already remarked that in order to give a physical meaning to our

boundary problems we need to bend our segment so that the interval ends

are brought close to each other to form the two sides of a junction, so that

the conditions we need to impose are:ψI(0) = η ψII(0)

η ψ′I(0) = ψ′II(0)
, (1.92)

which lead to the following coefficients:

R =
|η|2 − 1

1 + |η|2
, (1.93)

T =
2 η

1 + |η|2
. (1.94)

In the periodic case, η = 1, where we can identify the interval ends, the

incident wave is completely transmitted through the junction, that is the

particle is freely moving on a circle. In the antiperodic case, instead, that

is η = −1, again the wave is completely transmitted, but by crossing the

junction it acquires an additional π phase.

Interestingly the coefficients found above are the same that we already found

in the ispection of self-adjoint extensions of the Laplacian on the interval,

that is:

U = −
(
R T ∗

T −R

)
. (1.95)

It is worth noticing that in the case studied above both R and T were inde-

pendent of k. However, if we had started from conditions mixing functions

and derivatives as:

ψ(0) = η ψ′(1), (1.96)
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then the reflection and transmission coefficients would explicitly depend on

the wave number.





Chapter 2

Moving Walls and Geometric

Phases

In this chapter we are going to unveil the existence of a non-trivial Berry

phase associated to the dynamics of a quantum particle in a one dimensional

box with moving walls [Fac+16]. In order to preserve unitarity a suitable

choice of boundary conditions has to be made. For these boundary con-

ditions we are going to explicitly compute the geometric phase associated

to the adiabatic evolution of the system. In particular, the unboundedness

of the Hamiltonian describing the system leads to a natural prescription of

renormalization for divergent contributions arising from the boundary.

2.1 Boundary Conditions and geometric

phases

The case of a nonrelativistic quantum particle confined in a one-dimensional

box with moving walls subject to Dirichlet boundary conditions has been

investigated in great detail in [Di +16].

In this chapter we consider more general boundary conditions and study the

geometric phases that emerge. The boundary conditions we focus on are

55



Chapter 2. Moving Walls and Geometric Phases 56

those consistent with the unitarity of the dynamics as well as with dilation

symmetry.

Geometric phases were investigated by Berry and Wilkinson [BW84] who

considered the behaviour of the eigenfunctions of the Laplacian in a two

dimensional region with a triangular boundary with Dirichlet boundary con-

ditions, when the shape of the region was varied adiabatically. This study

revealed the existence of “diabolical points”, shapes which have an accidental

degeneracy in the spectrum.

Varying the shape of the region in a small circuit around the diabolical point

led to a reversal in the sign of the eigenfunction. Similar effects were also no-

ticed earlier in molecular physics [HL63] as explained in the book by Shapere

and Wilczek [SW03]. These sign reversals were an early example of a geomet-

ric phase. In these problems the geometric phase is essentially of topological

origin. In fact, due to the time reversal symmetry of the problem, wave

functions can be chosen to be real and this constrains all geometric phases

to be 1 or −1. In a later work by Berry, the time reversal symmetry was

broken by the introduction of magnetic fields and this led to the discovery of

the full geometric phase [Ber84], which has been subsequently studied and

generalized in many directions [AA87; SB88] and widely applied [Boh+03;

CJ04].

In this chapter, unlike the example studied by Berry and Wilkinson, which

is two-dimensional, we are going to consider a free quantum particle in a

one-dimensional box subject to general boundary conditions, which (apart

from some special cases) violate time reversal symmetry.

The location of the boundaries is adiabatically varied by translations and

dilations, which gives us a two parameter space of variations. As a result we

are going to find that there is a geometric phase and we are going to compute

the two -form on the parameter space.

Interestingly enough, it turns out that this two-form is the area form of a

hyperbolic half-plane. This is at variance with the curvature of the original

example (a spin in a magnetic field) in Berry’s seminal work [Ber84]. The

latter was the area two-form of a sphere which is known to be associated to

the degeneracy occurring at zero magnetic field. Moreover, the eigenvalue
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crossings can be associated to a Berry curvature with a similar geometry.

Surprisingly, our model presents no crossing and the nontrivial geometric

phase is associated to a hyperbolic geometry.

2.2 The adiabatic theorem and geometric

phases

From the axioms of quantum mechanics we know that given a quantum

system one can associate to it a self-adjoint operator, the Hamiltonian, which,

among other things, determines the time-evolution of the system. In order to

investigate how the system evolves in time one needs to solve the Schrödinger

equation:

i~∂tψ(t) = H(t)ψ(t), (2.1)

where ψ(t) is some state, i.e. a unit vector in a Hilbert space, e.g. L2(R).

The solutions of the Schrödinger equation in the time-independent case are

well-known in literature [Mes61; Sak93], while in the time-dependent one

they need more care.

In the most general situations it is not possible to write down an explicit

solution of (2.1), due to the operatorial nature of the Hamiltonian. However,

sometimes we are interested in slowly-changing systems so that, in the so-

called adiabatic approximation, one can give an approximate solution to the

Schrödinger equation.

Adiabaticity plays a fundamental role in physics since it is at the borderline

between statics and dynamics; indeed, it keeps track of infinitely slow dynam-

ical effects, so that it is no longer static but its evolution is extremely slow.

Adiabatic evolution has, of course, its counterpart in classical mechanics

[Arn97] where one considers adiabatic invariants, which for time-dependent

Hamiltonians are the objects closest to conserved quantities. The construc-

tion of such invariants, which approximate well-enough integrals of motion,

can be accomplished as a result of the adiabatic approximation.

A first formulation of the adiabatic theorem was given by Born and Fock

[BF28], although Kato’s seminal paper [Kat50] represents a cornerstone in
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the geometrical interpretation of such a slow evolution.

A general formulation of the adiabatic problem is the following. Let τ > 0 be

a fixed constant representing the total time of the evolution and let us rescale

the time coordinate t → s = t/τ , so that s ∈ [0, 1], and the Schrödinger

equation reads:

i∂sψτ (s) = τH(s)ψτ (s). (2.2)

We are now interested in what happens in the limit τ → ∞. There are

several forms of the theorem, which all depend on the regularity properties

of the given data, but share the same structure. Indeed, given a suitable

family P (s) of spectral projections of H(s), we suppose that the initial state

ψτ (0) ∈ RangeP (0), then for some γ ≥ 0:

dist (ψτ (s),RangeP (s)) ≤ o(τ γ). (2.3)

In other words if we start the evolution in an eigenspace, then the dynamically

evolved state can be approximated as much as we want by a state in the final

evolved eigenspace.

One question may arise naturally: What is the meaning of a “slowly-varying”

time evolution? Of course one needs to define a reference time-scale, so that

the expression “fast” and “slow” are well-posed. If we start from an isolated

eigenvalue in the spectrum, we can define an intrinsic temporal scale, and

we can also estimate how good our approximation is. In the gapless case

the theorem holds [AE99], as well, but since there is no characteristic time

scale we cannot infer about the rate at which our approximation is reached.

For some recent applications of adiabaticity in terms of shortcuts for scale

invariant driving see [DJC14].

2.2.1 The Born - Fock approximation

In 1928 [BF28] Born and Fock proved a version of the theorem for an Hamil-

tonian with a non degenerate and discrete spectrum:

H(t)un(t) = En(t)un(t) (2.4)
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Figure 2.1: Adiabatic evolution is concerned with comparing two temporal
scales, an intrinsic one which is related to the distance between close energy
levels and an external one, say τ .

with the choice of normalized eigenvectors. They proved that, if ψ(0) =

un(0), then, the evolved state at later times can be well-approximated with

the evolved eigenstate, say un(t), modulo an extra phase factor:

ψ(t) = exp(i φn(t)) exp

(
− i
~

∫ t

0

En(s)ds

)
un(t), (2.5)

It is fundamental to remark one aspect of adiabatic evolution.

First, time evolution of the systems we are going to study will be implemented

by some external parameters, (see for istance section 2.2.2), for example the

well known case of a spin one-half particle into a slowly varying magnetic

field, whose intensity is kept constant.

In the analysis of adiabatic evolution there are two temporal scales which

need to be taken into account. The first one, τ , is the temporal scale asso-

ciated to the time evolution of the parameters, or, in other words, it tells

us how rapidly the Hamiltonian varies with time. In the above example, it

corresponds to the period of rotation of the magnetic field. Moreover, there

is an intrinsic time scale, which is related to the difference between two close
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energy levels (see Figure (2.1)) and it is proportional to the intensity of the

magnetic field, or more generally to ‖H‖, and consequently to the eigenvalues

of the Hamiltonian. The idea of adiabatic evolution is the following: we let

the magnetic field vary so slowly (τ very large) that no transition between en-

ergy levels can occur, or alternatively we increase the difference between the

energy levels and let B vary at a given pace. Indeed, what physically really

matters is the ratio between the two time scales. Adiabaticity, then, means

that the external time-dependent parameters are not that fast to provoke a

jump between close energy levels during the evolution.

2.2.2 The Berry phase

For fifty years the contribution of the additional phase φn in equation (2.5)

was ignored by the physics community and believed to be unphysical, since

it could have been neglected through a gauge transformation of the basis

eigenvectors. Indeed if we perform a gauge transformation

un(t)→ u′n(t) = ei λn(t)un(t) λn : R→ R, (2.6)

then, equation (2.4) will hold for the transformed states as well. Using the

gauge freedom, we could have chosen the states:

ũn(t) = eiφn(t)un(t), (2.7)

and the state in (2.5) can be rewritten as:

ψ(t) = exp

(
− i
~

∫ t

0

Em(s)ds

)
ũn(t), (2.8)

so that no extra contribution seems to appear. As we are going to revise,

there are some cases when the latter machinery fails and it turned out that

an extra purely geometrical phase is indeed needed. This extra contribution

is linked to the geometrical properties of the quantum evolution.
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Indeed, we start with a curve C in the parameter space M:

t → xt ∈M (2.9)

and consider a family of parameter dependent Hamiltonians defined over the

parameter space. We suppose that H(x) admits a purely discrete spectrum

over the whole M:

H(x)un(x) = En(x)un(x) , 〈un(x), um(x)〉 = δn,m ∀x ∈M. (2.10)

Notice that the eigenvectors in (2.10) are not uniquely determined since one

could perform the gauge transformation:

un(x)→ ũn(x) = eiαn(x)un(x), (2.11)

αn :M→ R, (2.12)

leaving equation (2.10) unaltered.

We, now, focus our attention on the n-th eigenspace, assume it is not de-

generate and apply the adiabatic approximation. We consider the rank-one

projection Pn(x) and build up a fiber in x:

Hn(x) = RanPn(x) = {αun(x) : α ∈ C}. (2.13)

Next we investigate the dynamical evolution and consider the restriction

of the family of Hamiltonians in (2.10) to the chosen path, so that time-

dependence will be implemented by the following composition:

t → xt ∈M → H(xt). (2.14)

Suppose we start with a vector ψ(0) = un(x0) and let it evolve adiabatically,

so that for every t we can approximate the true evolved state with a state in

the n-th eigenspace:

ψ(t) ∈ Hn(xt). (2.15)

If we consider a cyclic evolution of parameters, that is to say C a closed path
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Figure 2.2: Although the physical system is subdued to a cyclical evolution
of the parameter x inM, the wavefunction ψ, crossing the horizontal lift C̃ of
C, can be different from the initial one, say ψ(0) when the external parameter
returns to its original value. In this case the wavefunction has acquired an
extra phase factor.

on M, then after a turn around the state ψ(T ) still belongs to Hn(x0) but

it may differ from ψ(0) by a phase factor:

ψ(T ) = eiγψ(0). (2.16)

Naively one could think that this phase γ is solely determined by the dy-

namical evolution of the system, that is:

γ ∝
∫ T

0

En(t)dt, (2.17)

but, as Berry discovered in 1984 [Ber84], although earlier anticipations can

be found in Pancharatnam [Pan56], there exists an extra purely geometrical

contribution depending only on the properties of the manifold and on the

chosen path. From the adiabatic approximation (equation (2.5)) we can

write:

ψ(t) = exp

(
− i
~

∫ T

0

En(τ) dτ

)
eiφn(t) un(xt) , (2.18)
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where:

φ̇n = i 〈un, dun〉. (2.19)

We now define the following one-form:

A(n) := i 〈un, dun〉. (2.20)

Once defined the 1-form above, we can solve equation (2.19) integrating it

over the path C, so that the geometrical contribution, known as the Berry

phase is given by:

γn(C) := φn(T ) =

∮
C
A(n). (2.21)

The total phase shift γ can be explicitly split into a dynamical and a geo-

metrical part :

γ = −1

~

∫ T

0

En(τ)dτ + γn(C). (2.22)

We remark that ~ would appear in the dynamical phase, but not in the

geometrical phase. This is a sign of the fact that γn(C) is independent of the

chosen evolution, but it is rather an intrinsic geometrical property, as proved

by [AA87; SB88]. From the Stokes theorem (Figure 2.3) we can transform

the circulation of A(n) into a flux integral:

γn(C) =

∫
Σ

F (n), (2.23)

where Σ is a surface whose boundary ∂Σ is exactly the closed curve C and

F (n) is given by the exterior differential of A(n):

F (n) = dA(n). (2.24)

Under a gauge transformation (2.11) the one-form A(n) transforms like a

gauge potential of electrodynamics:

A(n) → A′(n) = A(n) − dαn, (2.25)
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Figure 2.3: Stokes theorem: the flux through Σ equals the circulation on ∂Σ.

while:

F ′(n) = F (n), (2.26)

due to the identity d2αn = 0.

Equation (2.26) shows that F (n) is a gauge-invariant quantity, as well as the

Berry phase γn(C) due to equation (2.23).

Again, in analogy with classical electrodynamics the 2-form F (n) plays the

role of the magnetic field, whose flux (in our case the Berry phase), is invari-

ant under gauge transformations. This analogy is extremely fruitful since the

above derivation can be understood in terms of connections over a principle

fiber bundle, which is a powerful tool in gauge theories [Sim83].

2.3 The framework

As already remarked the set of all the possible physical realizations of a free

quantum particle in a one-dimensional box, say I = [a, b], a, b ∈ R, b > a, is
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in a one-to- one correspondence with the set of 2× 2 unitary matrices:

HUψ = − ~2

2m
ψ′′,

D(HU) = {ψ ∈ H2(I) : i(I + U)ϕ = (I − U)ϕ̇}. (2.27)

where U is a unitary 2 × 2 matrix and:

ϕ =

(
ψ(a)

ψ(b)

)
, ϕ̇ =

(
−ψ′(a)

ψ′(b)

)
. (2.28)

w we would like to extract and parametrize a particular subset of bound-

ary conditions which are invariant under dilations and will be useful in the

following. The set we are looking for is made up by all those boundary con-

ditions which do not mix functions with derivatives at the boundary, that is

of the form αψ(a) + β ψ(b) = 0,

γ ψ′(a) + δ ψ′(b) = 0,
(2.29)

where α, β, γ, δ ∈ C. It is easy to show that the conditions that have to be

satisfied by the former four parameters in order to represent a self-adjoint

extension of the Hamiltonian on the interval I = [a, b] are

βδ̄ = αγ̄. (2.30)

If we set η = −β/α, the desired boundary conditions readψ(a) = η ψ(b),

ηψ′(a) = ψ′(b),
(2.31)

and the unitary matrix in (2.27) associated to this self-adjoint extension is

provided by

U =

(
1−|η|2
1+|η|2

−2η
1+|η|2

−2η
1+|η|2

|η|2−1
1+|η|2

)
. (2.32)

Some comments are in order. If η = ±1 we obtain periodic and antiperiodic
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Figure 2.4: After the bending, the functions defined over the interval trans-
form as in figure.

boundary conditions, while for η = 0 or η =∞mixed Dirichlet and Neumann

conditions arise. However, pure Dirichlet or Neumann conditions cannot be

reached by our parametrization. Thus, the family in (2.32), which we denote

by {U(η)}η∈C∞ , where C∞ = C ∪ {∞}, does not exhaust the whole set of

dilation-invariant boundary conditions, which is instead provided by

{U(η)η∈C∞ , I ,−I}. (2.33)

Moreover, it is worth noticing that the set {U(η)} does not form a subgroup

of U(2). In fact, the family in (2.32) does not support a group structure

because it has topology S2 which is not parallelizable.

From a physical perspective the boundary conditions in (2.31) are nonlocal,

since they connect the value of the wave function at one end of the interval

with its value at the other end.

As discussed in the previous chapter, a physical realization of them requires

that the interval be bent into a ring with the two ends forming a tunneling

junction through which the wave function can acquire a phase given by (2.32).

See Fig. 2.4.
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This can be experimentally implemented by means e.g. of superconducting

quantum interference devices, where the properties of the Josephson junction

are suitably chosen to give the required phase [Aso+13].

Another possible experimental realisation is offered by recent developments

in cold atom physics. It is possible to trap Bose Einstein condensates in

optical traps and manipulate them by altering the shape and size of the

trap. By detuning the laser frequency one can introduce optical barriers

to bisect a circular optical trap. A BEC in such a trap would give us the

same tunnelling properties as a Josephson junction [Cat+01] permitting us

to simulate various boundary conditions.

2.4 Moving and fixed walls

We start by generalizing the problem of a particle of mass m in a one di-

mensional box with moving walls subject to Dirichlet boundary conditions

(extensively discussed in [Di +16; DF15]) to a larger class of boundary con-

ditions, which we picked out in (2.33). For convenience we parametrize the

one dimensional box by

Il,c = [c− l/2, c+ l/2], (2.34)

so that c ∈ R is the center of the interval, and l > 0 is its length, and consider

the Hamiltonian (kinetic energy)

Hψ = − ~2
2m
ψ′′, ψ ∈ Dl,c,

Dl,c =

{
ψ ∈ H2(Il,c) : ψ

(
c− l

2

)
= ηψ

(
c+ l

2

)
, η̄ψ′

(
c− l

2

)
= ψ′

(
c+ l

2

)}
,

where η is a fixed complex number representing particular boundary condi-

tions (2.31), and H2(Il,c) is the Sobolev space of square integrable functions

on Il,c, whose first and second derivatives are square integrable functions.

Some comments are necessary. In the previous section we proved that the

above boundary conditions yield a good self-adjoint extension of the Hamil-

tonian on an interval. As already remarked these do not mix the values of
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the functions at the border with their derivatives. In what follows we will

see that these are the only ones which are invariant under dilations [ILP15a],

a crucial property for what we are going to investigate.

Next we take into account the dynamics of this problem by taking smooth

paths in the parameter space (l, c) ∈ R+×R: t 7→ c(t) and t 7→ l(t). Clearly

we are translating the box by c(t) and contracting/dilating it by l(t). As

underlined in [Di +16] determining the quantum dynamics of this system is

not an easy problem to tackle with, since we have Hilbert spaces, L2(Il(t),c(t)),

varying with time and we need to compare vectors in different spaces. The

standard approach is to embed the time-dependent spaces into a larger one,

namely L2(R), extend the two-parameter family of Hamiltonians (2.35) to

this space and try to unitarily map the problem we started with into an-

other one, with a family of time-dependent Hamiltonians on a fixed common

domain.

With this end in view we embed L2(Il,c) into L2(R) in the following way

L2(R) = L2(Il,c)⊕ L2(Ic
l,c), (2.35)

where Ic = R \ I is the complement of the set I, so that we can consider the

extension of the Hamiltonians defined in (2.35) as

H(l, c) =
p2

2m
⊕l,c0, (2.36)

where the embedding and the direct sum obviously depend on l and c.

2.4.1 The reduction procedure

Following [Di +16] we recall how to reduce this moving walls problem into

a fixed domain one. The composition of a translation x → x − c and of a

subsequent dilation x→ x/l maps the interval Il,c onto

I = I1,0 =

[
−1

2
,
1

2

]
, (2.37)
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which does not depend on c and l. Next we need to define a unitary action

of both groups on L2(R). A possible choice is

(V (c)ψ)(x) = ψ(x− c), (W (s)ψ)(x) = e−s/2ψ(e−sx), ∀ψ ∈ L2(R),

(2.38)

and both c ∈ R → V (c) and s = ln l ∈ R → W (s) form one-parameter

(strongly continuous) unitary groups. The factor exp(−s/2) is consistent

with the physical expectation that ψ transforms as the square root of a

density under dilation.

In order to make the expression ln l meaningful, from now on we are going

to identify l with a pure number given by the ratio of the actual length

of the box and a unit length. The infinitesimal generator of the group of

translations is the momentum operator

p : D(p) = H1(R)→ L2(R), pψ = −i~ψ′, (2.39)

so that spatial translations are implemented by the unitary group

V (c) = exp
(
−i c

~
p
)
, ∀ c ∈ R. (2.40)

Similarly, the generator of the dilation unitary group is given by the virial

operator over its maximal domain:

x ◦ p := xp− i

2
=

1

2
(xp+ px), D(x ◦ p) = {ψ ∈ L2(R) |xψ′ ∈ L2(R)},

(2.41)

where A denotes the closure of the operator A. Dilations on L2(R) are, thus,

implemented by

W (s) = exp
(
−i

s

~
x ◦ p

)
, ∀ s ∈ R. (2.42)

Next, we define the two-parameter family of unitary operators on L2(R),
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which are going to fix our time-dependent problem

U(l, c) : L2(R)→ L2(R), U(l, c) = W †(ln l)V †(c). (2.43)

By this unitary isomorphism we are mapping H(l, c) into

H(l) = U(l, c)H(l, c)U †(l, c) =
p2

2ml2
⊕ 0, (2.44)

where we have used the identity

W †(ln l) pW (ln l) =
p

l
. (2.45)

The operators in (2.44) act on the time-independent domain

D(H(l)) = D⊕ L2(Ic), (2.46)

where D = U(l, c)Dl,c is given by

D =

{
ψ ∈ H2(I) : ψ

(
− 1

2

)
= ηψ

(
1

2

)
, η̄ψ′

(
− 1

2

)
= ψ′

(
1

2

)}
. (2.47)

We have thus achieved our goal, that is mapping the initial family of Hamil-

tonians with time-dependent domains into a family with a common fixed

domain of self-adjointness.

This has been possible thanks to the unitary operator (2.43) and, most im-

portantly, to the choice of dilation-invariant boundary conditions (2.35) as

discussed in the previous section. We have taken into account those boundary

conditions (2.31) which do not mix derivatives and functions at the boundary:

these are the only ones which leave the transformed domain D = U(l, c)Dl,c

in (4.10) time-independent.

2.5 The Berry phase factor

The main objective of this section will be to exhibit a non-trivial geomet-

ric phase associated to a cyclic adiabatic evolution of the physical system
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described in section 2.4.

Let C be a closed path in the parameter space (l, c) ∈ R+ × R. Let the n-th

energy level be non degenerate; then, in the adiabatic approximation, the

Berry phase associated to the cyclical adiabatic evolution is given by

Φn =

∮
C
A(n) = i

∮
C
〈ψn|dψn〉, (2.48)

where ψn is the eigenfunction associated to the n-th eigenvalue, d is the

external differential defined over the parameter manifold R+ × R, and

〈ψn|dψn〉 =

∫
R
ψn(x)(dψn)(x)dx. (2.49)

In our case dψn reads

(dψn)(x) =

(
∂

∂l
ψn

)
(x)dl +

(
∂

∂c
ψn

)
(x)dc. (2.50)

A technical difficulty arises from equations (2.48)-(2.50). In this section we

are going to show that, for fixed η, the eigenfunctions {ψn}n∈N determine an

orthonormal basis in L2(R). However, in general the derivatives in (2.50) do

not belong to L2(R) so that the integral in (2.49) is ill-posed and needs a

prescription of calculation. No doubt, the ill-posedness of (2.48) is due to

the presence of a boundary in our system.

First we need to determine the spectral decomposition of the Hamiltonian

we started with in (2.35) or equivalently in (2.36). Of course this would be a

difficult problem to handle, but thanks to the unitary operator in (2.43) we

can move on to the Hamiltonians with fixed domain, compute the spectral

decomposition and then make our way unitarily back to the problem with

time-dependent domain. Therefore, we need to solve the eigenvalue problem

− ~2

2ml2
φ′′(x) = λφ(x), (2.51)

where φ ∈ D in (4.10) and λ ∈ R. The spectral decomposition will heavily

rely on the choice of the parameter η, which, as already stressed, represents
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Figure 2.5: Regularized characteristic function (2.55).

a particular choice of boundary condition. If η 6= ±1 the spectrum is non-

degenerate, and the normalized eigenfunctions have the form

φn(x) = sin(knx) + ei α cos(knx), n ∈ Z, (2.52)

where

α = Arg

(
1 + η

1− η

)
, kn = 2nπ + 2 arctan

∣∣∣∣1− η1 + η

∣∣∣∣, n ∈ Z, (2.53)

so that the dispersion relation (λ = k2~2/2ml2) reads

λn =
2~2

ml2

(
nπ + arctan

∣∣∣∣1− η1 + η

∣∣∣∣)2

, n ∈ Z. (2.54)

2.5.1 A first regularization prescription

In this subsection we briefly explain the need for a regularization prescription

for the eigenfunctions of our Hamiltonian, in order for the derivatives in (2.50)

to be well defined.

Let ϕ be an arbitrary function belonging to L2(Ic), where Ic = R \ I is the

complement of the set I; ϕ is clearly an eigenfunction of the 0 operator on

L2(Ic) with zero eigenvalue. Therefore we can extend φn to an eigenfunction

of (2.36), ψn = φn⊕ϕ, which can be conveniently chosen to be a test function:

ψn ∈ D(R), the space of smooth functions with compact support. To make

it explicit, let us exhibit a construction of ψn(x; l, c).
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Let φ̃n(x; l, c) be a smooth extension of φn(x; l, c) ∈ Dl,c ⊂ L2(Il,c) to the

whole real line. Roughly speaking our eigenfunction can be written as the

restriction of this extension, namely φ̃n(x; l, c)χIl,c(x), where χA(x) is the

characteristic function of the set A [χA(x) = 1 if x ∈ A, and = 0 other-

wise], showing why divergent contributions arise from the boundary when

taking derivatives. So the idea which underlies the following discussion is to

regularize the contribution of the characteristic function χIl,c .

Let ρ(x) be a nonnegative monotone decreasing function which belongs to

C∞([0,∞)), moreover we require that ρ(0) = 1, ρ(1) = 0 and all the deriva-

tives of higher order satisfy ρ(n)(0) = 0 for n ≥ 1. We are going to paste two

contracted copies of the latter to χIl,c , such that the final result would be as

in Figure 2.5. Given ε > 0 we define the regularized characteristic function

of Il,c as follows:

χεIl,c(x) =

1, for x ∈ Il,c
ρ
(
|x−c|−l/2

ε

)
for x 6∈ Il,c,

(2.55)

which is a test function, χεIl,c ∈ D(R). In light of the previous discussion we

choose the following functions and show that they are eigenfunctions for the

Hamiltonian (2.36):

ψn(x; l, c) = φ̃n(x; l, c) ξε(x; l, c), ε > 0, (2.56)

where

ξε(x; l, c) =
1

‖φ̃n χεIl,c‖
χεIl,c(x). (2.57)

See Figure 2.6.

Even if φ̃n /∈ L2(R), this will not alter the desired regularity property and

the integrability condition of (2.56). Clearly (2.56) is still an eigenfunction

of (2.36) because ψn|Il,c = φn is an eigenfunction of the Hamiltonian defined

in (2.35) and ψn|Icl,c is trivially an eigenfunction of the 0 operator with null

eigenvalue. Moreover, from the explicit expression in (2.57) this eigenfunction

is normalized.
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Figure 2.6: The regularization procedure (2.56).

In this renormalization scheme, which is needed for the definiteness of (2.50),

we are first embedding Dl,c ⊂ L2(Il,c) into L2(R) and then regularizing the

boundary contribution through the introduction of the regularizer ρ.

Now it is essential to observe that

lim
ε→0

φ̃n(x; l, c) ξε(x; l, c) = φ̃n(x; l, c)χIl,c(x) = φn(x; l, c)⊕ 0, (2.58)

that is the eigenfunction of a particle confined in Il,c. Here, the convergence

of the limit is pointwise and, by dominated convergence, in L2(R).

2.5.2 The abelian phase: the non degenerate case

We are now in the right position to compute (2.49) for ε > 0, which is well

posed, and then take the limit ε → 0. We start by considering separately

both the terms in

〈ψn|dψn〉 =

(∫
R
ψn(x)

∂

∂l
ψn(x)dx

)
dl +

(∫
R
ψn(x)

∂

∂c
ψn(x)dx

)
dc, (2.59)

which, after an integration by parts, become∫
R
ψn

∂

∂l
ψndx =

1

2

∫
R

∂

∂l
|ψn|2dx+ i Im

∫
R

(
φn

∂

∂l
φn

)
ξ2
εdx, (2.60)∫

R
ψn

∂

∂c
ψndx =

1

2

∫
R

∂

∂c
|ψn|2dx+ i Im

∫
R

(
φn

∂

∂c
φn

)
ξ2
εdx. (2.61)
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By plugging the explicit expressions of the eigenfunctions we find, by domi-

nated convergence, that for ε→ 0

Im

∫
R

(
φn

∂

∂l
φn

)
ξ2
εdx =

kn
l3

sinα

∫
R
(x− c)ξ2

ε (x)dx

→ kn
l3

sinα

∫
Il,c

(x− c)dx = 0, (2.62)

Im

∫
R

(
φn

∂

∂c
φn

)
ξ2
εdx =

kn
l2

sinα

∫
R
ξ2
ε (x)dx

→ kn
l2

sinα

∫
R
χIl,c(x)dx =

kn
l

sinα. (2.63)

Moreover, since ψn has inherited from U †(l, c) the right regularity properties,

for any ε > 0, one gets∫
R

∂

∂l
|ψn|2dx =

∂

∂l

∫
R
|ψn|2dx = 0,

∫
R

∂

∂c
|ψn|2dx =

∂

∂c

∫
R
|ψn|2dx = 0.

(2.64)

Summing up, we finally get the expression of the Berry one-form:

〈ψn|dψn〉 = i

(
kn
l

sinα

)
dc, (2.65)

which is manifestly not closed yielding a nontrivial Abelian phase. Notice

that the one-form derived in (2.65) is purely imaginary, consistently with the

general theory of Berry phases [Boh+03]. Moreover it does depend on the

energy level through kn in (2.53) and on the boundary conditions through

sinα.

As a simple example, we choose a rectangular path C in the (l, c) half-plane,

as shown in Figure 2.7, and compute

Φn =

∮
C
A(n) = i

∮
C
〈ψn|dψn〉, (2.66)

whose only non-trivial contributions are given by the vertical components of
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Figure 2.7: The adiabatic path C.

the circuit. The final result is

Φn =

∮
C
A(n) = kn

(
1

l1
− 1

l2

)
(c2 − c1) sinα, (2.67)

which, as expected, depends on the particular path chosen. In the spirit of

the physical implementation of our system in terms of a ring with a junction

(see section 2.3), our cyclic adiabatic evolution could be illustrated as in

Figure 2.8.

We have considered the problem of a particle in a box with moving walls

with a class of boundary conditions. Unlike the example studied by Berry

and Wilkinson (two dimensional region with Dirichlet boundary conditions),

our box is one dimensional and we impose more general boundary conditions.

We consider situations in which the location and the size of the box are slowly

varied. Our problem is complicated by the fact that different points in the

parameter space correspond to different Hilbert spaces.

In order to deal with this we need to invoke a larger Hilbert space and exer-

cise care while varying our two parameters. Within this two parameter space

we conclude that there is a non-trivial geometric phase. Our boundary con-

ditions in general violate time reversal symmetry, i.e, the complex conjugate

of a wave function which satisfies the boundary condition described by η may

not satisfy the same boundary condition. In fact, the only boundary condi-

tions that respect time reversal are those where η is real. In this case, we

would expect the geometric phase to reduce to the topological phase (which
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dilation: l1 ! l2

dilation: l2 ! l1

translation: c2 ! c1

translation: c1 ! c2

Figure 2.8: Cyclic evolution according to the path drawn in Figure 2.7.

only takes values ±1). Indeed, when η is real (but not equal to ±1, which is

a degenerate case), α in (2.53) is zero or π.

2.5.3 The Berry curvature

Another interesting aspect provided by this problem is linked to a nontrivial

Berry curvature:

F (n) = dA(n) =
kn
l2

sinα dl ∧ dc. (2.68)

The functional form of this phase two-form is suggestive of the area two-

form in hyperbolic geometry. The above formula brings to mind, in fact,

the curvature of a hyperbolic Riemannian manifold. Indeed, consider the

Poincaré half-plane, which by definition is the upper-half plane together with

the Poincaré metric:

ds2 =
dx2 + dy2

y2
. (2.69)

The half-plane is a model of hyperbolic geometry and if we consider the area

form on it we have

A =
dx ∧ dy

y2
, (2.70)
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Figure 2.9: Geodesics in the Poncaré half-plane

which has the same structure as the Berry curvature (2.68) of our quantum

mechanical model.

As already stated the boundary conditions chosen do not preserve time re-

versal symmetry as long as η is not purely real. On the contrary, instead,

the two-form describing the phase (2.68) must vanish when time reversing

boundary conditions are invoked, i.e. when η is real.

We remark that the relevant group in hyperbolic geometry is PSL(2,R) the

group of real Möbius transformations. The Lie algebra of this group is the

space of real 2 × 2 traceless matrices which are spanned by σ1, σ3 and iσ2,

where the σs are the usual Pauli matrices. The two generators σ3 and σ+ =

σ1 + iσ2 form a closed subalgebra. The structure of this Lie subalgebra is

exactly the same as ours: the commutator of the virial operator and the

momentum operator is the momentum operator, namely,

[x ◦ p, p] = i~p. (2.71)

2.6 The regularization procedure: an

equivalent perspective

One may object to the regularization scheme introduced in the previous

section for its artificiality. In fact, in order to have a well-posed problem

we embedded our original problem into a larger space, L2(R), and needed

to make sense of the differential in (2.50). In this section we are going to
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understand better what may be the problem in the definition of the derivative

with respect to our parameters, and, moreover, we are going to show an

alternative, intrinsic, approach to renormalization which does not make use

of any embedding.

Let us consider the following map:

(l, c) ∈ R+ × R 7→ ζ(l, c) = U †(l, c)ζ = V (c)W (ln l)ζ ∈ L2(R), (2.72)

where ζ ∈ L2(R) is a suitable unit vector independent of (l, c), and U(l, c) is

defined in (2.43). We would like to understand better the following differen-

tial:

(dζ)(x) =

(
∂

∂l
ζ

)
(x)dl +

(
∂

∂c
ζ

)
(x)dc. (2.73)

Fix l > 0 and consider the restriction of (2.72) to its second argument

c ∈ R 7→ U †(l, c)ζ = V (c)W (ln l)ζ. (2.74)

{V (c)}c∈R in (2.40) form a one-parameter group, whose generator is the mo-

mentum p defined in (2.39). Thus,

∂

∂c
ζ(l, c) =

(
d

dc
V (c)

)
(W (ln l)ζ) = − i

~
pV (c) (W (ln l)ζ) , (2.75)

which is well posed if and only if W (ln l)ζ ∈ H1(R). For this reason we can

interpret ∂ζ(l, c)/∂c as the distributional derivative of ζ(l, c) which is forced

to belong to L2(R). In our case the extension of the eigenfunction to the real

line is smooth, φ̃n(l, c) ∈ C∞(R), so that the derivatives can be computed

classically. Clearly ∂φ̃n(l, c)/∂c is only locally summable over the real line.

Since the restriction of smooth functions to open subsets is still smooth and

since from a physical perspective we can have information only on what

happens on the inside of the one dimensional box, Il,c, we give the following

prescription:
∂

∂c
φn(l, c) :=

∂

∂c
φ̃n(l, c)

∣∣∣
I̊l,c

(2.76)

being an element of C∞(I̊l,c) and locally summable. An analogous prescrip-
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tion works for the derivative with respect to l. Let us return to our problem

settled in L2(Il,c). This time the one-form is given by

〈φn|dφn〉 =

(∫
Il,c

φn(x)

(
∂

∂l
φn

)
(x)dx

)
dl+

(∫
Il,c

φn(x)

(
∂

∂c
φn

)
(x)dx

)
dc,

(2.77)

where the derivatives in (2.77) are to be considered in the sense stated above,

that is as locally integrable functions in I̊l,c. Once more,∫
Il,c

φn(x)
∂

∂l
φn(x)dx =

∫
Il,c

∂

∂l
|φn(x)|2dx−

∫
Il,c

φn(x)
∂

∂l
φn(x)dx. (2.78)

Due to normalization the first factor in the second member vanishes so that

Re

(∫
Il,c

φn(x)
∂

∂l
φn(x)dx

)
= 0, (2.79)

while as before we get∫
Il,c

φn(x)
∂

∂l
φn(x)dx = i Im

∫
Il,c

φn(x)
∂

∂l
φn(x)dx, (2.80)

and an analogous expression for the partial derivative with respect to c holds.

With this in mind we are able to get the same result (2.65) as before, by

reaching the boundary from the “inside”, rather than from the “outside”,

so that our new prescription, though equivalent to the one discussed above,

may appear more natural. This is coherent from a physical perspective since

we can have information only on what happens on the inside of the one

dimensional box Il,c.

2.7 The degenerate case

For completeness, we are going to investigate the exceptional cases η = ±1,

which, as mentioned before, correspond to degenerate spectra. For η = 1 we

have that for any n ≥ 1 the two eigenvalues λn and λ−n in (2.53) coalesce,
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Figure 2.10: Periodic boundary conditions: the boundary’s ends can be topo-
logically identified.

and an orthonormal basis in the n-th eigenspace is given by

φIn(x) =
√

2 cos(2πnx), φIIn (x) =
√

2 sin(2πnx), n ≥ 1. (2.81)

For η = −1, we have instead that λn = λ−n−1, and a possible choice of an

orthonormal basis is

φIn(x) =
√

2 cos((2n+1)π x), φIIn (x) =
√

2 sin((2n+1)π x), n ∈ N.
(2.82)

From the general theory of geometric phases [WZ83] it is well known that

a degenerate spectral decomposition gives rise to a one-form connection in

terms of a Hermitian matrix and from a geometrical perspective this corre-

sponds to a connection on a principal bundle, whose typical fiber is identified

with a non-Abelian group.

Let us consider the case η = 1, which physically corresponds to periodic

boundary conditions. We need to compute the following matrix one-form:

A(n) = i

(
〈φIn|dφIn〉 〈φIn|dφIIn 〉
〈φIIn |dφIn〉 〈φIIn |dφIIn 〉

)
, (2.83)

where the coefficients of the differentials are to be considered in the distri-
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butional sense. The former equation yields the following result:

A(n) = A(n)
l dl +A(n)

a dc =
kn
l
σ2dc. (2.84)

where σ2 is the second Pauli matrix. For a non-Abelian principal fiber bun-

dle, the curvature two-form, according to the Cartan structure equation, is

provided by

F (n) = dA(n) +
1

2
[A(n),A(n)]. (2.85)

Plugging in the explicit expression of the above one-form (2.84) we find that

F (n) = dA(n). (2.86)

The latter equation shows explicitly that, although every fiber is two dimen-

sional, the overall bundle is trivial. The one-form connection in (2.84) can

be globally diagonalized making use of the basis of plane waves. Indeed, if

we had started from a “rotated” basis, instead of (2.81):

φIn(x)± iφIIn (x) ∝ e±i knx, (2.87)

due to Euler’s identity, and computed (2.84) in this new basis, we would have

obtained a diagonal matrix. In the most general case, instead, one is able

to determine only a local basis where the above one-form (2.84) is diagonal.

On the other hand, in our case the bundle can be globally trivialized.

The case of η = ±1 is exceptional since it has degeneracies in the spectrum.

In this case one may expect to find a U(2) non-Abelian geometric phase of

the type discussed by Wilczek and Zee [WZ83]. However, we find that the

phase is a diagonal subgroup of U(2) and is essentially Abelian. This is easy

to understand from time reversal symmetry. Since translations and dilations

are real operations, they commute with time reversal and so the allowed U(2)

must also be real. This reduces U(2) to O(2), which is Abelian. By a suitable

choice of basis one can render the connection diagonal as in (86). The “non-

Abelian” U(2) Wilczek-Zee phase is in fact in an Abelian subgroup. It is also

worth noting that the approach to η = ±1 is a singular limit because of the
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degeneracy there.

It is also interesting to note that the adiabatic transformations we consider

act quite trivially on the spectrum of the Hamiltonian. Indeed, the trans-

lations are isospectral and the dilations only cause an overall change in the

scale of the energy spectrum λn → λn/l
2. In particular, there are no level

crossings and no degeneracies (away from η 6= ±1). This illustrates a remark

made by Berry in the conclusion of [Ber84]: although degeneracies play an

important role in Berry’s phase, they are not a necessary condition for the

existence of geometric phase factors. Indeed, our example reiterates this

point. The Berry phases are nonzero even though one of the deformations

is isospectral and the other a simple scaling. It is the twisting of the eigen-

vectors over the parameter space that determines the Berry connection and

phase, not the energy spectrum.

2.8 The physics of quantum phases

Berry’s discovery unveiled some properties of quantum mechanics, which

had been neglected for a very long time. Although, Dirac himself [Dir31b],

and others, e.g. Aharonov and Bohm [AB59] had studied the problem of

topological phases, the geometry of the adiabatic evolution had not been

completely understood before Berry. Today, we are also aware that adiabatic

evolution is just a technical tool, since geometric phases can arise in general

cyclic evolution as shown in the work of Aharonov and Anandan [AA87], and

Samuel and Bhandari [SB88].

In the present section we would like to discuss a particular experiment, done

by T. Bitter and D. Dubber in 1987 [BD87], which showed incontrovertibly

the existence of the Berry phase in a spin system under the influence of a

cycling magnetic field.

The paradigm of geometric phases is provided by a spin one-half particle in

a slowly varying magnetic field, which plays the role of the external environ-

ment. The experiment we would like to discuss involves the measurement

of the polarization of a beam of neutrons after the interaction with an heli-

cal magnetic field. The resulting shift, if any, in polarization will have the
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Figure 2.11: The Experiment by Bitter and Dubber.

information about the geometric phase we are looking for.

Bitter and Dubber used a brilliant experimental setup in order to unveil the

Berry phase contribution to polarization. They took a beam of neutrons

travelling at a speed of 500 m/s, which was polarized up to the 97%.

This high degree of polarization meant that almost all the magnetic moments

associated to the neutrons were all parallel to a given direction. The beam

was, then, sent through a tube where an helical magnetic field was produced

by a coil wrapped onto it (Figure 2.11).

The hamiltonian for the neutrons in this experiment is thus:

H =
p2

2m
− µ ·B. (2.88)

where p is the neutron momentum, m its mass, while µ its magnetic dipole

moment. We can neglect gravitational or electromagnetic interactions, so

that the particle trajectories do not bend, and neutrons follow their original

path.

In the center of mass frame of the neutron the magnetic dipole moment

interacts with a magnetic field that traces one complete revolution around the

origin. In this case the angle described by the tip of the vector representing

the magnetic field is exactly 2π.

In order to modify the value of this angle, an extra magnetic field coaxial

to the tube could be added. Bitter and Dubbers then posed the following
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Figure 2.12: The experimental results show a good agreement between the
hypothesis of the Berry phase and the data obtained.

question:“Given that the particles are injected into the tube with a certain

polarization, what would be the intensity of the beam as it leaves the ex-

perimental setup and gets probed by an output analyzer?” The interesting

part is that this problem can be studied exactly and the Berry phase can be

computed as a limiting case. In this experimental setup the adiabatic limit

corresponds to the direction of the magnetic field changing slowly compared

to its amplitude, or, more precisely to the precession frequency of the spin

around the field. One can prove that the total phase after a travel in the

tube, in the adiabatic limit, is:

φt = bT − 2π, (2.89)

where b is the field strength times the gyromagnetic ratio of the neutrons, T

is the period associated to a single turn-around. We can interpret the above

formula in these terms: the first contribution represents the dynamical phase,
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while the second one, which is time-independent, heavily relies on the path

followed by the magnetic field. It is this latter that is interpreted as Berry’s

phase, whose origin is purely geometrical. In fact, if we switch on the extra

magnetic field, the coaxial one, we can modify the solid angle 2π(1 − cos θ)

which is enclosed by the path, and consequently obtain different contributions

as shown in (Figure 2.12).

So far we have discussed only one experimental evidence of geometric phases,

probably the simplest one, which dealt with Berry’s phase. Moreover in this

case the environment has to be considered classical (the magnetic field) and

can be manipulated by the experimenter. In more realistic cases, the en-

vironment itself could be a quantum system and geometric phases can ap-

pear in molecular systems as a result of the interaction between electronic

and rotational motions or of the interaction between electronic and vibra-

tional motions. In these cases a fictitious magnetic flux appears in the Born-

Oppenheimer approximation, which, introducing gauge potential terms, gives

rise to some geometric phases.

Moreover geometric phases can be associated with Bloch waves in crystalline

solids and with adiabatic particle transport linked to polarization calculations

for crystal dielectrics. So far, the most fascinating application of the geomet-

ric phase could be considered the already discussed quantum-Hall effect. As

shown in section 1.4 it is a quantum phenomenon involving two-dimensional

electron systems in strong magnetic fields and low-temperatures. In the case

of the integer quantum-Hall effect, the quantization of the Hall conductance

can be explained in terms of a topological invariant: the Chern number.

Furthermore the concept of geometric phase has proved to be a fundamen-

tal tool in the study of spin-wave dynamics in itinerant magnets [NK98].

Spin waves are collective modes of motion in the local magnetic moments

in magnetized materials. The simplest approach to the problem is provided

by the Heisenberg model, where the spins are bound to atomic sites. There

are other cases where the itinerant picture is far more interesting: the spins

are carried by Bloch states moving throughout the system. It is a matter

of fact that the calculation of spin waves for itinerant-electron systems has

been an undiscovered area in condensed matter physics. Geometric phases
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have proved to be essential in order to properly understand the underlying

structures.

A lot of improvements have been made so far, and geometric phases have been

studied in different contexts showing unexpected and surprising results. The

variety of applications shows us how fertile is the field of geometric phases and

who knows what we could expect in the next near future. For a complete

review on geometric phases and a detailed description of the above cited

results an excellent reference is [Boh+03].





Chapter 3

Quantum cavities with

alternating boundary

conditions.

In this chapter we are going to take into account a dynamical situation involv-

ing quantum boundary conditions [FGL17a]. The study of time dependent

boundaries offers noticeable physical perspectives ranging from atoms in cav-

ities, to superconducting quantum interference devices (SQUID), to atoms

and ions in magnetic traps and microwave cavities.

Here we are going to concentrate on a dynamical evolution à la Trotter and

we are going to rapidly interchange a couple of boundary conditions. The

main objective will be to understand and investigate the limiting dynamics.

3.1 Alternating boundary conditions

Let us consider a quantum particle confined into a cavity Ω ⊂ Rn, Ω being

an open connected set, whose boundary ∂Ω is a smooth submanifold of Rn.

The particle in the cavity is spinless, free and has mass m.

The effective mathematical description of this system is provided by the free

89
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Hamiltonian

H =
p2

2m
= − ~2

2m
∆, (3.1)

that is the the kinetic energy operator. Here ∆ is the Laplacian settled

on some dense subspace of L2(Ω), the Hilbert space of square integrable

functions on Ω.

We are going to denote with Hb, which will be specified later, the Hilbert

space of the wave functions’ boundary values. Unfortunately the Hilbert

space at the boundary, say Hb, cannot be identified with the space of square

integrable functions on the border, say L2(∂Ω). Indeed, it may happen that

the boundary value of a function in L2(Ω) is a distribution (see the example

at the end of the Appendix).

As discussed in chapter 5 and proved in [AIM05; FGL17b] every unitary oper-

ator U acting on the Hilbert space at the boundary Hb uniquely determines

a well defined physical realization of the Hamiltonian H, i.e a self-adjoint

extension of H, denoted by HU , identified by some boundary conditions.

The objective will be to uncover what happens when we rapidly interchange

the conditions at the border.

Consider HU1 and HU2 , two realizations of H, corresponding to two boundary

conditions, given by U1 and U2, unitary operators on Hb. Moreover we let the

two boundary conditions rapidly alternate. More precisely, if the boundary

conditions are switched at a rate t/N , the overall unitary evolution reads

(
e−itHU1

/Ne−itHU2
/N
) (

e−itHU1
/Ne−itHU2

/N
)
. . .
(
e−itHU1

/Ne−itHU2
/N
)︸ ︷︷ ︸

N times

=
(
e−itHU1

/Ne−itHU2
/N
)N

. (3.2)

This equation is an example of Trotter product formulas [Tro59]. Similar

evolutions show up in different areas of quantum mechanics. For example

they emerge in in the looming dynamics associated to the Quantum Zeno

effect [FP08; FL10; GFL10] as well as they have remarkable applications

in quantum chaos [Cas+79; Ber+79]. Lastly, but not less importantly, the

Trotter product formula is fundamental in the definition of the Feynman
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path integral [JL00].

The problem we are dealing with was originally addressed in [Aso+13]. It

is a matter of interest to show whether in the N → +∞ limit, the overall

evolution is unitary. From a physical point of view the N → +∞ limit means

that the time interval between the switches of U1 and U2 goes to zero, the

number of switches goes to infinite, while the total time 2t is kept constant.

The final evolution, then, reads:

(
e−itHU1

/Ne−itHU2
/N
)N → e−i2tHW , N → +∞ (3.3)

in terms of a new realization of the Hamiltonian H, say HW , with some

boundary conditions specified by the boundary unitary operator W .

3.2 Trotter Formulas

The answer to the limiting dynamics problem dates back to deep mathe-

matical results on product formulas. Trotter [Tro59] proved that for every

A and B self-adjoint operators such that their sum is self-adjoint (on the

intersection of their domains D(A) ∩D(B)), then

(
e−itA/Ne−itB/N

)N → e−it(A+B), N → +∞. (3.4)

Of course, one should specify the topology used for the above convergence.

For further details we refer the reader to the original paper [Tro59] or the

book [JL00].

Unfortunately, the intersection of the domains of two self-adjoint extensions

of T is too small, and TU1 + TU2 is not self-adjoint (not even its closure!), so

that this result cannot be applied to our case.

In order to overcome this obstacle it is sufficient to take into account the

quadratic forms associated to the operators (i.e. the expectation values of the

observables), instead of the operators themselves. It is well known [Neu55]

that

tU(ψ) = 〈ψ|HUψ〉L2(Ω) = − ~2

2m

∫
Ω

ψ(x) ∆ψ(x) dx (3.5)
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represents the expectation value of the kinetic energy operator in the state

ψ. From the mathematical point of view, tU is the quadratic form associated

to HU , whose domain can be considerably larger than D(HU) (See chapter

5).

Starting from tU1 and tU2 , one can build the quadratic form (tU1 + tU2)/2

defined on the (dense) intersection of the respective domains D(tU1) and

D(tU2), namely D = D(tU1) ∩D(tU2).

It can be proved [Kat66], that there is one and only one self-adjoint operator,

denoted by HU1+̇HU2 and called the form sum operator of HU1 and HU2 ,

corresponding to the form tU1 + tU2 , i.e. such that

tHU1
+̇HU2

= tHU1
+ tHU2

. (3.6)

This idea, introduced by Kato [Tro78], was elaborated by Lapidus et al.

[Lap82; ENZ11] who found the ultimate version of the Trotter product for-

mula (
e−itHU1

/Ne−itHU2
/N
)N → e−it(HU1

+̇HU2
), N → +∞. (3.7)

when HU1 and HU2 are bounded from below. As a technical remark notice

that, as a consequence of the weakening of the hypotheses, the convergence

of the product formula when the operator sum is not self-adjoint is in a

weaker topology than in Trotter’s case; more precisely equation (3.4) holds

pointwise, namely

lim
N→+∞

(
e−itA/Ne−itB/N

)N
ψ = e−it(A+B)ψ, for all ψ ∈ L2(Ω), (3.8)

while its weaker counterpart (3.7) is valid only on average [ENZ11], that is

to say

lim
N→∞

∫
R

[(
e−itHU1

/Ne−itHU2
/N
)N

ψ − e−it(HU1
+̇HU2

)ψ
]
f(t) dt = 0 (3.9)

for all ψ ∈ L2(Ω) and for all f ∈ D(R), the space of test functions in R,

that is the space of compactly supported and smooth functions on R. The

validity of the above formula in a stronger topology is still a matter of debate
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as pointed out in [Lap82; ENZ11].

3.3 A composition law of boundary

conditions: a first glimpse

In the analysis of the dynamics of boundary conditions we are considering

one of the paradigmatic examples in nonrelativistic quantum mechanics, that

is, the case of a free particle confined in a cavity Ω in the space Rn.

As already mentioned, the cavity is going to be subjected to a rapid switching

between two different boundary conditions. We are going to show that the

emerging dynamics, in the limit of infinitely frequent switchings, yields new

boundary conditions combining the initial ones in an appropriate sense. Up

to what explained until this point we have that

lim
N→+∞

(
e−itHU1

/Ne−itHU2
/N
)N

= e−i2tHW , (3.10)

where

HW =
HU1 +̇ HU2

2
. (3.11)

In the next sections we are going to prove that HW is a new realization of the

operator H with new boundary conditions specified by a unitary operator W

obtained combining U1 and U2 in a suitable way.

The operator W is the following

W = U1 ∗ U2 := PW + C

(
C −1(VU1)QU1 + C −1(VU2)QU2

2

)
QW , (3.12)

where:

• QW = QU1 ∧QU2 is the projection onto the intersection of the ranges of

QU1 and QU2 , and PW = I − QW is the spectral projection of W onto

the eigenspace with eigenvalue 1;

• every Ui (i = 1, 2) can be uniquely decomposed in the sum PUi +

VUi , where PUi is the spectral projection of Ui on the eigenspace with
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eigenvalue 1, QUi = I − PUi , and VUi = QUiUiQUi is the projection of

Ui on the range of QUi ;

• with the symbols C and C −1 we denote, respectively, the Cayley trans-

form and its inverse. As recalled in section 5.8 the Cayley transform

maps the set of self-adjoint operators onto the set of unitary operators

which do not have 1 as an eigenvalue. Indeed, for every self-adjoint

operator A on a Hilbert space, the operator

C (A) = (A− iI)(A+ iI)−1, (3.13)

is unitary. Conversely, for every unitary operator V such that I − V is

invertible, the operator

C −1(V ) = i (I + V )(I − V )−1, (3.14)

is self-adjoint on the range of (I − V ).

3.4 The one dimensional case

Before delving into the study of the composition law for boundary condi-

tions in Ω ⊂ Rn, we would like to express the results discussed in [Aso+13]

in a more general framework, suitable for a quick generalization to higher

dimensions.

We start by considering a particle confined in an interval Ω = (0, 1) of the

real line. In this case the Hamiltonian associated to the free quantum particle

is the one-dimensional Laplacian:

H =
p2

2m
= − ~2

2m

d2

dx2
, (3.15)

acting on some dense space of L2(0, 1). Remarkably, in the one-dimensional

case, the boundary ∂Ω = {0, 1} contains only two points and the Hilbert

space of the boundary values is two dimensional, that is Hb = L2({0, 1})C2.

As proved in [AIM05], the whole family of self-adjoint extensions of H is in
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a one-to-one correspondence with the possible boundary conditions coming

out from U(2), the set of 2 × 2 unitary matrices. More precisely, to each

U ∈ U(2) corresponds a unique self-adjoint extension

HU = − ~2

2m

d2

dx2
, (3.16)

acting on the domain

D(HU) = {ψ ∈ H2(0, 1) : i(I + U)ϕ = (I − U)ϕ̇}, (3.17)

where ϕ and ϕ̇ are the boundary data of the wave function ψ and are defined

as

ϕ :=

(
ψ(0)

ψ(1)

)
, ϕ̇ :=

(
−ψ′(0)

ψ′(1)

)
. (3.18)

We recall that H2(0, 1) is the Sobolev space of square integrable functions

ψ with square integrable first and second derivative, respectively ψ′ and ψ′′

[AF02; Bre10].

Moreover any wave function ψ in the domain of HU satisfies the boundary

conditions

i(I + U)ϕ = (I − U)ϕ̇. (3.19)

This parametrization of the self-adjoint extensions of H in terms of unitary

operators on the boundary differs lightly from the one presented in [Aso+13],

nevertheless, the two parametrizations are equivalent.

Next, we are going to show how the equation of boundary conditions (3.19)

is related to the eigenprojection with eigenvalue 1 in the spectrum of U , from

now on denoted by PU . The orthogonal projector will be denoted by QU ,

such that QU+PU = I. Notice that PU can degenerate into the identity when

U = I, as well as it can be the zero operator when 1 is not an eigenvalue of

U .

By means of PU and QU we are able to recast U in equation eq:bc2 into a
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sum on orthogonal eigenspaces, that is:

U = PU + VU , (3.20)

VU = UQU = QUU = QU U QU . (3.21)

Notice that the operator VU is unitary on the range of QU and 1 does not

belong to its spectrum.

Having this decomposition at hand, we can give an equivalent characteriza-

tion of the domain of HU by projecting equation (3.19) onto the range of PU

and QU :

i(I + U)ϕ = (I − U)ϕ̇ ⇐⇒

PU ϕ = 0,

QU ϕ̇ = −KUϕ,
(3.22)

where KU is (minus) the inverse Cayley transform of VU , that is

KU = −C −1(VU)QU = −i (I + VU)(I − VU)−1QU , (3.23)

where (I − VU)−1 makes perfectly sense, since 1 is not an eigenvalue of VU .

Equation (3.22) is valid for every unitary U , and it particularizes to special

forms according to the expression of the spectral projection PU . We can

distinguish among three cases:

a) 1 is a double degenerate eigenvalue of U , therefore PU = I. This

corresponds to Dirichlet boundary conditions;

b) 1 is a non degenerate eigenvalue of U , therefore U = PU + λQU , with

|λ| = 1 and λ 6= 1. This case corresponds to: QU ϕ̇ = i (1 + λ)(1 −
λ)−1QUϕ , PUϕ = 0;

c) 1 is not an eigenvalue of U , therefore PU = 0. For example if U = −I,

we find Neumann boundary conditions, which are a particular case of

Robin boundary conditions. The latter can be found, for example,

when

U =

(
−eiα1 0

0 −eiα2

)
, (3.24)
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with α1, α2 ∈ (−π, π), and

ψ′(0) = tan
α1

2
ψ(0), ψ′(1) = − tan

α2

2
ψ(1). (3.25)

Summing up: case a) happens when U = I, which corresponds to a constraint

on both the values of the wave function at the boundary. Case b) provides,

instead, a constraint only on one value of the wave function at the boundary.

For example, when U = PU − eiαQU , with α ∈ (−π, π) and PU being the

projection onto the span of (1, 0) we obtain:

ψ(0) = 0 ψ′(1) = − tan
α

2
ψ(1). (3.26)

Eventually, when 1 is not an eigenvalue, no constraint on the value at the

border arises from case c). It is clear now how the behavior of the wave

functions at the border is interwisted with the presence of the eigenvalue 1

in the spectrum of U .

3.4.1 Quadratic forms

In this subsection we analyze the relation between a self-adjoint operator HU

and its associated quadratic form tU . First of all we will explain how to get

the form tU from the operator HU and then we will show how to go in the

opposite way.

Let HU be a self-adjoint extension related to the unitary matrix U ∈ U(2)

and we study the associated quadratic form tU . An integration by parts

yields the following result:

tU(ψ) = 〈ψ |HUψ〉L2(Ω) = − ~2

2m

∫ 1

0

ψ(x) ψ′′(x) dx

=
~2

2m

∫ 1

0

|ψ′(x)|2 dx− ψ(1) ψ′(1) + ψ(0) ψ′(0)

=
~2

2m

(
‖ψ′‖2

L2(0,1) − 〈ϕ|ϕ̇〉C2

)
, for all ψ ∈ D(HU), (3.27)

where ϕ and ϕ̇ are the boundary data in equation (3.18), and 〈α|β〉C2 =
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α1β1 +α2β2 is the canonical scalar product in C2. Therefore, the expectation

value of the kinetic energy of the particle has both contributions from the

bulk and from the boundary.

Making use of the boundary conditions in HU given by Eq. (3.19), we can

express the former quadratic form in a more convenient fashion by trading

the boundary values of the derivative for the boundary values of the function.

Indeed, one gets:

〈ϕ|ϕ̇〉C2 = 〈(PU +QU)ϕ|ϕ̇〉C2 = 〈ϕ|QU ϕ̇〉C2 = −〈ϕ|KUϕ〉C2 , (3.28)

whence

tU(ψ) =
~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|KUϕ〉C2

)
, for all ψ ∈ D(HU). (3.29)

Therefore, since D(HU) is a core for D(tU), the form domain D(tU) is given

by

D(tU) = {ψ ∈ H1(0, 1) : PUϕ = 0}, (3.30)

where, H1(0, 1) is the Sobolev space of square integrable functions with

square integrable first derivative [AF02; Bre10]. The quadratic form tU is

closed and bounded from below, namely

tU(ψ) ≥ −C‖ψ‖2
L2(0,1), for all ψ ∈ D(tU), (3.31)

for some constant C depending on the norm ‖KU‖ < +∞ and on the conti-

nuity of the restriction map to the border

ψ ∈ H1(0, 1) 7→ ϕ = ψ|∂Ω =

(
ψ(0)

ψ(1)

)
∈ C2. (3.32)

Therefore the quadratic form tU associated to a generic self-adjoint extension

HU of H has the following properties:

• the value of the form in the wave function ψ is given by two terms

tU(ψ) =
~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|KUϕ〉C2

)
, (3.33)
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the first one is common to all the extensions while the second one

depends explicitly on the extension. Notice, in fact, that the matrix

KU is, up to a sign, the inverse Cayley transform of the unitary matrix

U with the eigenvalue 1 stripped out.

• the form domain D(tU) is expressed in terms of PU , the eigenprojection

with eigenvalue 1 of the unitary matrix U which identifies the extension

HU :

D(tU) = {ψ ∈ H1(0, 1) : PUϕ = 0}; (3.34)

• the form tU is closed and bounded from below and its lower bound de-

pends on the norm of the self-adjoint matrix KU and by the continuity

of the restriction map defined in (3.32):

Next, we are going to explain how to obtain the self-adjoint operator from the

quadratic form. We consider a quadratic form t having the same properties

explained above, namely such that

t(ψ) =
~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|Kϕ〉C2

)
, D(t) = {ψ ∈ H1(0, 1) : Pϕ = 0},

(3.35)

where K = K† is a self-adjoint matrix and P an orthogonal projection, such

that KP = PK = 0.

It is easy to see that the form t is closed and bounded from below. There

is a one-to-one correspondence between the set of closed and bounded from

below quadratic forms and the set of lower bounded self-adjoint operators

[Kat66], known as representation theorem. Using this correspondence one

can immediately recover the self-adjoint extension HU of H associated with

the form t:

D(HU) = {ψ ∈ H2(0, 1) : i(I + U)ϕ = (I − U)ϕ̇} (3.36)

where the unitary matrix U is given by

U = P − C (K)Q, (3.37)
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where Q = I−P and C is the Cayley transform defined in (3.13). Notice that

P is the eigenprojection of U with eigenvalue 1 and that Q is its orthogonal

projection.

3.5 Composition law of boundary conditions

in one dimension

We now evaluate the limit of the alternating dynamics (3.3). As already dis-

cussed, the product formula (3.3) holds with the form sumHW = 1
2

(
HU1+̇HU2

)
.

Thus, the evaluation of the emergent dynamics in (3.3) requires the compu-

tation of the sum

t12(ψ) =
tU1(ψ) + tU2(ψ)

2
=

~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|K12ϕ〉C2

)
,

K12 =
1

2
(KU1 +KU2) , (3.38)

where the form domain reads:

D(t12) = D(tU1) ∩D(tU2) = {ψ ∈ H1(0, 1) : PU1ϕ = 0 = PU2ϕ}. (3.39)

Notice that K12 is a self-adjoint matrix, since both KU1 and KU2 are. Let

Q12 = QU1 ∧ QU2 , be the orthogonal projector onto the intersection of the

ranges of QU1 and QU2 :

Ran(Q12) = Ran(QU1) ∩ Ran(QU2). (3.40)

Moreover define

P12 = I −Q12. (3.41)

Then, the form domain of t12 can be written in terms of the orthogonal

projection P12 as:

D(t12) = {ψ ∈ H1(0, 1) : P12 ϕ = 0}, (3.42)
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since

N(P12) = Ran(Q12) = N(PU1) ∩N(PU2). (3.43)

We recall that for a generic linear operator A, the kernel of A is N(A) =

{ψ ∈ D(A) : Aψ = 0}, the set of zeros of the operator A.

Since t12 is closed and bounded from below, by means of representation the-

orems [Kat66], there is a unique (bounded from below) self-adjoint operator

HW such that:

D(HW ) = {ψ ∈ H2(0, 1) : i(I +W )ϕ = (I −W )ϕ̇} (3.44)

t12(ψ) = 〈ψ, TWψ〉 for all ψ ∈ D(HU). (3.45)

where the unitary matrix W ∈ U(2) is given by

W = P12 − C (K12)Q12, (3.46)

and C (K12) is the Cayley transform of K12 on the range of Q12. Since

P12 is the eigenprojection of W with eigenvalue 1, in accordance with our

convention we have that P12 = PW , Q12 = QW and K12 = KW . Notice that

KUi = −C −1(VUi)QUi , i = 1, 2, (3.47)

thus we obtain that (3.46) is exactly the formula (3.12) in the one-dimensional

case.

3.5.1 Examples

For the sake of concreteness let us analyze some examples for the one-

dimensional case. Preliminarly, we recall that every unitary matrix Ui, i =

1, 2, which defines a self-adjoint extension of H can be decomposed into:

Ui = PUi + VUi , (3.48)

VUi = QUi UiQUi . (3.49)
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where PUi is the projection on the subspace with eigenvalue 1 and QUi =

I−PUi and that, the self-adjoint maxtrix KUi , which appears in the boundary

conditions, reads: KUi = −C −1(VUi)QUi .

• If the point 1 is not an eigenvalue for both U1 and U2 we have that the

corresponding W matrix, encoding the boundary conditions reads:

W =
1

2
C

(
i
I + V1

I − V1

+ i
I + V2

I − V2

)
=

1
2

(
I+V1
I−V1 + I+V2

I−V2

)
− I

1
2

(
I+V1
I−V1 + I+V2

I−V2

)
+ I

. (3.50)

• If 1 is a non degenerate eigenvalue for U1 and is not an eigenvalue for

U2, then the limiting dynamics is determined by :

W = PW +
1

2
C

(
i
I + λ

I − λ + i
I + V2

I − V2

)
QW , (3.51)

where PW = P1 and V1 = λQ1, λ ∈ C, |λ| = 1.

• If 1 is a non degenerate eigenvalue for both U1 and U2, then:

W = PW +
1

2
C

(
i
I + λ1

I − λ1

Q1 + i
I + λ2

I − λ2

Q2

)
QW (3.52)

where Ran(QW ) = Ran(QU1) ∩ Ran(QU2)., Vi = λiQi, λi ∈ C, |λi| = 1,

for i = 1, 2. Since Q1 and Q2 are one dimensional projections it may

happen that:

– Q1 = Q2, then:

W = P1 +
1

2
C

(
i
I + λ1

I − λ1

+ i
I + λ2

I − λ2

)
Q1 (3.53)

– Q1 6= Q2, then QW = 0 and W = I. In this case we obtain

Dirichlet boundary conditions.

• If 1 is a double degenerate eigenvalue for U1, then QW = 0 and thus

the resulting dynamics is encoded by Dirichlet boundary conditions.
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Figure 3.1: A conventional SQUID consists of a ring of superconducting ma-
terial split by two barriers (in blue). The current flowing in the loop tunnels
through the barrier. On the left a real SQUID circuit (Groupe Physique
Mesoscopique, LPS, Orsay).

3.5.2 Physical implementation

As discussed in the previous section the limiting dynamics is described in

terms of a unitary matrix W = U1 ∗U2, obtained by rapidly changing bound-

ary conditions U1 and U2.

Moreover we have seen how starting from general boundary conditions for

which 1 is a non degenerate eigenvalue and QU1 6= QU2 , we obtain Dirichlet

boundary conditions in the limiting dynamics.

For example one could consider pseudo-periodic boundary conditions for both

U1 and U2:

U1 =

(
0 −e−iα1

−eiα1 0

)
U2 =

(
0 −e−iα2

−eiα2 0

)
(3.54)

then the limiting dynamics, as proved in the previous section, is determined

by W = I, which means Dirichlet boundary conditions.

This could be experimentally implemented by means of a SQUID and Joseph-

son junctions. A SQUID (Superconducting Quantum Interference Device) is
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a superconducting loop with Josephson junctions (See Figure 3.1).

Josephson [Jos62] predicted an effect which appears when two superconduc-

tors are coupled by a weak link or a tunneling junction. In particular, a

Josephson junction is based on the tunneling of Cooper pairs. Interestingly

the current passing through a Josephson junction acquires a phase, which

can be detected in interpherometry experiments.

In particular, when arranged into a superconducting loop, the phase gener-

ated by the junctions can be varied accordingly to a magnetic field threading

the loop. These effects can be used in order to simulate boundary conditions

in correspondence of the junctions.

Indeed, by means of a SQUID circuit one can pulse the properties of the

Josephson junction in order to simulate a Trotter-like evolution. Thus start-

ing with pseudo-periodic boundary conditions in the junctions, then the final

result will be a complete blockage of the electrical current through the circuit,

namely Dirichlet boundary conditions at the junctions.

3.6 The path to higher dimensions

Here we first sum up the main steps of the construction of the composition

law of boundary conditions in the one-dimensional case, i.e. Ω = (0, 1)

and then we introduce the main ideas to extend the result to the general

n-dimensional case.

(i) First of all we have introduced the Hilbert space of boundary values

Hb = C2, then we have defined the boundary data

ψ ∈ L2(0, 1) 7→ (ϕ, ϕ̇) ∈Hb ×Hb (3.55)

ϕ =

(
ψ(0)

ψ(1)

)
ϕ̇ =

(
−ψ′(0)

ψ′(1)

)
(3.56)

of a wave function and finally we have recalled the one-to-one corre-

spondence between unitary operators acting on Hb and the self-adjoint

extensions of H (see Section 1.6)
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(ii) We have shown that the quadratic form associated with each self-

adjoint extension of H is given by the sum of two terms

tU(ψ) =
~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|KUϕ〉C2

)
, (3.57)

the first one being independent on the extension and the second one

depending on the extension through the self-adjoint matrix KU =

−C −1(VU)QU . The form domain D(tU) is expressed in terms of the

eigenprojection PU with eigenvalue 1 of the unitary matrix U specify-

ing the extension:

D(tU) = {ψ ∈ H1(0, 1) : PUϕ = 0}. (3.58)

Moreover the form tU is closed and bounded from below and its lower

bound is related to the norm of KU and to the continuity of the restric-

tion map defined in (3.32):

Conversely, given a quadratic form t with all the above properties, i.e.

t(ψ) =
~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|Kϕ〉C2

)
, (3.59)

with K self-adjoint matrix, on the domain

D(t) = {ψ ∈ H1(0, 1) : Pϕ = 0}, (3.60)

with P orthogonal projection, KP = PK = 0. We have shown how to

associate a self-adjoint extension ofH using the representation theorem,

[Kat66]. More precisely we have seen how to obtain the unitary matrix

U in terms of the orthogonal projection P and of the self-adjoint matrix

K:

U = P − C (K)Q, Q = I − P. (3.61)

(iii) Finally we have considered two different self-adjoint extensions of H,

say HU1 and HU2 , with U1, U2 ∈ U(2), and we have evaluated the limit

of the alternating dynamics (3.3). We have studied the quadratic form
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t12 = 1
2
(tU1 + tU2) and we have shown that it is given by the sum of two

terms

t12(ψ) =
tU1(ψ) + tU2(ψ)

2
=

~2

2m

(
‖ψ′‖2

L2(0,1) + 〈ϕ|K12ϕ〉C2

)
, (3.62)

where

K12 =
1

2
(KU1 +KU2) , (3.63)

on the domain

D(t12) = {ψ ∈ H1(0, 1) : P12 ϕ = 0}. (3.64)

The form domain D(t12) is expressed in terms of an orthogonal projec-

tion P12 (defined by the equation Ran(P12) = Ran(PU1) + Ran(PU2) ),

therefore the unique self-adjoint operator HW associated to t12 is spec-

ified by the unitary matrix W obtained by a composition of U1 and

U2:

W = U1 ∗ U2 = P12 − C (K12)Q12 (3.65)

with Q12 = I −P12. The operator W is the result of a composition law

between U1 and U2.

Now we retrace this procedure and we explain step by step the strategy to

extend it to the general n-dimensional case, i.e. Ω ⊂ Rn.

• The first difficulty is the definition of the boundary data

ψ ∈ L2(Ω) 7→ (ϕ, ϕ̇) ∈Hb ×Hb, (3.66)

and the identification of the Hilbert space of boundary values Hb. Once

these aspects are clarified, the one-to-one correspondence between the

unitary operators acting on Hb and the self-adjoint extensions of the

operator H will hold as well as in the one-dimensional case, [FGL17b].

• Given U ∈ U(Hb), the space of unitary operators on Hb, we will

study the quadratic form tU associated to HU . Mimicking the one-
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dimensional case we will find that tU is given by

tU(ψ) =
~2

2m

(
‖∇ψD‖2

L2(Ω) + 〈ϕ|KUϕ〉Hb

)
, (3.67)

where ψD is the “regular component” of ψ, while KU is a self-adjoint

operator defined by

KU = −C −1(VU)QU , QU = I − PU , VU = QUUQU , (3.68)

and PU is the eigenprojection of U with eigenvalue 1. Understanding

the meaning of ψD is one of the main difficulties in the study of the

quadratic form tU . A further complication arises from the fact that,

in the n-dimensional case, the operator KU can be unbounded. This

means that the form tU is not, in general, bounded from below. In

order to avoid this possibility, we will consider only unitary operators

U ∈ U(Hb) having a spectrum with a gap around the point 1: this

condition ensures that KU is bounded.

• Finally we will extend the composition law for boundary conditions as-

suming that the spectra of U1, U2 ∈ U(Hb) are both gapped around the

point 1. This compatibility condition is necessary to extend the con-

struction of the composition U1 ∗U2 to the n-dimensional case because

it ensures that the form t12 is densely defined, closed and bounded from

below and allows us to identify the self-adjoint extension corresponding

to t12.

3.7 Alternating dynamics for a particle in a

cavity

In this section we are going to prove a composition law for boundary condi-

tions in a more general framework. Rather than confining our attention to

a particle on a segment, we are going to consider a particle in a cavity Ω,

namely an open subset of Rn.
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Let Ω be an open bounded set in Rn, whose boundary is regular. We are

going to denote by ν be the normal to ∂Ω, by convention ν is oriented towards

the exterior of Ω. We define for a regular function ψ its normal derivative

along ν:

∂νψ = ν · (∇ψ) |∂Ω, (3.69)

where · is the scalar product of Rn. Notice that, by definition, ∂νψ is a

function settled on ∂Ω.

The kinetic energy for a quantum free particle in Ω is:

H = − ~2

2m
∆, (3.70)

defined on some dense subset of L2(Ω), for example D(Ω), the space of test

functions in Ω (compactly supported and smooth functions in Ω). Wave

functions on this space are not able to provide information about the border

because for every ψ ∈ D(Ω): ψ|∂Ω = ∂νψ = 0.

As usual we are going to denote with H∗ be the adjoint operator of H defined

in D(H∗) = {ψ ∈ L2(Ω) : −∆ψ ∈ L2(Ω)}.
We are going to identify the Hilbert space of the boundary values Hb. It can

be proved, [LM72], that the “restriction” to the border ∂Ω of a wave function

ψ ∈ L2(Ω), which we denoted by ψ|∂Ω, belongs to H−
1
2 (∂Ω), the fractional

Sobolev space of order −1/2. Notice that by restriction of a square integrable

function we mean its trace on the border. Therefore in the n-dimensional case

the Hilbert space of boundary values Hb = H−
1
2 (∂Ω) is infinite dimensional,

unlike the one-dimensional case.

We are now ready to state the following result about the self-adjoint ex-

tensions of H. We briefly recall a result proved in [FGL17b] and references

therein, as it will be discussed in chapter 5 that:

Theorem 1. The set of all self-adjoint extensions of H is

{
HU : D(HU)→ L2(Ω)|U ∈ U(Hb)

}
, (3.70)
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where for all U ∈ U(Hb)

D(HU) = {ψ ∈ D(H∗) : i(I + U)ϕ = (I − U) ϕ̇ } , (3.70)

where the boundary data (ϕ, ϕ̇) are specified in Eq. (3.74).

In the one-dimensional case, equation (3.19) provided a thorough parametriza-

tion of the self-adjoint extensions of the operator H. Theorem 5 states that

Equation (3.19) is still valid for a general Ω ⊂ Rn through a suitable rein-

terpretation of the boundary data (ϕ, ϕ̇). In what follows we would like to

provide the reader with explanations about the boundary data (ϕ, ϕ̇). For

further details we refer to chapter 5.

As discussed above, the restriction ψ|∂Ω of a wave function ψ ∈ L2(Ω) to the

border ∂Ω belongs to Hb = H−
1
2 (∂Ω), while its normal derivative ∂νψ belongs

to a different space (more precisely ∂νψ belongs to H−
3
2 (∂Ω)), [LM72].

For this reason equation (3.19) cannot hold by naively interpreting the bound-

ary data (ϕ, ϕ̇) as the pair (ψ|∂Ω, ∂νψ). Indeed, the elements of the pair are

settled on different Hilbert spaces and the existence of an operator U acting

both on ψ|∂Ω and ∂νψ becomes meaningless. Moreover, the boundary values

ψ|∂Ω and ∂νψ are not independent data, as discussed in the Appendix, and

one can show that only the normal derivative of a “regular” component ψD

of ψ is independent of ψ|∂Ω.

In order to define the regular component ψD of ψ, we need a useful decom-

position of the domain of the adjoint D(H∗):

D(H∗) = D(HD) +N(H∗), ψ = ψD + ψ0, (3.71)

where HD is the self-adjoint extension of H with Dirichlet boundary condi-

tions, that is on the domain

D(HD) = {ψ ∈ H2(Ω) : ψ|∂Ω = 0}, (3.72)

and

N(H∗) = {ψ ∈ D(H∗) : −∆ψ = 0} (3.73)
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is the kernel of H∗. In other words, every ψ ∈ D(H∗) can be uniquely

decomposed in the sum ψD + ψ0, where ψD ∈ D(HD) is a function vanishing

on the boundary, ψD|∂Ω = 0, and ψ0 is a harmonic function, −∆ψ0 = 0. See

the Appendix for more details.

We are finally in the right position to define the boundary data (ϕ, ϕ̇) of a

wave function ψ ∈ D(T †):

ϕ = ψ|∂Ω = ψ0|∂Ω, ϕ̇ = Λ ∂νψD, (3.74)

where ψD is the regular component of ψ in the sense of the decomposi-

tion (3.125). Here Λ = (I − ∆∂Ω)
1
2 , where ∆∂Ω is the Laplace-Beltrami

operator on ∂Ω [BGM71], and its role is merely to pull back ∂νψD ∈ H
1
2 (∂Ω)

to Hb = H−
1
2 (∂Ω), the common Hilbert space of the boundary data. Any

unitary map from H
1
2 (∂Ω) to H−

1
2 (∂Ω) will do, and the reader can safely ig-

nore its presence henceforth. For further mathematical details see [FGL17b]

and Chapter 5.

3.7.1 Parametrization of the self-adjoint extensions of

H by means of spectral projections

It is of interest to recast the former parametrization of HU isolating the

contribution of the eigenvalue 1 from the spectrum of U and to express it in

terms of spectral projections.

In the same spirit of section 3.4 we define PU as the eigenprojection of U

with eigenvalue 1 and QU = I − PU its orthogonal projection.

Then, the unitary operator U can be decomposed in the sum U = PU + VU ,

where VU = QU U QU . After projecting on the two mutually orthogonal

subspaces provided by PU and QU , the domain of HU reads:

D(HU) = {ψ ∈ D(H∗) : PUϕ = 0 , QU ϕ̇ = −KUϕ} , (3.75)

where KU is the Cayley transform of VU :

KU = −C −1(VU)QU = −i (I + VU)(I − VU)−1QU . (3.76)
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Figure 3.2: The spectrum of VU has a gap around the point 1 in the complex
plane.

Even in this higher dimensional case the operator (I−VU) is invertible, but it

may be unbounded. The operator (I − VU)−1 will be bounded as long as the

spectrum has a gap around the point 1 (Figure 3.2). For this reason, from

now on, we are going to make the latter our working assumption, [ILP15b].

3.7.2 Quadratic forms

As already sketched for the one-dimensional case we provide an explicit ex-

pression for the expectation value of the kinetic energy of a free particle in a

cavity Ω.

We are going to prove that the expectation value of the kinetic energy HU

is:

tU(ψ) =
~2

2m

(
‖∇ψD‖2

L2(Ω) + 〈ϕ|KUϕ〉Hb

)
, (3.77)

where ψD is the regular component of ψ in the sense of the decomposition

(3.125), KU is the operator defined in (3.76) and Hb = H−
1
2 (∂Ω).

Take ψ ∈ D(HU) ∩ C∞(Ω), since D(HU) ⊂ D(H∗) = D(HD) + N(H∗), it

follows that every ψ ∈ D(HU) can be decomposed into the sum of ψD and
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ψ0. Consider:

2m

~2
tU(ψ) = 〈ψ | −∆ψ〉L2(Ω) = 〈ψ | −∆ψD〉L2(Ω) + 〈ψ | −∆ψ0〉L2(Ω)(3.78)

= 〈ψ | −∆ψD〉L2(Ω) = 〈ψD | −∆ψD〉L2(Ω) + 〈ψ0 | −∆ψD〉L2(Ω)

where we used twice the decomposition of ψ and once the condition −∆ψ0 =

0. Next by means of the Gauss-Green formulas (with the convention of

outward ν) we will show that:

a) 〈ψD | −∆ψD〉L2(Ω) = ‖∇ψD‖2
L2(Ω);

b) 〈ψ0 | −∆ψD〉L2(Ω) = −〈ψ|∂νψD〉L2(∂Ω);

so that, putting them both together, we obtain:

2m

~2
tU(ψ) = ‖∇ψD‖2

L2(Ω) − 〈ψ|∂νψD〉L2(∂Ω). (3.79)

Let us begin from a):

〈ψD | −∆ψD〉L2(Ω) = −
∫

Ω

ψD(x) ∆ψD(x) dx (3.80)

=

∫
Ω

|∇ψD(x)|2 dx−
∫
∂Ω

ψD ∂νψD dS (3.81)

=

∫
Ω

|∇ψD(x)|2 dx = ‖∇ψD‖2
L2(Ω) (3.82)

where we used the condition that ψD|∂Ω = 0.

Next we move on to the computation of b). Preliminarily we prove that:

〈∇ψD|∇ψ0〉L2(Ω) = 0. (3.83)

Indeed:

〈∇ψD|∇ψ0〉L2(Ω) =

∫
Ω

∇ψD(x) · ∇ψ0(x) dx (3.84)

= −
∫

Ω

ψD(x) ∆ψ0(x) dx+

∫
∂Ω

ψD ∂νψ0 dS (3.85)

= 0 (3.86)
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since ψD|∂Ω = 0 and −∆ψ0 = 0. Eventually we compute b):

〈ψ0 | −∆ψD〉L2(Ω) = −
∫

Ω

ψ0(x) ∆ψD(x) dx (3.87)

=

∫
Ω

∇ψ0(x) · ∇ψD(x) dx−
∫
∂Ω

ψ0 ∂νψD dS(3.88)

= −
∫
∂Ω

ψ ∂νψD dS = −〈ψ |∂νψD〉L2(∂Ω) (3.89)

where we made use of equation (3.83), and that ψ0|∂Ω = ψ|∂Ω.

Putting together all the ingredients we find that for all ψ ∈ D(HU)∩C∞(Ω):

2m

~2
tU(ψ) = 〈ψ | −∆ψ〉L2(Ω) (3.90)

= ‖∇ψD‖2
L2(Ω) + 〈ψ|∂νψD〉L2(∂Ω) (3.91)

= ‖∇ψD‖2
L2(Ω) − 〈ψ|Λ (∂νψD)〉H−1/2(∂Ω) (3.92)

= ‖∇ψD‖2
L2(Ω) − 〈ϕ|ϕ̇〉Hb

(3.93)

= ‖∇ψD‖2
L2(Ω) + 〈ϕ|KUϕ〉Hb

. (3.94)

where we used the definition of the inner product of H−
1
2 (∂Ω), (compare

with equation (3.124) in the Appendix) and the definition of the boundary

values (ϕ, ϕ̇) in (3.74). Eventually from equation (3.93) to (3.94) we used

the boundary conditions in (3.75). By a density argument it follows that

2m

~2
tU(ψ) = ‖∇ψD‖2

L2(Ω) + 〈ϕ|KUϕ〉Hb
, for all ψ ∈ D(HU). (3.95)

The mathematical expression of tU for the kinetic energy of a free particle in

a cavity Ω highly resembles the one determined in equation (3.29) for the one-

dimensional case. Though this apparent similarity, the two equations differ

considerably. For example the contribution from the bulk is due to the regular

part of ψ, that is ψD, rather than from the whole function. Moreover, the

border contribution is bounded as long asKU is bounded, which is guaranteed

by the condition of gapped spectrum for VU .
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Eventually, since D(HU) is a core for D(tU) we find that:

D(tU) = {ψ ∈ H1
0 (Ω) +N(H∗) : PUϕ = 0}, (3.96)

where H1
0 (Ω) is the subspace of H1(Ω) whose elements vanish at the bound-

ary. For more details see [FGL17b].

3.7.3 Composition law in a cavity

We now evaluate the limit of the alternating dynamics (3.10) in the case

of a free particle confined in a cavity Ω ⊂ Rn. Once more the product

formula (3.10) holds with the form sum

HW =
HU1 +̇ HU2

2
. (3.97)

Following the one-dimensional case we carry on the computation of the sum:

t12(ψ) =
tU1(ψ) + tU2(ψ)

2
=

~2

2m

(
‖∇ψD‖2

L2(Ω) + 〈ϕ|K12ϕ〉Hb

)
,

K12 =
1

2
(KU1 +KU2) , (3.98)

and its domain

D(t12) = {ψ ∈ H1
0 (Ω) +N(H∗) : P12ϕ = 0}. (3.99)

We stress that K12 is a bounded self-adjoint operator, since both KU1 and

KU2 are, thus the quadratic form t12 is closed and bounded from below.

Therefore, by the representation theorem [Kat66], there exists a unique self-

adjoint extension HW of H such that

t12(ψ) = 〈ψ|HWψ〉L(Ω), for all ψ ∈ D(HW ), (3.100)

where

D(HW ) = {ψ ∈ D(H∗) : i(I +W )ϕ = (I −W )ϕ̇}. (3.101)
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We stress that PW = P12, so that W can be explicitly built from {P12, Q12}:

W = P12 − C (K12)Q12 (3.102)

where C (K12) is the Cayley transform of K12 on the range of Q12. This

complete our proof of Eq. (3.12).

3.8 Example

We would like to provide the reader with an example of composition law in

the n dimensional case. Let us consider the following unitary operator on

L2(∂Ω)

(UΦ)(x) = eiα(x)Φ(x) , x ∈ ∂Ω (3.103)

where α is a function such that 0 ≤ α(x) < 2π and
(
1− eiα(·))−1

is essentially

bounded. The former operator can be extended to a unitary operator on Hb

making use of the operator Λ1/2 ≡
√

Λ, namely:

Λ1/2 : L2(∂Ω)→ H−
1
2 (∂Ω) (3.104)

Λ1/2 = (I −∆∂Ω)
1
4 , (3.105)

so that the operator Λ1/2UΛ†1/2 is a unitary operator on Hb. For the sake

of simplicity we will keep on using the same letter U to indicate the unitary

operator on Hb.

Let us compare equation (3.103) with equation (3.24). In the one dimensional

case, where the boundary was made only by two points, the unitary matrix

U in equation (3.24) was completely determined by two complex numbers,

α1 and α2.

In other words, we were able to effectively describe the physics at the bound-

ary of the interval by means of α1 and α2. In the case of a cavity Ω in Rn, we

need to assign a value of α for every point in ∂Ω. In this manner, equation

(3.103) reads like a generalization of Robin boundary conditions in equation

(3.24).
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Let us move on to the decomposition of U in terms of PU and QU :

PU = χ{1}(U) = χα−1({0}), (3.106)

QU = 1− χ{1}(U) = χα−1(R\{0}), (3.107)

so that, the operator U restricted to the range of QU reads:

VU = QUUQU = eiα(x)χα−1(R\{0}). (3.108)

The last fundamental ingredient is provided by the Cayley transform of VU ,

KU = −i (I + VU)(I − VU)−1QU = −i 1 + eiα(x)

1− eiα(x)
χα−1(R\{0}). (3.109)

We recall that KU is bounded since the function x 7→
(
1− eiα(x)

)−1
is essen-

tially bounded.

Let us consider the following unitary operators U1 and U2:

(U1Φ)(x) = eiα1(x)Φ(x), (3.110)

(U2Φ)(x) = eiα2(x)Φ(x), (3.111)

x ∈ ∂Ω, and compute U1 ∗ U2. Moreover, we suppose that the maps x 7→
(1− eiα1(x))−1 and x 7→ (1− eiα2(x))−1 are both essentially bounded. We are

going to check that:

U1 ∗ U2 = P12 − C (K12)Q12 (3.112)

= χα−1
1 ({0})∪α−1

2 ({0}) − ei(α1+α2) z

z
χα−1

1 (R\{0})∩α−1
2 (R\{0}),(3.113)

where z = 2− eiα1 − eiα2 .

Let us start from the projections. From the very definition of Q12 we know

that Ran(Q12) = Ran(QU1) ∩ Ran(QU2). Since:

Ran(QU1) = {χα−1
1 (R\{0})f : f ∈Hb} (3.114)
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Ran(QU2) = {χα−1
2 (R\{0})f : f ∈Hb} (3.115)

we can infer that Ran(Q12) = Ran(QU1)∩Ran(QU2) = {χα−1
1 (R\{0})∩α−1

2 (R\{0}f :

f ∈Hb}. Thus it follows that:

Q12 = χα−1
1 (R\{0})∩α−1

2 (R\{0}) (3.116)

P12 = χα−1
1 ({0})∪α−1

2 ({0}) (3.117)

Let us move on to K12:

K12 =
1

2
(KU1 +KU2) = −i 1− ei(α1+α2)

(1− eiα1) (1− eiα2)
Q12. (3.118)

Eventually we compute C (K12)Q12. After a straightforward computation it

follows that:

C (K12)Q12 = −eiα1 + eiα2 − 2ei(α1+α2)

2− eiα1 − eiα2
Q12 = ei(α1+α2) z

z
Q12. (3.119)

where z = 2 − eiα1 − eiα2 . Then, plugging the previous expressions in the

right places, equation (3.113) follows.

Interestingly it happens that on the points of ∂Ω where either α1 = 0 or

α2 = 0, Dirichlet boundary conditions prevail, indeed:

P12 = χα−1
1 ({0})∪α−1

2 ({0}) = 1. (3.120)

Another interesting situation happens on the points where α1 = π (Neumann

boundary conditions, U1 = −I) and α2 6= 0. In this case the projections read

P12 = 0 and Q12 = 1, while C (K12)Q12 = −eiα2 z
z

= U2
z
z
.

3.9 Final remarks

In this section we are going to consider the generalization of the composition

law to boundary unitaries Ui, which are not gapped, and thus to unbounded

KUi . In general, the sum of two unbounded (self-adjoint) operators KU1+KU2

is a touchy business. However, if the two operators are bounded from below,
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Figure 3.3: If KU is lower bounded, say KU ≥ β, then the spectrum of VU
has a semi-gap around the point 1 in the spectrum.

the situation can be kept somewhat under control.

It can be proved [Gru74] that a self-adjoint extension of H, say HU , is

bounded from below as long as the corresponding operator HU , which ap-

pears in equation (3.76), is bounded from below. By the properties of the

Cayley transform it is easy to see that KU is bounded from below, if and

only the spectrum of U has a gap just below the point 1, namely the set

{eiα : α ∈ (−ε, 0)} belongs to the resolvent set of U for some ε > 0. We will

call such a U semi-gapped. See figure 3.3, where β = − cot(ε/2).

Suppose that HU1 and HU2 are lower-bounded self-adjoint operators. We

remind the reader that the hypothesis of lower-boundedness is fundamental

in order to let the Trotter-Kato formula in equation (3.7) hold. Next, consider

the quadratic form:

t12(ψ) =
tU1(ψ) + tU2(ψ)

2
=

~2

2m

(
‖∇ψD‖2

L2(Ω) + 〈ϕ|K12ϕ〉Hb

)
,

K12 =
1

2
(KU1 +KU2) D(K12) = D(K1) ∩D(K2) (3.121)
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defined on

D(t12) = D(tU1)∩D(tU2) = {ψ ∈ H1
0 (Ω)+N(H∗) : P12ϕ = 0}∩γ−1(D(K12)),

(3.122)

where

γ−1(D(K12)) = {ψ ∈ L2(Ω) : ψ|∂Ω ∈ D(K12) ⊂Hb}. (3.123)

Now suppose that K12 is self-adjoint on N(P12). It may happen, in fact, that

the sum of K1 and K2 is not self-adjoint and the former construction would

be meaningless, because D(K1)∩D(K2) could even reduce to the zero vector.

In particular, it is sufficient, for example, that either K1 or K2 is bounded,

so that their sum would surely be self-adjoint. The latter situation happens

when, for example, 1 ∈ ρ(VU1), the resolvent set of VU1 , that is when U is

gapped.

Then, by the representation theorem in [FGL17b] the form t12 is the expecta-

tion value of a self-adjoint operator, HW (W being a unitary operator on Hb),

which is the form sum operator of HU1 and HU2 , namely HW =
HU1

+̇ HU2

2
.

Note that, by the previous discussion it follows that HW is lower bounded

because K12 is.

3.10 Appendix

In this appendix we would like to give some more details about the role of

boundary data in equation (3.74).

We recall that, for any s ∈ R, Hs(∂Ω) is a Hilbert space whose inner product

is defined as:

〈φ1|φ2〉Hs(∂Ω) = 〈Λsφ1|Λsφ2〉L2(∂Ω) =

∫
∂Ω

Λsφ1(x)Λsφ2(x) dS (3.124)

where φ1, φ2 ∈ Hs(∂Ω), Λ = (I − ∆∂Ω)
1
2 and ∆∂Ω is the Laplace-Beltrami

operator on ∂Ω [BGM71]. Moreover it will be crucial in what follows that

Λ is a unitary operator from H
1
2 (∂Ω) to H−

1
2 (∂Ω) [Fol99]. As a remark, the
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regularity of the functions in Hs(∂Ω) increases with s: if s = 0, H0(∂Ω) =

L2(∂Ω), if s > 0 thenHs(∂Ω) contains functions with “derivatives of order s”,

while H−s(∂Ω) is the space of distributions obtained as the dual of Hs(∂Ω).

For this reason equation (3.19) cannot hold by naively interpreting the bound-

ary data (ϕ, ϕ̇) as the couple (ψ|∂Ω, ∂νψ). Indeed, the elements in the couple

are settled on different Hilbert spaces (H−
1
2 (∂Ω) and H−

3
2 (∂Ω)) and the ex-

istence of an operator U acting both on ψ|∂Ω and ∂νψ becomes meaningless.

As we are going to discuss, only the most regular component of the normal

derivative will contribute to the boundary data.

In order to define the regular component ψD of ψ, we need a useful decom-

position of D(H∗):

D(H∗) = D(HD) +N(H∗), (3.125)

where HD is the self-adjoint extension of H with Dirichlet boundary condi-

tions, that is HDψ = − ~2
2m

∆ψ on the domain

D(HD) = {ψ ∈ H2(Ω) : ψ|∂Ω = 0}, (3.126)

and

N(H∗) = {ψ ∈ D(H∗) : −∆ψ = 0}. (3.127)

In this appendix we provide the reader with some further details about the

above decomposition of D(H∗), which is is crucial to define the regularized

normal derivative of a wave function and its boundary data (ϕ, ϕ̇) in (3.74).

Using this decomposition, every ψ ∈ D(H∗) can be uniquely decomposed in

the sum ψD + ψ0, where ψD ∈ D(HD) is a function vanishing on the border,

ψD|∂Ω = 0, and ψ0 is a harmonic function, −∆ψ0 = 0. Thus the boundary

data are defined as in equation (3.74):ϕ = ψ|∂Ω,

ϕ̇ = Λ (∂νψD) .
(3.128)

so that both the elements at the border are settled on the same Hilbert space

Hb.
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Let’s get an inner view on the decomposition D(H∗) = D(HD) + N(H∗),

which turned out to be very useful to define the regularized normal derivative

of a wave function and the boundary values (ϕ, ϕ̇).

In order to understand the meaning of this decomposition, we explain here

how to decompose a smooth wave function ψ ∈ C∞(Ω) ⊂ D(H∗) into the

sum ψ = ψD +ψ0, with ψD|∂Ω = 0 and −∆ψ0 = 0. First of all we define g as

ψ|∂Ω and solve the (boundary value) electrostatic problem:−∆u = 0 in Ω

u = g on ∂Ω
. (3.129)

The solution ψ0 of (3.129) represents the electrostatic potential in the cavity

Ω with the given value g = ψ|∂Ω on the boundary. In other words ψ0 is a

harmonic function such that its value along the border is exactly g = ψ|∂Ω.

Next, we define ψD as ψ − ψ0; manifestly ψD|∂Ω = 0. Therefore we can

write ψ = ψD + ψ0 with ψD|∂Ω = 0 and −∆ψ0 = 0. As a technical remark

this decomposition can be extended by density arguments up to D(H∗) (see

[Gru09]), that is: D(H∗) = D(HD) +N(H∗) where:

D(HD) = {ψ ∈ H2(Ω) : ψ|∂Ω = 0} (3.130)

N(H∗) = {ψ ∈ D(H∗) : −∆ψ = 0}, (3.131)

Notice that D(HD) represents the domain of a self-adjoint extension of H

(the one specified by Dirichlet boundary conditions) and it is made up by

much more regular functions than N(H∗).

Indeed, the space N(H∗) contains functions that can be very irregular on ∂Ω.

This is a fairly interesting phenomenon in potential theory: a harmonic func-

tions, which is extremely regular (analytic) in the interior of Ω can become

very irregular on its boundary.

For example, consider Ω = R2
+ = {(x, y) ∈ R2 : y > 0} and define the

function f : Ω→ C, f(x, y) = (x+ iy)−1. It is well known that though being

harmonic on Ω = R2
+, the function f is ill-defined on ∂Ω. Indeed, from the
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theory of distributions:

lim
y↓0

f(z) = P.V.
1

x
− iπδ(x), (3.132)

where P.V. denotes the Cauchy principal value and δ the Dirac delta. More-

over N(H∗) is also responsible for the lack of self-adjointness of T as outlined

in the theory of self-adjoint extensions designed by von Neumann [Neu55].





Chapter 4

Boundaries without boundaries

In this chapter we are going to answer to the following question: Can one

generate boundary conditions starting from a quantum system on a manifold

without boundaries? [Fac+17]

Starting with a closed manifold without boundary, we consider the process of

generating boundaries by modding out by a group action with fixed points.

As an illustrative example, we consider the special case of S and generate the

interval [0, π] via parity reduction. We, eventually, study the generation of

boundary conditions by means of a folding procedure, with the introduction

of an auxiliary ancilla space.

4.1 Generation of boundary conditions by

reduction

In this section we show a way of generating boundary conditions for a non-

relativistic particle on a manifold without boundaries. We first recall how

to obtain a manifold with boundaries as a quotient of the action of a group

of transformations on a manifold without boundaries. In particular we will

focus on the unit circle and the action of Z2 on it, which makes the unit

circle collapse into an interval.

124
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Figure 4.1: Identification of symmetric points of the unit circle S by means
of Π.

We will now consider a free quantum particle on the unit circle, a compact

manifold without boundary, and will implement a procedure to generate

boundary conditions on the quotient manifold with boundaries.

The unit circle in the plane R2 is defined by

S = {(x1, x2) ∈ R2 |x2
1 + x2

2 = 1}, (4.1)

and can be parametrized, in S \ {(−1, 0)}, by

x ∈ (−π, π)→

x1 = cosx,

x2 = sinx.
(4.2)

It is possible to generate an interval of the real line by modding out the unit

circle by a parity transformation. Consider the map

Π : S→ S, Π(x1, x2) = (x1,−x2), (4.3)

or in terms of x ∈ (−π, π), Π(x) = −x. Manifestly, Π is a bijection and an

involution, since Π2 = I.
The action of Π on the unit circe S (see Figure 4.1) identifies pairs of points

on the circle and admits only two fixed points, namely (1, 0) and (−1, 0).
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With the aid of the transformation Π we are identifying symmetric points,

or, equivalently, puncturing the circle in (1, 0) and (−1, 0), and pushing the

lower semicircle onto the upper one.

This is mathematically achieved by considering the quotient space of the

unit circle under the action of the discrete group Z2. Indeed, the space of

(discrete) orbits determined by Π,

M = S/Π, (4.4)

is the interval S+ = [0, π] (or, equivalently, the interval S− = [−π, 0]). Thus,

by taking the quotient of the unit circle by the discrete action of Π we obtain

a one dimensional manifold with boundary M = S+.

Now we will represent the action of Π on square integrable functions on S,

and show how boundary conditions are going to emerge after this process.

The action of Π on functions can be implemented by a pull-back

P : L2(S)→ L2(S), (Pψ)(x) = ψ(Π(x)) = ψ(−x). (4.5)

Moreover P 2 = I, so that the eigenspaces of the parity operator P belong to

the eigenvalues ±1.

The action of P splits the Hilbert space L2(S) into two mutually orthogonal

subspaces H+ and H−, defined by

H± = {ψ ∈ L2(S) |Pψ = ±ψ}. (4.6)

Notice that L2(S) can be identified with L2(−π, π), the Hilbert space of

square integrable functions on the interval (−π, π). Under such identification

we get

H± = {ψ ∈ L2(−π, π) |ψ(−x) = ±ψ(x)}, (4.7)

that is the set of even and odd functions on (−π, π), respectively.

Consider the Hamiltonian of a free particle on a circle (1.19). Since S is

a compact manifold without boundary, the Laplace operator is essentially

self-adjoint on C∞(S) = C∞c (S), the smooth function on the circle [Jos11].
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The domain of self-adjointness is the second Sobolev space H2(S), which, in

coordinates reads

H2(S) = {ψ ∈ H2[−π, π] : ψ(−π) = ψ(π) , ψ′(−π) = ψ′(π)}. (4.8)

Here, H2[−π, π] is the set of square-integrable functions, with square-integrable

(first and) second distribution derivative.

Interestingly the parity operator P and the operator H commutes on H2(S):

H P = P H. (4.9)

This is a crucial ingredient in our construction, which we remind consists in

obtaining a self-adjoint operator on the quotient space, say the interval [0, π],

starting from the operator H on the unit circle.

From the commutation relation HP = PH it follows that whenever the op-

erator H acts on H+ (respectively on H−) then its image remains in H+

(respectively in H−). Thus, the restriction of H to one of the two subspaces

gives rise to a self-adjoint operator. We are going to show that the restric-

tions of H to these parity eigenspaces can be identified with two self-adjoint

Hamiltonian operators on the interval [0, π].

From (4.7) and (4.8), one has

D(H|H+) = H2(S) ∩H+ = {ψ ∈ H2[−π, π] ∩H+ : ψ′(−π) = 0 = ψ′(π)}.
(4.10)

Since the space of square integrable even functions ψ on the interval (−π, π)

is unitarily equivalent to the space of square integrable functions φ on (0, π),

the domain in equation (4.10) can be recast on the interval S+ = [0, π].

Indeed, define the following unitary operator

U+ : H+ → L2(0, π), φ(x) = (U+ψ)(x) =
√

2ψ(x), x ∈ S+,

U †+ : L2(0, π)→ H+, ψ(x) = (U †+φ)(x) =
1√
2

φ(x), x ∈ S+,

φ(−x), x ∈ S−.
(4.11)
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Then we have

H+ := U+H|H+ U
†
+ = − ~2

2m

d2

dx2
, (4.12)

D(H+) = {ψ ∈ H2[0, π] : ψ′(0) = 0 = ψ′(π)}, (4.13)

where the derivative at 0 must vanish, because even functions have odd

derivatives. Equation (4.13) can be immediately read on the quotient space

S+ = [0, π], as a self-adjoint extension of the Hamiltonian describing a free

particle on the interval [0, π] with Neumann boundary conditions.

Similarly, for the subspace of odd functions H−, we get

D(H|H−) = H2(S) ∩H− = {ψ ∈ H2[−π, π] ∩H− : ψ(−π) = 0 = ψ(π)},
(4.14)

and we can define the unitary operator between the space of square integrable

odd functions ψ on (−π, π) and the space of square integrable functions φ

on (0, π) acting as

U− : H− → L2(0, π), φ(x) = (U−ψ)(x) =
√

2ψ(x), x ∈ S+,

U †− : L2(0, π)→ H−, ψ(x) = (U †−φ)(x) =
1√
2

φ(x), x ∈ S+,

−φ(−x), x ∈ S−.
(4.15)

Then, the restricted operator can be unitarily mapped into

H− = U−H|H− U †− = − ~2

2m

d2

dx2
, (4.16)

D(H−) = {ψ ∈ H2[0, π] : ψ(0) = 0 = ψ(π)}. (4.17)

In this case we have obtained a free particle on an interval with Dirichlet

boundary conditions.

Summing up, we started from a self-adjoint operator H on the unit circle

S, which generates a unitary dynamics for the free particle on the circle.

Besides, we picked out the eigenspaces of the parity P , sayH+ andH−, which

are left invariant by the one-parameter unitary group generated by H, since
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[H,P ] = 0. Therefore, the operator H restricted to the invariant subspaces

H±, is still self-adjoint. Finally, the operators restricted to H+ and H− can

be read as two different self-adjoint realizations of the one-dimensional free

Hamiltonian (1.19) on the interval [0, π], with different boundary conditions.

4.2 The general framework

In the previous section we have shown how to generate boundary conditions

on an interval starting from a unitary dynamics on the circle. In this section

we would like to provide the reader with the general construction.

Consider a finite dimensional complex vector bundle E → M on a manifold

M carrying a Hermitian product. In the following we are going to denote

the typical fiber by V and the space of square integrable sections of E by

L2(M,V ). Moreover, we suppose that the bundle is parallelizable. Consider

a set of fiberwise maximal pairwise commuting operators acting as a discrete

group G on M .

We denote by M̃ = M/G the orbifold obtained in the quotient process which

can happen to be a manifold with boundary or with corners. The maximality

of the set implies that E admits a vector field of eigenvectors of this maximal

set of operators. We obtain several copies of L2(M̃,C) , when we consider

the Hilbert space of square integrable sections with values in a given joint

eigenspace.

Next, consider a one-parameter group of unitary bundle automorphisms on

E, say U(t) : E → E, such that GU(t) = U(t)G. The latter condition

implies that the one-parameter unitary group leaves unchanged every single

copy of L2(M̃,C) and its infinitesimal generator still remains self-adjoint on

the Hilbert space L2(M̃,C) associated to a given eigenvector. In general,

with each eigenvector (one dimensional eigenspace), we obtain a different

self-adjoint generator.
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4.2.1 Example 1

Let M be a compact Riemannian manifold without boundary. The Laplace-

Beltrami operator is essentially self-adjoint, therefore its closure will generate

a one-parameter group of unitary transformations on any complex vector

bundle on M , with infinitesimal action ∆ ⊗ In on the sections, where In is

the identity matrix on Cn. We can consider a discrete group acting on E

in terms of unitary transformations and extract from it a maximal set of

fiberwise commuting operators.

In this manner we get a decomposition of the fiber V into one-dimensional

vector spaces and therefore L2(M,V ) will be a direct sum of complex-valued

square integrable functions. We select a basis of the complex-vector bundle,

which is assumed to be parallelizable. With a unitary transformation it is

always possible to consider a basis of eigenvectors of the commuting elements

of the discrete group G.

If the action commutes with ∆⊗ In we return to the general arguments. As

our operator is ∆⊗ In it is clear that we only need our operator to commute

with the action of the discrete group on M so that it will be projectable

onto M̃ .

We should notice that, while ∆ will be in the enveloping algebra of first order

differential operators acting on M , say vector fields acting on M , the same

property will not hold true on M̃ , because the projected Laplacian ∆̃, does

not need to be in the enveloping algebra of the derivations of F(M̃).

For example let M = S2 = {(x1, x2, x3) ∈ R3 |x2
1 +x2

2 +x2
3 = 1} and consider

∆ = J2
x + J2

y + J2
z and Π : (x1, x2, x3) ∈ R3 → (x1, x2,−x3). The quotient

space will be a disk, a manifold with a smooth boundary. The operator Jz

will pass to the quotient but Jx and Jy will not.

As a second example, consider again the free particle on a circle. Then

M = S, the Laplace operator ∆ = ∂2
x1

+ ∂2
x2

and the parity transformation

Π : (x1, x2)→ (x1,−x2). Let us denote by x a coordinate of M/Π, and with

∆̃ the Laplace operator on M/Π, say ∆̃ = ∂2
x. The only complete vector

field will be (x − 1)(x + 1)∂x, therefore we have to investigate the domains

of self-adjointness without being able to rely on the Lie algebra of complete
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vector fields acting on the quotient.

4.2.2 Example 2

Let us consider the case of a spin-1/2 particle on the unit circle. In this

case we have to consider the bundle S × C2 → S, and apply the former

construction to sections of L2(S,C2).

We consider the operator P : ψ(x1, x2)→ (n ·σ)ψ(x1,−x2), where n is a unit

vector in R3 and σ = (σx, σy, σz), the vector of the three Pauli matrices. For

the sake of simplicity we can consider the unit vector n = (0, 0, 1), so that

the operator P reads Pψ(x1, x2) = σ3ψ(x1,−x2).

Since P 2 = I, the operator P admits only two eigenvalues, say ±1, which

split the Hilbert space L2(S,C2) into K+⊕K−, where K± are the eigenspaces

of P with eigenvalues ±1. More explicitly:

K+ =

{
ψ =

(
ψ1

ψ2

)
∈ L2(S,C2) : ψ1 ∈ H+, ψ2 ∈ H−

}
, (4.18)

K− =

{
ψ =

(
ψ1

ψ2

)
∈ L2(S,C2) : ψ1 ∈ H−, ψ2 ∈ H+

}
, (4.19)

where H+ and H− are, respectively, the space of even and odd functions

on the circle as given in equation (4.7). Thus K+ = H+ ⊕ H− and since

the Laplace operator, ∆ ⊗ I, commutes with the operator P , the dynamics

can be projected on M̃ , the segment, and once again we can find Dirichlet

or Neumann boundary conditions. In the same manner we obtain the same

boundary conditions working with K−
To get additional extensions we might consider the fiber bundle S×C4 → S,

where the parity transformations may be implemented by {σ3 ⊗ σ3, σ0 ⊗
σ0, σ0 ⊗ σ3, σ3 ⊗ σ0}. We could use G = {σ3 ⊗ σ0, σ0 ⊗ u(2)} with maximal

pairwise commuting operators {σ3⊗σ0, σ0⊗n ·σ, σ0⊗σ0, σ3⊗n ·σ}. In this

manner we should obtain additional self-adjoint extensions of the Laplace

operator on the interval.
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4.3 General boundary conditions

In section 4.1 we showed how to obtain Dirichlet and Neumann boundary

conditions by a reduction of the free dynamics on the circle. Now we would

like to get general boundary conditions. We can move from functions on S
to sections and consider covariant derivatives instead of ordinary ones. Any

section over the circle can be trivialized at the cost of bringing in a connection

and replacing ordinary derivatives with covariant ones.

We are thus considering a U(1) principal fiber bundle. We write:

A = iα(x)dx, (4.20)

Dψ = dψ + Aψ, (4.21)

where d is the exterior derivative. We must ensure that the connections are

projectable under the map P :

P D = DP. (4.22)

Applying this expression on a section we get

dψ(−x) + A(−x)ψ(−x) = dψ(−x) + A(x)ψ(−x), (4.23)

which implies that

α(x) = −α(−x), (4.24)

and α(0) = 0. Thus α is an odd function and vanishes at the boundary.

Thus, if we restrict to even and odd subspaces we obtain

Pψ = −ψ ψ(0) = 0 = ψ(π), (4.25)

or

Pψ = ψ (Dψ)(0) = 0 = (Dψ)(π), (4.26)

and we can only get back Neumann or Dirichlet boundary conditions. Since

α(0) = 0 we do not even get mixed Neumann or Dirichlet boundary condi-
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tions.

Let us make some observations which will help us solve the problem. Self-

adjointness has to do with conservation of probability. Local boundary condi-

tions assert that the probability current leaving the system at each boundary

point vanishes:

j = −i(ψ̄∇ψ − ψ∇ψ̄) j(0) = 0 , j(π) = 0, (4.27)

while, for non-local boundary conditions the current leaving one boundary

point can be compensated by the one entering from the other side:

j(0)− j(π) = 0, (4.28)

where the minus sign reflects the reversed orientation of the current. More-

over, non-local boundary conditions cannot be obtained from parity reduc-

tion, since currents are odd under parity transformations:

P j P = − j, (4.29)

and as such the current at each boundary point is bound to vanish.

In order to get non-local boundary conditions we have to lift the action to

the fiber and consider the combination of charge and parity transformation,

say CP , rather than P solely:

(CPψ) (x) = ψ̄(−x), (4.30)

Indeed, CP acts not only on the base manifold but also on the U(1) fiber

and can reverse the orientation on both of them. The net effect is that j is

even under CP , namely

(CP ) j (CP ) = j, (4.31)

so that we can have non-vanishing currents at each boundary point. From

the former equation we can infer that non-local boundary conditions can

emerge as a consequence of charge-parity transformations.

Within local boundary conditions we are going to prove that Robin boundary
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conditions: φ′(0) = ν0 φ(0),

φ′(π) = −νπ φ(π),
(4.32)

can be generated by means of parity reduction, as long as we consider the

Levi-Civita connection rather than a gauge connection (compare with equa-

tion (4.20)).

We will prove that by changing the metric only in a small boundary layer

we can get Robin boundary conditions starting from Neumann boundary

conditions.

The relevant quantities in our problem are the spatial metric,

ds2 = dx2, (4.33)

and the Hamiltonian,

H = − ~2

2m

d2

dx2
, (4.34)

defined on D(H+) = {ψ ∈ H2[0, π] : ψ′(0) = 0 = ψ′(π)} with Neumann

boundary conditions.

Consider the following change of coordinates on the interval [0, π]:

x 7→ y = F (x) y = F (x) =

∫ x

0

f(t)dt, (4.35)

where f is a positive function on [0, π], such that
∫ π

0
f(t)dt = π. It is easy

to see that this change of coordinates leaves the endpoints of the interval

unchanged, while the metric reads

ds2 =

(
dx

dy

)2

dy2 =
1

[f(y)]2
dy2. (4.36)

The new wavefunction φ changes according to the unitary transformation:

Uf : L2((0, π), dx)→ L2((0, π), dy), (4.37)

φ(y) = (Uf ψ)(y) =
1√
g(y)

ψ(F−1(y)), g(y) = f(F−1(y)), (4.38)
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because, from a local point of view, a local change of coordinates cannot

change the probability: |ψ|2dx = |φ|2d y. Under this unitary transformation,

the momentum operator p = −i~ d/dx becomes

pf = Uf pU
†
f = gp− i~

2
g′. (4.39)

Accordingly, the transformed Hamiltonian reads

Hf = Uf H U †f = −g2 ~2

2m

d2

dy2
− gg′~

2

m

d

dy
+ V, (4.40)

where

V =
~2

8m

[
(g′)2 + 2gg′′

]
. (4.41)

Next we would like to understand how the Neumann boundary conditions

change under this coordinate transformation. In order to do so we compute

the first derivative of ψ(x) =
√
f(x)φ(y(x)):

ψ′(x) =
1

2
√
f(x)

f ′(x)φ(F (x)) + f(x)
√
f(x)φ′(F (x)). (4.42)

Then, at the boundary, where the functions have to vanish, we find that

φ′(F (x)) = − 1

2[f(x)]2
f ′(x)φ(F (x)), (4.43)

that is to say φ′(0) = ν0 φ(0),

φ′(π) = −νπ φ(π),
(4.44)

where ν0 = −1
2
f ′(0)

[f(0)]2
, νπ = 1

2
f ′(π)

[f(π)]2
and where we used the relations: y(0) = 0

and y(π) = π.

By a change of coordinates, as in equation (4.35), we managed to induce

Robin boundary conditions starting from Neumann boundary conditions.

However, also the original physical problem—a free quantum particle in a

one-dimensional box—was changed, since, after the transformation in equa-

tion (4.38) we obtained a new Hamiltonian (4.40) with a varying mass and
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Figure 4.2: Plot of the functions fε, defined in(4.48), which are used for
generating Robin boundary conditions.

a potential energy term V (y).

In order to overcome this drawback, we will consider a sequence of functions

fε(x), ε > 0, which tends to a constant function in the limit ε → 0, namely

fε(x)→ k, pointwise for all x ∈ (0, π). In principle k may even diverge, but,

as we are going to see in the following, this would represent an unphysical

situation. With this assumption the Hamiltonian Hfε in equation (4.40),

converges in the bulk to the free particle Hamiltonian, with a renormalized

mass M = m/k2, that is

Hfε → −
~2

2m
k2 d2

dy2
= − ~2

2M

d2

dy2
. (4.45)

Moreover we suppose that the following limits for the ε-dependent Robin

constants exist:

lim
ε→0

ν0 = µ0 > 0, (4.46)

lim
ε→0

νπ = µπ > 0. (4.47)

For example, consider the following change of coordinates as shown in fig-
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ure 4.3:

fε(x) =


(l−a)x
ε

+ a 0 ≤ x ≤ ε,

l ε ≤ x ≤ π − ε,
a− (l−a)(x−π)

ε
π − ε ≤ x ≤ π.

(4.48)

where l = π−εa
π−ε is such that

∫ π
0
fε = π for every ε > 0 and a = a(ε) is a

function of ε. The Robin parameter at x = 0, say ν0, reads

ν0 = −1

2

f ′ε(0)

[fε(0)]2
=

π

2a2ε

(
a− 1

π − ε

)
. (4.49)

If a(ε) = 1/2µ0ε, then in the limit ε ↓ 0, the constant ν0 converges to

the fixed parameter µ0. Interestingly, in the bulk fε converges to the value
2µ0π−1

2µ0π
. Thus, in the interior of (0, π), the Hamiltonian in equation (4.40)

converges to the Hamiltonian of a free particle, with a renormalized mass

M = m
(

2µ0π
2µ0π−1

)2

:

Hfε → −
~2

2m

(
2µ0π − 1

2µ0π

)2
d2

dy2
= − ~2

2M

d2

dy2
. (4.50)

If a(ε), instead, diverges more slowly than 1/ε (and does not converge to 1),

then the constant ν0 converges to 0, that is to say to a Dirichlet boundary

condition at 0. In this case, the limiting Hamiltonian in the bulk is that of

a free particle with mass m

Hfε → −
~2

2m

d2

dy2
, (4.51)

because the height l converges to 1 as ε ↓ 0.

Finally, if a(ε)→ 1, we find the Hamiltonian of a free particle with Neumann

boundary conditions, as we could have expected from the very beginning. On

the other hand, if a(ε) diverges faster than 1/ε as ε ↓ 0 we get an unphysical

limit. In this situation, indeed, the height l diverges, which corresponds to a

vanishing mass limit of the Hamiltonian in equation (4.40).

So far we have considered only what happens at x = 0. Analogously one can

discuss the case for the other endpoint of the interval, say x = π, getting the
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same results obtained for x = 0, say µ0 = µπ. In order to get different Robin

parameters it is sufficient to consider at x = π a value different from a(ε),

and then repeat the previous procedure.

4.4 Generation of boundary conditions by

folding

In the previous sections we have shown how to generate quantum boundary

conditions by means of a quotient procedure on the base manifold. By taking

the quotient of a manifold without boundary (e.g. the circle) with respect

to the action of a finite group (e.g. Z2), we have obtained a manifold with

boundary (e.g. the interval). Then we have considered the L2 space over

the original manifold and taken a subspace (e.g. the space of even/odd wave

functions) which is invariant under the action of the Hamiltonian (e.g. the

Laplacian) and can be identified with the L2 space over the quotient manifold.

Thus a projection of the original quantum dynamics onto that subspace has

provided the quantum dynamics on the manifold with boundary, equipped

with specific quantum boundary conditions (e.g. Neumann/Dirichlet).

In the following sections we are going to show how to generate quantum

boundary conditions by means of a folding procedure. At variance with the

previous strategy, here we will establish a unitary map, instead of a pro-

jection, between suitable L2 spaces over the original and the folded base

manifolds. We will show that the requirement of unitarity implies the emer-

gence of an additional spin degree of freedom in the quantum dynamics on

the manifold with boundary.

In this section we consider the folding of a line into a half-line, and in the

following section we will consider again the case of a circle. As a starting

operator we will always take the momentum operator, which does not have

self-adjoint realizations on the half-line and on the interval (with local bound-

ary conditions), and thus cannot generate unitary dynamics. We will show

how the emerging spin degree of freedom will be of help to restore unitarity.
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Consider the momentum operator on the real line,

p = −i~ d

dx
, (4.52)

defined on its domain of self-adjointness,

D(p) = H1(R) = {ψ ∈ L2(R) | ψ′ ∈ L2(R) }, (4.53)

where H1(R) is the first Sobolev space, of square integrable functions with

square-integrable distributional derivative.

Let R+ = {x ∈ R : x ≥ 0} be the positive half-line. We are going to

construct a natural unitary map between L2(R) and L2(R+)⊗C2. Next, we

will use this map to find out the operator on L2(R+) ⊗ C2 into which the

original momentum operator on L2(R) is transformed. This procedure maps

a self-adjoint operator in L2(R) into a self-adjoint operator in L2(R+)⊗ C2.

This fact is extremely interesting from a physical perspective, because, as

mentioned above, the momentum operator admits no self-adjoint extensions

on the half-line, say on L2(R+), since there is a net probability flux through

the boundary at the origin, which cannot be compensated [RS75].

The above procedure, neverthless, will produce a self-adjoint momentum

operator on the half-line at the price of the introduction of an ancillary space,

C2. Such an operator can be physically interpreted as a Dirac operator for a

spin-1/2 particle on the half-line R+.

We define the map

U : L2(R) → L2(R+)⊗ C2,

ψ(x) 7→ Φ(y) =

(
φ+(y)

φ−(y)

)
= (Uψ)(y) =

(
ψ(y)

ψ(−y)

)
. (4.54)
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Figure 4.3: Action of the unitary operator U defined in (4.54). The splitting
of the wavefunction ψ into the two spinorial components, φ+ and φ−, is
represented.

where x ∈ R and y ∈ R+. Its adjoint reads

U † : L2(R+)⊗ C2 → L2(R),

Φ(y) =

(
φ+(y)

φ−(y)

)
7→ ψ(x) = (U †Φ)(x) =

φ+(x) if x ∈ R+

φ−(−x) if x ∈ R−
.(4.55)

It can be easily verified that U is unitary, namely UU † = U †U = I.
Since the wave functions ψ in D(p) = H1(R) are continuous, one has that

ψ(0+) = ψ(0−). Therefore, the domain of the transformed operator p̃ =

UpU † is

D(p̃) = UD(p) = {Φ ∈ H1(R+)⊗ C2 |φ+(0) = φ−(0) }. (4.56)

It is clear from the above expression that a boundary condition has naturally

emerged after this unitary transformation.
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Let us now look at the explicit form of the operator p̃ = UpU †. We get

(pU †Φ)(x) = pU †

(
φ+

φ−

)
(x) = p

φ+(x) if x ∈ R+

φ−(−x) if x ∈ R−

= −i~

φ′+(x) if x ∈ R+

−φ′−(−x) if x ∈ R−
, (4.57)

whence

p̃Φ(y) = UpU †

(
φ+(y)

φ−(y)

)
= −i~

(
φ′+(y)

−φ′−(y)

)
. (4.58)

Therefore,

p̃ = −i~ d

dy
⊗ σz D(p̃) = {Φ ∈ H1(R+)⊗ C2 |Φ(0) = σxΦ(0) }, (4.59)

where σx and σz are the first and the third Pauli matrix, respectively.

In words, we started with the momentum operator p of a quantum particle

on the line L2(R). Then, we punctured the line at the origin and folded

it, resulting into two copies of L2(R+), that is L2(R+) ⊗ C2. See Fig. 4.3.

Next, we showed that the momentum on the real line transforms into a Dirac

operator on the half-line with a definite quantum boundary condition which

makes it self-adjoint.

It is instructive to look at the above procedure in the opposite way, which

would represent a dilation process: Suppose we start with the momentum

operator on the half-line, i.e. in L2(R+), which admits no self-adjoint exten-

sions, because its deficiency indices are different [RS75]. Then, instead of

giving up, in the spirit of Naimark’s dilation theorem [AG93], one can in-

stead enlarge the Hilbert space and look at an extension of the problem one

has started with, which is significantly different. In other words, through a

dilation procedure, we can get the operator p̃, which is a Naimark extension

of the momentum on the half-line and has a different physical interpretation,

as the Dirac operator of a spin-1/2 particle on the half-line.
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From a physical point of view the new operator p̃ could represent a spin-1/2

particle interacting with a wall, which flips both the momentum and the spin

of the particle, through the operator σx in the boundary conditions (4.59),

and thus preserves its helicity. An alternative interpretation is given by a

spinless particle on the half-line which collides with a detector at the bound-

ary. The detector has two possible states and corresponds to the two-level

system. When the particle hits the boundary, it will bounce with a corre-

sponding flip of its momentum, and the detector will click.

More generally one can consider the momentum operator for a free particle

on a punctured line. In this case we are adding a delta-like potential in a

point on the line, which is responsible for a phase-shift of order eiα, α ∈ R,

in the wavefunction when the particle reaches the potential. The operator

reads:

pα = −i~ d

dx
⊕−i~ d

dx
, (4.60)

D(pα) = {ψ ∈ H1(R+)⊕H1(R−) : ψ(0−) = eiαψ(0+)}. (4.61)

After the folding process by means of the unitary operator U in equation

(4.54) the transformed operator on the half-line becomes:

p̃α = −i~ d

dy
⊗ σz D(p̃α) = {Φ ∈ H1(R+)⊗ C2 |φ−(0) = eiαφ+(0) }.

(4.62)

Then, the boundary conditions become:

φ−(0) = eiαφ+(0) ⇐⇒
(
φ+(0)

φ−(0)

)
=
(
cosασx + sinασy

)(φ+(0)

φ−(0)

)
. (4.63)

The above boundary conditions can be recast in a more compact form by

considering the phase α as an angle in the xy plane, namely equation (4.63)

can be rewritten as:

Φ(0) = (n · σ)Φ(0), (4.64)

n = (cosα, sinα) being a unitary vector lying in the xy plane and σ =

(σx, σy). Summing up we have found that the folded operator on the half-
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line reads:

p̃α = −i~ d

dy
⊗ σz D(p̃α) = {Φ ∈ H1(R+)⊗ C2 |Φ(0) = (n · σ)Φ(0)}.

n = (cosα, sinα) (4.65)

Thus, while the Dirac operator is always σz, the boundary conditions can be

changed and handled on the orthogonal xy plane .

4.5 Entanglement generation and

self-adjointness

There is an increasing interest in the connection between boundary conditions

and entanglement generation [IMP14].

In the previous section manifestly we proved that the self-adjointness of the

resulting operator relied on the introduction of an ancillary spin.

Indeed, the dynamics on the space L2(R+)⊗C2 is unitary, but this cannot be

the case on the spatial component L2(R+), since its generator, the momentum

operator, is not self-adjoint on the half-line. The momentum operator on the

line is not projectable onto the half-line, and this results in the projected

operator losing self-adjointness.

This issue can be detected by considering the projection of the space L2(R+)⊗
C2, which is unitarily equivalent to L2(R), onto its spatial component L2(R+).

This projection, obtained by tracing out the spin component C2, maps sep-

arable pure states into pure states, while entangled states are mapped into

mixed states. Therefore, if the unitary dynamics on L2(R+) ⊗ C2 generates

entanglement, its projection cannot be unitary. This establishes an interest-

ing link between entanglement generation of a unitary evolution and the lack

of self-adjointness of the projected generator.

That is just the case of the example under consideration. Indeed, suppose

that the system is initially in the factorized state:

φ⊗ |↑〉+ |↓〉√
2

, (4.66)
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where φ ∈ L2(R+) is a normalized wave packet which vanishes in a neigh-

bourhood of the origin x = 0, and {|↑〉, |↓〉} is the eigenbasis of σz. Then,

the evolved state for sufficiently small times reads:

e−itp⊗σz
(
φ(x)⊗ |↑〉+ |↓〉√

2

)
= φ(x− t)⊗ |↑〉√

2
+ φ(x+ t)⊗ |↓〉√

2
, (4.67)

and the spatial degrees of freedom get manifestly entangled with the spinorial

ones for positive times.

Thus, we notice how the dynamics induced by the self-adjoint operator p̃

generates entanglement on the half-line. Interestingly, one could generate

entanglement differently. Indeed, suppose the system is initially in the state:

φ⊗ |↓〉, (4.68)

φ ∈ L2(R+), then one could think that its evolved state at a later time t,

would be:

φ(x+ t)⊗ |↓〉, (4.69)

and, as such, should not be entagled. This is not true. Indeed, equation

(4.69) holds as long as the wave packet φ does not collide with the boundary.

When the wavepacket collides with the boundary, part of the original spin up

component gets transformed into a spin down component, so that the overall

evolved state gets entangled, namely:

φ(−x+ t)θ(−x+ t)⊗ |↑〉+ φ(x+ t)θ(x+ t)⊗ |↑〉. (4.70)

For large enough times, thus, although starting from a factorized state, whose

spin component should be left invariant by the overall evolution because |↓〉 is

an eigenstate of σz, we have a generation of entanglement due to the presence

of th boundary. Indeed, it is due to the boundary conditions that spin up

and spin down components get mixed up and, as a result, entanglement is

generated.

More generally, if we start from a state Φ = φ+ ⊗ |↑〉 + φ− ⊗ |↓〉, then the
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evolved state reads:

(
e−itp⊗σzΦ

)
(x) =

(
φ+(x− t)θ(x− t) + φ−(−x+ t)θ(−x+ t)

φ+(−x− t)θ(−x− t) + φ−(x+ t)θ(x+ t)

)
. (4.71)

where x is a coordinate of R+. As a final comment, we remark that the

folding procedure admits regions where the dynamics is and keeps on being

separable. For example, if we start with a state φ ⊗ |↑〉, φ ∈ L2(R+), then,

from equation (4.71) we get that the evolved state will stay separable for any

time t > 0, since the evolved state is: φ(x− t)⊗ |↑〉. In the previous case, in

fact, it was the crossing of the boundary that generated entanglement.

If one starts with a non separable state and evolve for a short time, then,

entanglement will be generated due to the evolution of the system (compare

with equation (4.67)). As a result, the evolved state, when projected on the

half-line, becomes a mixed state.

This procedure of entanglement generation can be explained in terms of the

non projectability of the momentum operator on the half-line.

Indeed, we could compare what happens when the dynamics is generated

by the square of p̃2 = Up2U †, which is nothing but the folded Laplacian

operator, say:

p̃2 = −~2 d2

d2y
⊗ I (4.72)

D(p̃2) = {Φ ∈ H2(R+)⊗ C2 |Φ(0) = σxΦ(0) , Φ′(0) = −σxΦ′(0) }, (4.73)

where Φ′(0) = (φ′+(0), φ′−(0)). As we are going to check this operator admits

states which are projectable at any time.

Indeed, if the initial state is φ ⊗ (|↑〉 + |↓〉), φ ∈ L2(R+), then the evolved

state will stay factorized and it will be of the form φt ⊗ (|↑〉 + |↓〉), where

φt = e−ip2tφ.

Vectors of the form φ⊗ (|↑〉 + |↓〉) correspond to even functions on the real

line, as it can be proved with the operator U in equation (4.54).

Indeed, the parity operator P : L2(R) → L2(R), (Pψ)(x) = ψ(−x), on the
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Figure 4.4: Graphical representation of equation (4.71). We start our evolu-
tion with the state Φ = (φin+ , φ

in
− ). By means of U † we unfold Φ on the real

line. The system evolves under the operator p, and eventually we fold it back
into the spinor (φfin+ , φfin− ).

folded space reads:

P̃Φ = (UPU †)

(
φ+(y)

φ−(y)

)
= σx

(
φ+(y)

φ−(y)

)
, (4.74)

Thus P̃ commutes with the boundary conditions, namely σx and, for this

reason, cannot create entanglement on the subspace generated by the set of

even functions. Thus, factorized states, which emerge from even functions,

get projected into pure states. Analogously follows for odd functions, which

correspond to states of the form φ ⊗ (|↑〉 − |↓〉)
Differently, if we start, for example, with a state φ ⊗ |↑〉, φ ∈ L2(R+),

although factorized, it will entangle. Moreover, notice that the dynamical

generation of entanglement is due to the boundary condition which emerged

in the folding process.
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4.6 Momentum operator on the circle

In this section we would like to provide the reader with another example of

the folding procedure. We are going to study the momentum of a particle

on a circle S and, alike the previous section, we will map this problem into

a unitarily equivalent one. As a consequence, boundary conditions will be

generated in the transformed system.

We recall the natural identifications:

L2(S) = L2(−π, π) = L2(−π, 0)⊕ L2(0, π), (4.75)

that will turn out to be useful in the following discussion. Consider the

momentum operator of a particle on a circle

p = −i~ d

dx
, D(p) = H1(S) = {ψ ∈ H1[−π, π] | ψ(−π) = ψ(π) }.

(4.76)

By using the identifications (4.75) and the continuity of the functions in the

first Sobolev space H1, the domain of p can be rewritten as

D(p) = {ψ ∈ H1[−π, 0]⊕H1[0, π] | ψ(0−) = ψ(0+) , ψ(−π) = ψ(π)}.
(4.77)

We are going to unitarily map this problem on L2(0, π) ⊗ C2. Indeed the

following map is unitary, as pictorially shown in figure 4.5:

U : L2(S) → L2(0, π)⊗ C2, (4.78)

ψ(x) 7→ (Uψ)(y) =

(
φ+(y)

φ−(y)

)
=

(
ψ(y)

ψ(−y)

)
, (4.79)

where x ∈ [−π, π] and y ∈ [0, π]. Its inverse reads

U † : L2(0, π)⊗ C2 → L2(S),

U †

(
φ+(y)

φ−(y)

)
=

φ+(x) if x ∈ [0, π]

φ−(−x) if x ∈ [−π, 0]
. (4.80)
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Figure 4.5: Action of the unitary operator U on L2(S) defined in (4.86). The
splitting of the wavefunction ψ into the two spinorial components, φ+ and
φ−, is represented (on the right). On the left the folding procedure on the
interval [0, π] is pictorially shown.

The domain of the transformed operator p̃ = UpU † is

D(p̃) = UD(p) = {Φ ∈ H1[0, π]⊗ C2 |φ+(0) = φ−(0) , φ+(π) = φ−(π)}.
(4.81)

and p̃ acts as

p̃

(
φ+(y)

φ−(y)

)
= −i~

(
φ′+(y)

−φ′−(y)

)
. (4.82)

Therefore, we get

p̃ = −i d

dy
⊗ σz, (4.83)

D(p̃) = {Φ ∈ H1[0, π]⊗ C2 |Φ(0) = σx Φ(0) , Φ(π) = σx Φ(π)}. (4.84)

In a nutshell, we started from the momentum operator on the unit circle and

by means of a unitary transformation we ended up with the Dirac operator

on a segment with well-prescribed boundary conditions.
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As in the previous example, we managed to obtain a spin-1/2 particle on

a manifold with boundary starting from a spinless particle on a manifold

without boundary. Again, the emergent spin degrees of freedom are crucial

in the conservation of probability, since the quantum boundary conditions

imply both a spin flip and a momentum flip whenever the particle bounces

off the boundary.

Let us conclude this section with some comments comparing the reduction

and folding procedures. Let us fix our attention on even and odd functions

on the circle. Under the action of the unitary operator U in equation (2.2)

an even function on the circle, say ψ, transforms into:

ψ(x) 7→ (Uψ)(y) =

(
ψ(y)

ψ(−y)

)
=

(
ψ(y)

ψ(y)

)
= ψ(y)

(
1

1

)
= (4.85)

=
√

2ψ ⊗ 1√
2

(|↑〉+ |↓〉)

Then, when we trace out on the spin degrees of freedom we find the results

of the reduction procedure. Indeed, in the projection procedure, pure states

(which originate from even functions on the circle) are mapped in pure states

because the square operator of p̃2 = −~2d2/d2y ⊗ I is projectable. For this

reason, if we focus our attention on suitable subspaces, e.g. even or odd

functions, the dynamics cannot generate entanglement, because the projected

operator as well is self-adjoint.

Thus, the reduction procedure can be obtained from the folding one when

the spin degrees of freedom are traced out. In fact, whenever this proce-

dure is admissible we find that the operator is projectable because it admits

eigensubspaces which are left invariant by the action of a group action, e.g.

the parity action. In particular, the condition [H,P ] = 0 guarantees for the

operator H to be projectable with respect to the quotient.

The folding procedure, instead, is more general since it does not require any

compatibility relation between the operator and a group action.
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4.7 Naimark’s theorem and generalizations

In this section we would like to discuss with more details the construction

discussed in the previous section by means of Naimark’s theorem [AG93].

First of all we recall what we mean by deficiency indices of a symmetric oper-

ator. Let A be a symmetric operator and A∗ its adjoint (see chapter 5). The

deficiency subspaces of A are K± = N(A∗± iI), and the relative dimensions

say n± = dimK± are called the deficiency indices of the operator A. As a

matter of fact they quantify the lack of self-adjointness of a symmetric oper-

ator, as quantitatively discussed by von Neumann theorem’s on self-adjoint

extensions [Neu55]:

Theorem 2. Let A be a symmetric operator, whose deficiency indices are

n+ and n−. Then, A admits self-adjoint extensions if and only if n+ = n−.

Moreover there is a 1-1 correspondence between self-adjoint extensions of A

and unitary operators between K− and K+ (infinite extensions if n+ = n− ≥
1; one and only one if n+ = n− = 0).

For example the Hamiltonian operator describing a free quantum particle on

a segment (0, 1), say:

H = − ~2

2m

d2

dx2
, D(H) = C∞0 (0, 1) (4.86)

has deficiency indices n± = 2, and for this reason it admits infinitely many

self-adjoint extensions, which have already been discussed in section 1.6.

Differently, the momentum operator on the half-line, say on L2(R+):

p0 = −i~ d

dx
D(p0) = H1

0 (R+) = {ψ ∈ H1(R+) : ψ(0) = 0}, (4.87)

admits no self-adjoint extension, because n+ = 1 6= n− = 0, and cannot

be used to represent a physical observable. This can be easily explained

physically if one invokes the principle of conservation of probability. As a

matter of fact, the evolution of a closed quantum system is unitary and there

cannot be a net loss of probability for the whole evolution time. In our
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case, when the particle scatters against the wall, say at the point 0, part of

the probability density associated to it passes through the wall, causing a

loss of probability. As a result, we would expect this missing part to return

somehow, from the other side of the half-line. Of course, this cannot happen

and, as such, the operator p cannot represent a physical observable, admitting

no self-adjoint extension.

Nevertheless, as we are going to discuss, it admits other kind of extensions,

as provided by Naimark’s theorem. Indeed, we are going to prove that ex-

tensions can always be built up on a larger space:

Every symmetric operator A in a Hilbert space H has a minimal extension

in H ⊗ C2 .

Before discussing this result we quickly recall the Naimark theorem [AG93],

which states that:

Theorem 3. Every symmetric operator A defined on a Hilbert space H

with arbitrary deficiency indices, (n+, n−), can be extended to a self-adjoint

operator B, defined on a larger Hilbert space H + ⊃H .

As a matter of fact, the operator B can be manifestly constructed from A.

Indeed one can choose a Hilbert space H ′ isomorphic to H by means of

a unitary operator U : H → H ′ and build an operator A′ with reversed

deficiency indices, namely (n−, n+), for example A′ = −UAU †.
Then, define H + = H ⊕H ′ and A+ = A ⊕ A′. Manifestly A+ extends A

and it is easily proved that its deficiency indices are equal (n+ +n−, n+ +n−)

and by the von Neumann theorem it admits self-adjoint extensions.

In light of the Naimark theorem, let us analyze the momentum operator on

the half line. The adjoint of p0 is:

p∗0 = −i~ d

dx
D(p∗0) = H1(R+), (4.88)

so that the deficiency indices read (1, 0). Consider, now, the operator −p0

on L2(R+), whose deficiency indices are (0, 1). We would like to obtain an
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Figure 4.6: The double of a smooth manifold M .

extension on L2(R), and for this reason we consider the following unitary

operator:

U : L2(0,∞)→ L2(−∞, 0), (4.89)

such that (Uψ)(x) = ψ(−x). Next we define

p′0 = −U p0U
† = −i~ d

dx
, (4.90)

whose deficiency indices are (0, 1) and whose domain is D(p′0) = H1
0 (R−) =

{ψ ∈ H1(R−) : ψ(0) = 0}. Then, we consider

H + = L2(R) = L2(0,∞)⊕ L2(−∞, 0), (4.91)

p+
0 = p0 ⊕ p′0, (4.92)

where D(p+
0 ) = D(p0) ⊕ D(p′0) = {ψ ∈ H1(R/{0}) , ψ(0) = 0} and whose

deficiency indices are equal, (1, 1). Thus, p′0 admits self-adjoint extensions.

As a corollary from the Naimark theorem it follows that:

Theorem 4. Every symmetric operator A in H has a minimal extension in

H ⊗ C2 .

Indeed, consider a manifold with boundary M and a symmetric operator A

on L2(M). We consider the double of a smooth manifold with boundary

[Lee02], denoted by M#M , obtained from the disjoint union M
⋃
M by

identifying each boundary point in one copy of M with the same boundary

point in the other. The manifold obtained is a smooth manifold without
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boundary and contains two regular domains diffeomorphic to M (See Figure

4.6 ). Moreover suppose that A has deficiency indices (n+, n−). As shown in

the previous discussion, one can find an operator A′ = −A on L2(M) with

inverted deficiency indices (n−, n+).

Then, the operator A ⊕ A′ is symmetric on L2(M#M) ∼= L2(M) ⊕ L2(M),

with equal deficiency indices (n++n−, n++n−). Eventually, it follows by von

Neumann’s theorem that A⊕A′ admits self-adjoint extensions on L2(M#M).

Summing up we started from a symmetric operator on L2(M) with differ-

ent deficiency indices. Apparently this operator could not admit self-adjoint

extensions and we found a way to get around this problem with the introduc-

tion of an auxiliary Hilbert space. In particular, we considered the double of

the base manifold M , namely M#M , a manifold without boundary, where,

by means of Naimark’s theorem, self-adjoint extensions of the operator we

started with can be built up.

This procedure enables a constructive way for realizing self-adjoint exten-

sions of symmetric operators, which do not satisfy the hypotheses of von

Neumann’s theoreom.

The Hilbert space L2(M#M) is isomorphic to two copies of L2(M) which

can be unitarily recasted into another Hilbert space L2(M)⊗ C2:

L2(M#M) ∼= L2(M)⊕ L2(M) ∼= L2(M)⊗ C2. (4.93)

The latter isomorphism shows manifestly an interesting physical interpreta-

tion, which was already discussed in the examples of section 4.4 and 4.6.

Indeed, the doubling of the base space adds an additional spin degree of

freedom to the system.

For example, suppose that A is a symmetric differential operator on M . The

operator A may be used to describe an observable for a physical system

settled in M . In particular, if its deficiency indices are different, we can

implement the procedure resulting from Naimark’s theorem. In light of the

previous discussion, A admits a self- adjoint extension on L2(M)⊗C2, thus

for a physical system admitting spin degrees of freedom. From a physical

perspective the operator A can never represent an observable for the physical
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system we started with. Rather its extension, by means of the Naimark’s

procedure, can be effectively used, but it will describe the physical system

with additional spin degrees of freedom.

Let us conclude this section with an additional comment. In the previous

construction we took A′ = −A. In the case of the momentum operator we

obtained two copies of the momentum operator on the half line, namely:

p+
0 = p0 ⊕ p′0. The operator p0 has deficiency indices equal to (1, 0), while

the operator p′0 has inverted deficiency indices, namely (0, 1). If we start our

evolution with spin |↑〉, there will never be generation of entanglement for

t > 0 due to p0. Analogously the operator −p0 cannot generate entangle for

negative times and an initial state with spin down |↓〉. Thus the position of

0 in the deficiency indices can make us understand in which direction we are

creating entanglement or analogously can provide information on the loss of

probability due to the lack of self-adjointness. Indeed, if we start with a spin

up state and we have no entanglement generation for positive times, we will

be sure that the second deficiency index is equal to 0.





Chapter 5

Quantum boundary conditions:

mathematical results

In this chapter we are going to state and prove the mathematical tools used

in the previous chapters. In particular, we are going to prove that the set of

the self-adjoint extensions of the kinetic energy operator for a free quantum

particle in a cavity is in a one-to-one correspondence with the set of unitary

operators on a Hilbert space at the boundary. Moreover, we are going to

compare and contrast this formulation with the ones already available in the

literature [FGL17b].

5.1 Introduction

In the last few years there has been an increasing interest in the physics of

quantum systems confined in a bounded spatial region and in the prominent

role of quantum boundary conditions (See Chapter 1).

Several examples were analyzed, ranging from the Aharonov-Bohm effect

in quantum mechanics, to the quantum Hall effect in solid state physics,

from anomalies and the Casimir effect in quantum field theory, to fluctuating

topologies in quantum gravity.

156
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Figure 5.1: A quantum particle confined into a cavity Ω

In section 1.6 we asserted that all the physical dynamics of a closed quan-

tum system are implemented by a strongly continuous one-parameter unitary

group, which by the Stone theorem is in a one to one correspondence with its

generator that must be a self-adjoint operator. See e.g. [RS75]. Physically,

the generator is the system’s Hamiltonian and it corresponds to the energy

observable. For example, the Hamiltonian of a free nonrelativistic particle in

Rn is just its kinetic energy and is given by

H =
p2

2m
= − ~2

2m
∆,

where ~ is the Planck constant and m is the mass of the particle (In the

following, for simplicity, we will set ~2/2m = 1). H is an operator on the

Hilbert space L2(Rn) with domain, e.g., D(H) = C∞c (Rn), the smooth func-

tions of compact support. On D(H) the Hamiltonian is symmetric but is

not self-adjoint, whence it does not represent any physical observable, and

cannot generate any physical dynamics. However, its closure H is a self-

adjoint operator (i.e. H is essentially self-adjoint), and as such it represents

the Hamiltonian of a free particle [RS75].

The situation drastically changes in the presence of boundaries. The kinetic

energy operator of a particle in an open bounded set Ω, defined as the Laplace

operator on L2(Ω) with domain D(H) = C∞c (Ω), is still symmetric but it is

no more essentially self-adjoint, and as such its closure does not correspond
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to any physical observable. Indeed, H admits infinite self-adjoint extensions

— that is infinite possible dynamics — each one characterized by a given

physical behavior of the particle at the boundary ∂Ω.

This paradigmatic example explains the compelling reason, since the incep-

tion of quantum mechanics, for searching and characterizing all the self-

adjoint extensions (if any) of a given symmetric operator, which is formally

associated to a system on physical grounds.

The answer was soon given by von Neumann in his theory of self-adjoint ex-

tensions, which is one of the gems of functional analysis [Neu55]. This theory

is fully general and completely solve the problem of self-adjoint extensions of

every densely defined and closed symmetric operator in an abstract Hilbert

space in terms of unitary operators between its deficiency subspaces. See

e.g. [Oli08].

In order to reach its goal of encompassing all possible operators, von Neu-

mann’s theory should necessarily work at an abstract level. However, for

specific classes of operators it would be desirable to have a more concrete

characterization of the set of self-adjoint extensions. In particular, for dif-

ferential operators on a bounded spatial region, as in the above example of

the free particle, one would like to establish a direct connection between self-

adjoint extensions and boundary conditions. This is highly appealing from a

physical perspective, since it would allow to implement a specific dynamics

by building the confining wall out of a suitable material.

A concrete characterization was given by Grubb [Gru68] for symmetric even-

order elliptic differential operators in a bounded regular spatial domain.

Building on the earlier work of Vĭsik [Vis63], Birman [Bir56], and Lions and

Magenes [LM72], she was able to characterize all the self-adjoint extensions

in terms of boundary conditions parametrized by (unbounded) self-adjoint

boundary operators L : D(L) ⊂ X → X ∗ acting on closed (proper) sub-

spaces X of the boundary Hilbert space. See Theorem 6 for the Laplace

operator.

At an intermediate level of abstraction between Grubb’s and von Neumann’s

descriptions lies the theory of boundary triples [BGP08; Oli08], which elab-

orates on ideas of Calkin [Cal39] and Vishik [Vis63], and is valid for every
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symmetric operators, because it relies on an abstraction of the notion of

boundary values in function spaces. A related description was discovered

in the last years by Posilicano [Pos08], who introduced a parametrization

in terms of pairs (Π,Θ), where Π is an orthogonal projection in an aux-

iliary Hilbert space h and Θ is a self-adjoint operator in the range of Π.

See also [Del15]. When particularized to differential operators, one recovers

Grubb’s parametrization, where h is essentially the boundary space, Π is the

projection onto X and Θ is L.

Recently, Asorey, Marmo and Ibort [AIM05; AIM15] proposed on physical

ground a different parametrization of the self-adjoint extensions of differential

operators in terms of unitary operators U on the boundary. This description

relies more directly on physical intuition and in the last years it has been ap-

plied to several systems ranging from one dimensional quantum systems with

changing boundary conditions [Aso+13] or with moving boundaries [Di +16;

Fac+16], to the Aharonov-Bohm effect [OP10], to field theories [AGM15],

and in particular to the investigation of vacuum fluctuations and the Casimir

effect [AM11; AM13].

The large use of this description in several physical applications is also due

to its great manageability: the parametrization is in terms of a single unitary

operator U on the boundary, instead of a pair (X , L) composed of a closed

subspace X and a self-adjoint operator L, which in general is unbounded

and thus also needs a domain specification D(L). Here, all information is

encoded in a single simpler object.

This characterization is close in spirit to von Neumann’s theory. However,

it is different in one essential aspect: the unitaries are boundary operators,

rather than bulk operators, and as such they are more directly related to

experimental implementations, as discussed above. Indeed, along the same

lines as [Pos03], it is possible to connect the two pictures, and to exhibit an

explicit relation between the boundary and the bulk unitaries, but the result

will not be very transparent.

We are going to establish a characterization of the self-adjoint extensions of

an elliptic differential operator in terms of unitary operators on the boundary.

In this chapter we will focus on the above-mentioned paradigmatic model of
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the Laplacian in a bounded regular domain, that is the model of a free

nonrelativistic particle in a box.

We will establish, in Theorem 5, a bijection between the set of self-adjoint

extensions of the Laplace operator on a bounded regular domain and the set

of boundary unitary operators. Each unitary operator is characteristic of a

specific boundary condition, that is a relation between the boundary value,

γψ, of the function ψ and its normal derivative at the boundary, νψ, (in the

sense of traces). Recall that the trace of a function in L2(Ω) is in H−1/2(∂Ω),

the Sobolev space of negative fractional order −1/2 [LM72]. This will be

the natural arena of our boundary conditions, that is the boundary Hilbert

space the unitaries U will act on.

The explicit relation, given in Remark 2, reads

µψ − iγψ = U(µψ + iγψ),

and, in fact, it links the boundary value γψ of the function ψ to the regular

part µψ of its normal derivative νψ, see Definition 5. This is consistent

with a different regularity of the boundary values of the function and of

its normal derivative: in general their traces belong to different Sobolev

spaces, H−1/2(∂Ω) and H−3/2(∂Ω) respectively, and cannot be compared.

Interestingly enough, the irregular part of the normal derivative plays no

role in the boundary conditions; indeed, it is not an independent boundary

datum, and indeed is completely determined by the trace of the function γψ

through the Dirichlet-to-Neumann operator [Gru09].

A crucial ingredient in proving that the irregular part of the normal deriva-

tive is immaterial to the boundary conditions is the generalized Green for-

mula, see Definition 6 and Proposition 10. It exploits a gauge freedom in

Green’s second identity: one can add and subtract an arbitrary boundary

self-adjoint operator to the difference of the normal derivatives. This free-

dom can be used to get rid of the irregular part of the normal derivative and

to gain regularity. In other words, the Dirichlet-to-Neumann operator is a

self-adjoint operator [AM07].

The link between Grubb’s and our parametrization, (X , L) ↔ U , will be
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given in Theorem 7. In a few words, the unitary U is adapted to the direct

sum H−1/2(∂Ω) = X ⊕ X⊥, and reads U = V ⊕ I. Here, the unitary com-

ponent V is essentially the (partial) Caley transform of L and, as such, it

does not have 1 as eigenvalue. Therefore, the eigenspace belonging to the

eingenvalue 1 (the idle eigenspace) coincides with X⊥.

A final remark is in order. In this chapter, for definiteness, we explicitly

consider only the case of the Laplace operator in a bounded regular domain

of Rn. However, Theorem 7 which establishes the link (X , L)↔ U , and the

general strategy of encoding boundary conditions in a unitary operator by

using an idle subspace and a partial Caley transform, would allow us to gener-

alize our results to a larger class of operators (e.g. Laplace-Beltrami [ILP15c],

Dirac [AIM15], pseudodifferential operators [Gru68]) and/or settings (e.g. man-

ifolds with boundaries [ILP15a], nonregular boundaries [GM11]).

Summing up we are going to state our main result in Theorem 5. Then, after

recalling Grubb’s characterization of self-adjoint extensions, Theorem 6, we

establish the connection betweeen the two parametrizations in Theorem 7.

Then we state our result in terms of quadratic forms in Theorem 8, which is

a corollary of Theorem 5. Sections 5.6 and 5.7 are devoted to the proofs of

the theorems. The main properties of the Cayley transform which are used

in the proofs are gathered in the final section 5.8.

5.2 Notation

We are going to consider complex separable Hilbert spaces. The inner prod-

uct between two vectors u,v of a Hilbert space H is denoted by 〈u|v〉H . In

our convention it is anti-linear in the first argument and linear in the second

one.

Given two Hilbert spaces H1 and H2, the set of unitary operators from H1

to H2 is denoted by U(H1,H2), while U(H1) stands for U(H1,H1).

Let H be an Hilbert space and A a densely defined linear operator on H ,

A : D(A) ⊂H →H . (5.1)
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We say that A is symmetric if 〈ψ,Aφ〉 = 〈φ,Aψ〉 for all ψ, φ ∈ H We are

going to denote by A∗ the adjoint operator of A,

A∗ : D(A∗) ⊂H → H . (5.2)

D(A∗) = {ψ ∈H : ∃χ ∈H s.t. 〈ψ,Aφ〉 = 〈χ, φ〉 ∀φ ∈ D(A)}
χ = A∗ψ (5.3)

We say that A is self-adjoint if A = A∗. Clearly every self-adjoint operator

is a symmetric operator.

We now define what we mean by an extension of a densely defined operator

A. Let B a densely defined operator B : D(B) ⊂ H → H , we say that

B is an extension of A, if and only if D(A) ⊂ D(B) and Aψ = Bψ for all

ψ ∈ D(A).

5.3 Sobolev spaces and Trace theorems

Sobolev spaces are largely used in the mathematics community for several

reasons. In particular, we will be interested in the prominent and ubiquitous

role they play in boundary value problems (see section 1.1).

Let Ω be an open bounded set in Rn, n ∈ N. Let the boundary ∂Ω of Ω be

a n − 1 dimensional infinitely differentiable manifold, such that Ω is locally

on one side of ∂Ω. From now on a set Ω satisfying the above conditions will

be called a regular domain [LM72]. By convention the normal ν of ∂Ω is

oriented towards the exterior of Ω.

We are going to denote with C∞c (Ω) the set of C∞ functions with compact

support in Ω. Moreover we are going to use the standard notation for multi-

indexes, namely α = (α1, α2, . . . , αN), with αi ≥ 0 an integer and:

|α| =
N∑
i=1

αi Dαφ =
∂|α|ϕ

∂xα1
1 ∂x

α2
2 . . . ∂xαNN

(5.4)
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Definition 1. Let m ∈ N, m ≥ 1, we define

Hm(Ω) = {ψ ∈ L2(Ω) | ∀α , |α| ≤ m, Dαψ ∈ L2(Ω)}. (5.5)

We recall that the space Hm is a Hilbert space equipped with the scalar

product:

〈u, v〉m =
∑

1≤|α|≤m

〈Dαu,Dαv〉, (5.6)

where 〈·, ·〉 in the sum in the right hand side is the scalar product in L2(Ω).

Definition 2. We define Hm
0 (Ω) as the closure in Hm(Ω) of C∞c (Ω), the

subspace of C∞ functions with compact support in Ω.

More generally one can define Sobolev spaces of real order, say Hs(Ω) with

s ∈ R with the usual norm [Hor63; LM72].

In the following we will be mainly interested in fractional Sobolev spaces on

the border ∂Ω, say Hs(∂Ω), for which we will provide the reader with some

further details.

First of all, we recall that:

Definition 3. Hs(Rn) = {ψ ∈ L2(Rn) | (1 + |ξ|2)s/2ψ̂ ∈ L2(Rn)}, where ψ̂ is

the Fourier transform of ψ.

Hs(Rn) is a Hilbert space with the scalar product:

〈u, v〉s =

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ. (5.7)

From Rn, then one moves on to the half-space Rn
+ = {(x1, . . . , xn) |xn > 0},

which is the simplest prototype of an open subset with a boundary and define

Hs(Rn
+).

Definition 4. Hs(Rn
+) = {u ∈ D ′(Rn

+) |u = U |Rn+ U ∈ Hs(Rn)}, where

D ′(Rn
+) is the set of distributions in Rn

+.

Then, since every open bounded set Ω ⊂ Rn can be locally modeled as a

copy of a half-space, then, after some technical and non-trivial work one can
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extend the previous results in order to define Hs(∂Ω), s ∈ R , the Sobolev

space of order son ∂Ω with the usual norm [Hor63; LM72].

Furthermore we set Hs
0(Ω) the closure of C∞c (Ω) in Hs(Ω).

In what follows we will need the following family of operators {Λt}t∈R, where

for all t ∈ R the operator Λt is defined as

Λt = (I−∆LB)t/2,

where I is the identity operator on L2(∂Ω) and ∆LB is the Laplace-Beltrami

operator on ∂Ω. We will set Λ ≡ Λ1. The family {Λt}t∈R has the following

property: for all t, s ∈ R

Λt : Hs(∂Ω)→ Hs−t(∂Ω)

is positive and unitary. For an explicit construction of {Λt}t∈R see [LM72].

We denote by 〈·, ·〉s,−s, with s ∈ R, the pairing between H−s(∂Ω) and its

dual Hs(∂Ω) induced by the scalar product in L2(∂Ω), i.e.

〈u, v〉s,−s := 〈Λsu|Λ−sv〉L2(∂Ω), for all u ∈ Hs(∂Ω), v ∈ H−s(∂Ω).

Let H∗ be the operator that acts as the distributional Laplacian on the

maximal domain

D(H∗) = {ψ ∈ L2(Ω) |∆ψ ∈ L2(Ω)}.

We denote by

γ : D(H∗)→ H−1/2(∂Ω), ψ 7→ γ(ψ) = ψ|∂Ω

the trace operator, and by

ν : D(H∗)→ H−3/2(∂Ω), ψ 7→ ν(ψ) =
∂ψ

∂ν
= (∇ψ)|∂Ω · ν

the normal derivative, and we recall that these operators are continuous with

respect to the graph norm of H∗ [LM72].
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In the following we will consider the Laplace operatorH = −∆ on the domain

D(H) = {ψ ∈ H2(Ω) |γψ = νψ = 0} ≡ H2
0 (Ω), (5.8)

and the Dirichlet Laplacian, HD = −∆ on

D(HD) = H2(Ω) ∩H1
0 (Ω) = {ψ ∈ H2(Ω) |γψ = 0}. (5.9)

We recall that H is nothing but the closure in L2(Ω) of the symmetric op-

erator given by the Laplacian on functions in C∞c (Ω). Moreover, HD is a

self-adjoint, positive-definite operator, HD = H∗D > 0.

Moreover H∗ is the adjoint operator of the symmetric operator H, and HD

is a self-adjoint extension of H, namely,

H ⊂ HD ⊂ H∗.

Our main objective is to characterize all the possible self-adjoint extensions

of the symmetric operator H. As the Dirichlet Laplacian, they will all be

contained between the minimal Laplacian H and the maximal one H∗. The

domain of each self-adjoint extension will be characterized by a specific rela-

tion between the values of the functions and those of their normal derivatives

at the boundary.

As already discussed in section 1.6 in quantum mechanics every self-adjoint

extension represents the kinetic energy operator of a free nonrelativistic par-

ticle (with ~2/2m = 1), constrained in the spatial domain Ω by a suitable

specific wall.

We will need a regularized version of the trace operator for the normal deriva-

tive ν.

Definition 5. The regularized normal derivative µ : D(H∗) → H−1/2(∂Ω)

is the linear operator whose action is

µψ = ΛνΠDψ,

for all ψ ∈ D(H∗), where ΠD = H−1
D H∗.
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Remark 1. Note that H−1
D maps L2(Ω) onto D(HD) ⊂ H2(Ω). By the trace

theorem, ν(H2(Ω)) = H1/2(∂Ω), whence µψ ∈ H−1/2(∂Ω) is more regular

than the normal derivative νψ ∈ H−3/2(∂Ω).

The operator ΠD is in fact a (nonorthogonal) projection from D(H∗) onto

D(HD), since for all ψ ∈ D(HD) one gets that ΠDψ = H−1
D H∗ψ = H−1

D HDψ =

ψ. Thus, µψ is the image under Λ of the normal derivative of the component

ψD = ΠDψ of ψ belonging to the regular subspace D(HD) of D(H∗).

5.4 The theorems

In this section we are going to briefly state, without proof, the theorems which

mainly characterize the mutual relation between the self-adjoint extensions

of the Hamiltonian H and the boundary conditions on Ω. In particular in

Theorem 5 every self-adjoint extension of H is parametrized in terms of a

unitary operator U in U(H−1/2(∂Ω)):

Theorem 5. The set of all self-adjoint extensions of H is

{
HU : D(HU)→ L2(Ω) |U ∈ U(H−1/2(∂Ω))

}
,

where for all U ∈ U(H−1/2(∂Ω))

D(HU) = {ψ ∈ D(H∗) | i(I + U)γψ = (I− U)µψ} .

Remark 2. It is interesting to stress the role played by the regularized normal

derivative µψ in the above theorem: the trace γψ and µψ can be compared

because they both belong to the same (boundary) space, namely H−1/2(∂Ω).

Notice also the equivalent relation

µψ − iγψ = U(µψ + iγψ)

defining the domain of the self adjoint extension HU .

Next we want to compare the result in Theorem 5 with the classical charac-

terization of the self-adjoint extensions of H due to Grubb [Gru09; Gru68].
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We need some notation: a closed linear subspace X of H−1/2(∂Ω) is denoted

by X @ H−1/2(∂Ω), and X ∗ denotes its dual; we say that a densely defined

operator L : D(L) ⊂ X → X ∗ is self-adjoint if

ΛL : D(L) ⊂ X → X

is self-adjoint, (ΛL)∗ = ΛL.

Theorem 6 ([Gru68]). The set of all self-adjoint extensions of H is

{
H(X ,L) : D

(
H(X ,L)

)
→ L2(Ω)

}
,

that is to say:

{
H(X ,L) | X @ H−1/2(∂Ω), L : D(L) ⊂ X → X ∗, L self-adjoint

}
,

where, for all X @ H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗, L self-adjoint,

D
(
H(X ,L)

)
=

= {ψ ∈ D(H∗) |γψ ∈ D(L), 〈νΠDψ, u〉 1
2
,− 1

2
= 〈Lγψ, u〉 1

2
,− 1

2
, ∀u ∈ X}.

The relation between the two different parametrizations of the self-adjoint

extensions of H given in Theorem 5 and Theorem 6 is established in the next

theorem. First we introduce some notation: if U : H−1/2(∂Ω)→ H−1/2(∂Ω)

is a linear operator and X is a subspace of H−1/2(∂Ω) we denote by U�X the

operator

U�X : X → U(X ), u ∈ X 7→ Uu.

Then the relation between the two different parametrization is given by:

Theorem 7. For all X @ H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗, with L

self-adjoint, it results that

H(X ,L) = HU , with U = C (ΛL)⊕ IX⊥ ∈ U(H−1/2(∂Ω)),
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where

C (ΛL) = (ΛL− iIX )(ΛL+ iIX )−1

is the Cayley transform of ΛL, and IX , IX⊥ are the identity operators on X
and on X⊥, respectively.

Conversely for all U ∈ U(H−1/2(∂Ω)) it results that

HU = H(X ,L), with X = RanQU and L = Λ−1C −1 (U�X ) ,

where QU is the spectral projection of U on the Borel set R \ {1} and

C −1 (V ) = i (IX + V ) (IX − V )−1

is the inverse Cayley transform of V ∈ U(X ).

Remark 3. The Cayley transform maps bijectively self-adjoint operators on

the Hilbert space X to unitary operators that do not have 1 as eigenvalue. See

Section 5.8. In the second part of the theorem, V = U�X is the restriction

of the unitary U to its spectral subspace X = RanQU orthogonal to the

(possible) eigenspace belonging to the eigenvalue 1. Therefore its inverse

Cayley transform exists. It is a bounded self-adjoint operator if 1 is a point

of the resolvent set of V , i.e. if the (possible) eigenvalue 1 of U is isolated;

otherwise it is an unbounded self-adjoint operator.

5.5 Quadratic forms and expectation values

In this section we are going to discuss and prove a representation theorem for

the self-adjoint extensions of the observable H in terms of energy expectation

values.

Consider the expectation value of the symmetric operator H = −∆ at ψ ∈
D(H) = H2

0 (Ω):

t(ψ) = 〈ψ|Hψ〉L2(Ω) = ‖∇ψ‖2
L2(Ω). (5.10)

Physically this represents the kinetic energy of a quantum particle in the

vector state ψ (assumed to be normalized). According to the postulates of
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quantum mechanics, a quadratic form corresponds to a physical observable—

and hence to a self-adjoint operator—if and only if it is real and closed [RS75].

Therefore, the search of the self-adjoint extensions of the symmetric operator

H is mirrored in the search of the real and closed quadratic forms that extend

the minimal form (5.10).

As a consequence, Theorem 5 has a counterpart in terms of kinetic energy

forms, through the relation tU(ψ) = 〈ψ|HUψ〉, which must hold for all ψ ∈
D(HU).

Theorem 8. The set of all real closed quadratic forms on L2(Ω) that extend

t(ψ) is {
tU : D(tU)→ R |U ∈ U(H−1/2(∂Ω))

}
,

with

tU(ψ) = ‖∇ψD‖2
L2(Ω) + 〈γψ|KUγψ〉H−1/2(∂Ω), for all ψ ∈ DU ,

where

DU = D(tD) +N(H∗) ∩ γ−1 (D(KU))

is a core of tU .

Here ψD = ΠDψ ∈ D(tD) = H1
0 (Ω), the domain of the Dirichlet form, and

KU is a self-adjoint operator on the boundary space H−1/2(∂Ω) defined by

D(KU) = Ran(I− U),

KU(I− U)g = −iQU(I + U)g, for all g ∈ H−1/2(∂Ω),

with QU the projection onto the subspace Ran(I− U).

Moreover, the domain D(HU) of Theorem 5 is a core of tU (in fact it is a

subspace of DU), and

tU(ψ) = 〈ψ|HUψ〉L2(Ω) for all ψ ∈ D(HU).

Proof. According to assertion 2 of Lemma 9, every φ ∈ C∞(Ω) ⊂ D(H∗) has

a unique decomposition φ = φD + φ0, with γφD = 0 and ∆φ0 = 0. Thus, for
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any φ ∈ C∞(Ω), we get by the Gauss-Green formula and Definition 5

〈φ|H∗φ〉L2(Ω) = −
∫

Ω

φ̄∆φDdx

=

∫
Ω

∇φ̄0 · ∇φDdx+

∫
Ω

|∇φD|2dx−
∫
∂Ω

φ̄
∂φD

∂ν
dS

= ‖∇φD‖2
L2(Ω) − 〈γφ|µφ〉H−1/2(∂Ω), (5.11)

since ∫
Ω

∇φ̄0 · ∇φDdx = −
∫

Ω

∆φ̄0φDdx+

∫
∂Ω

∂φ̄0

∂ν
φDdS = 0.

By density, formula (5.11) is valid for all φ ∈ D(H∗). Therefore, we can

define the following quadratic form

t∗(ψ) = ‖∇ψD‖2
L2(Ω) − 〈γψ|µψ〉H−1/2(∂Ω), (5.12)

which on D(H∗) coincides with the expectation value of the operator H∗,

namely

t∗(ψ) = 〈ψ|H∗ψ〉L2(Ω),

for all ψ ∈ D(H∗). However, notice that D(HD) = H2(Ω)∩H1
0 (Ω) is a dense

subspace of D(tD) = H1
0 (Ω), the domain of the Dirichlet quadratic form,

tD(u) = ‖∇u‖2
L2(Ω).

Therefore, the form (5.12) can be extended by density to functions

ψ ∈ D(tD) +N(H∗).

[Recall the decomposition of Lemma 9, D(H∗) = D(HD) +N(H∗).]

Suppose now that ψ ∈ D(HU) ⊂ D(H∗). Thus,

〈ψ|HUψ〉L2(Ω) = t∗(ψ) = ‖∇ψD‖2
L2(Ω) − 〈γψ|µψ〉H−1/2(∂Ω),

and, by Theorem 5,

i(I + U)γψ = (I− U)µψ.
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Let PU and QU be the spectral projections of U on the Borel sets {1} and

R \ {1}, respectively (PU is zero if 1 is not an eigenvalue of U). Then the

above relation is equivalent to

PUγψ = 0, i(I + U)QUγψ = (I− U)QUµψ, (5.13)

which imply that

γψ ∈ Ran (I− U) ⊂ RanQU ,

since RanPU = Ran (I − U)⊥. Let us now define the operator KU with

domain

D(KU) = Ran(I− U),

whose action is

KU(I− U)g = −iQU(I + U)g = −i(I + U)QUg,

for all g ∈ H−1/2(∂Ω). Thus we get that, for some g ∈ H−1/2(∂Ω),

i(I + U)QUγψ = i(I + U)QU(I− U)g = (I− U)iQU(I + U)g

= −(I− U)KU(I− U)g = −(I− U)KUQUγψ,

which plugged into (5.13) gives

−(I− U)QUKUγψ = (I− U)QUµψ.

Since I− U is injective when restricted to RanQU , we get that

KUγψ = −QUµψ, (5.14)

for all γψ ∈ D(KU). This implies that

−〈γψ|µψ〉H−1/2(∂Ω) = 〈γψ|KUγψ〉H−1/2(∂Ω),

for all ψ ∈ D(tD) +N(H∗), such that γψ ∈ D(KU).
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Thus we can define the quadratic form

tU(ψ) = ‖∇ψD‖2
L2(Ω) + 〈γψ|KUγψ〉H−1/2(∂Ω),

on the domain

DU = D(tD) +N(H∗) ∩ γ−1 (D(KU)) .

For all ψ ∈ D(HU) it coincides with the expectation value of the self-adjoint

extension HU :

tU(ψ) = 〈ψ|HUψ〉L2(Ω).

The domain DU is a core of the quadratic form tU since it contains the domain

of its associated self-adjoint operator HU , namely D(HU) ⊂ DU .

Remark 4. At variance with the domains of their corresponding operators,

the domains of the kinetic energy forms are all contained between a minimal

domain and a maximal one:

D(tI) ⊂ D(tU) ⊂ D(t−I).

The Dirichlet form tI = tD has the expression

tD(ψ) = ‖∇ψ‖2
L2(Ω),

on the minimal domain D(tD) = H1
0 (Ω), while the form t−I has maximal

domain D(t−I) = H1
0 (Ω) +N(H∗) and acts as

t−I(ψ) = ‖∇ψD‖2
L2(Ω).

Both forms have no boundary term, since the boundary Hamiltonians are

both zero, KI = K−I = 0, but on the smallest and largest domain, respec-

tively: D(KI) = {0} and D(K−I) = H−1/2(∂Ω). The maximal form t−I

corresponds to the Krĕin-von Neumann extension H−I, whose boundary con-

dition is the vanishing of the regularized normal derivative, µψ = 0 [Kre47].

Remark 5. Notice that the boundary Hamiltonian KU is nothing but the
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inverse partial Cayley transform of the unitary U on its spectral subspace

RanQU = Ran (I− U). (In the above proof QU has been identified as the

spectral projection of U on the Borel set R \ {1}). Explicitly, one gets

KU = −C −1(U�RanQU ).

The inverse Cayley transform is well defined since the restriction of U has

the eigenvalue 1 stripped out. Notice, however, that if 1 is not an isolated

eigenvalue of U , then 1 is not in the resolvent set of U�RanQU , and thus KU

is an unbounded operator.

Remark 6. Theorem 6 estabilishes a one-to-one correspondence between the

set of the self-adjoint extensions of H and the set of pairs (X , L) composed

of a closed subspace X and a self-adjoint operator L.

In addition to that, it was proved in [Gru74] that a self-adjoint extension of H

is bounded from below if and only if the operator L is bounded from below.

Something more can be said in terms of the parametrization with unitary

operators. Indeed, since KU = −C −1(U �RanQU ), and U �RanQU= C (ΛL), it

follows that a self-adjoint extension of H is bounded from below if and only

if the corresponding operator KU is bounded from below.

The above statement can be rephrased in terms of U . In particular if KU is

bounded, then, there is a whole gap around the point (x, y) = (1, 0) on the

unit circle, where the spectrum of U is settled.

Instead, KU is bounded from below if and only the spectrum of U has a gap

just below the point (1, 0). Namely the set {eiα : α ∈ (−ε, 0)} belongs to

the resolvent set of U for some ε > 0.

Summing up, if 1 ∈ ρ(U �RanQU ), then for sure KU is a bounded operator.

Instead, if there is a semi-gap from below around the point (1, 0), then KU

is solely bounded from below.

5.6 Theorem 5: the proof

In this section we are going to explicitly prove the characterization theorem

of the self-adjoint extensions of H in terms of unitary operators.
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We will first need some properties of the regularized normal derivative µ and

of the projection ΠD.

Lemma 9. The following properties hold:

1. Let µ be the regularized normal derivative of Definition 5, then

µ : D(H∗)→ H−1/2(∂Ω)

is a surjective continuous map with respect to the graph norm.

2. The domain of the adjoint D(H∗) is the vector space direct sum of the

domain of the Dirichlet Laplacian HD and the kernel of H∗:

D(H∗) = D(HD) +N(H∗), ψ = ψD + ψ0,

where ψ ∈ D(H∗), ψD = ΠDψ ∈ D(HD), and ψ0 = (I−ΠD)ψ ∈ N(H∗).

3. The map

φ ∈ D(H∗) 7→ (γ φ,µφ) ∈ H−1/2(∂Ω)×H−1/2(∂Ω)

is surjective.

Proof. 1. The map µ is continuous as a composition of three continuous

maps: µ = ΛνΠD, with Λ : H1/2(∂Ω)→ H−1/2(∂Ω) being unitary,

ν : H2(Ω)→ H1/2(∂Ω)

being continuous by the trace theorem, and

ΠD = H−1
D H∗ : D(H∗)→ D(HD) = H2(Ω) ∩H1

0 (Ω)

being a projection, as pointed out in Remark 1.

Surjectivity follows from the surjectivity of the projection ΠD and from

the surjectivity of the map

γ1 = (γ,ν) : H2(Ω)→ H3/2(∂Ω)×H1/2(∂Ω),
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which implies the surjectivity of its restriction

γ1 : H2(Ω) ∩ γ−1
1 ({0} ×H1/2(∂Ω))→ {0} ×H1/2(∂Ω),

and thus of the map

ν : H2(Ω) ∩H1
0 (Ω)→ H1/2(∂Ω).

2. For any ψ ∈ D(H∗) we have ψD = ΠDψ ∈ D(HD) and ψ0 = (I−ΠD)ψ ∈
N(H∗). Indeed,

H∗ψ0 = H∗ψ−H∗ΠDψ = H∗ψ−H∗H−1
D H∗ψ = H∗ψ−HDH

−1
D H∗ψ = 0.

3. Since Λ : H1/2(∂Ω) → H−1/2(∂Ω) is unitary, the surjectivity of the

map

(γ,µ) : D(H∗)→ H−1/2(∂Ω)×H−1/2(∂Ω)

is equivalent to the surjectivity of

(γ,νΠD) : D(H∗)→ H−1/2(∂Ω)×H1/2(∂Ω).

By the decomposition of point 2 of the Lemma, we get that for any ψ ∈
D(H∗), ψ = ψD + ψ0 with γψD = 0 and νΠDψ0 = νΠD(I−ΠD)ψ = 0.

Therefore,

(γ,νΠD)ψ = (γψ0,νψD).

Therefore, the surjectivity of (γ,µ) follows from the separate surjec-

tivity of the two component maps:

γ : N(H∗)→ H−1/2(∂Ω), ν : D(HD)→ H1/2(∂Ω).

The surjectivity of ν has just been proved in part 1. The surjectivity of

γ is nothing but a classical result [Tre06] on the existence of an L2(Ω)-

solution to the Laplace equation −∆u = 0 for any Dirichlet boundary

condition γu = g ∈ H−1/2(∂Ω).
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Using the regularity result in Lemma 9 we can define the generalized Gauss-

Green boundary form.

Definition 6. We define the generalized Gauss-Green boundary form

Γ : D(H∗)×D(H∗)→ C

such that for all φ, ψ ∈ D(H∗)

Γ(φ, ψ) = 〈µφ|γψ〉H−1/2(∂Ω) − 〈γφ|µψ〉H−1/2(∂Ω).

In [Gru68] it was proved the following result:

Proposition 10. Let H the operator defined in (5.8) and let Γ the generalized

Gauss-Green boundary form in Definition 6. Then

Γ(φ, ψ) = 〈φ|H∗ψ〉L2(Ω) − 〈H∗φ|ψ〉L2(Ω) for all φ, ψ ∈ D(H∗). (5.15)

Proof. According to Lemma 9.2, every φ ∈ C∞(Ω) ⊂ D(H∗) has a unique

decomposition φ = φD + φ0, with γφD = 0 and ∆φ0 = 0. Thus, for any

φ, ψ ∈ C∞(Ω), we get

〈φ|H∗ψ〉L2(Ω) − 〈H∗φ|ψ〉L2(Ω) =

∫
Ω

(
∆φ̄Dψ − φ̄∆ψD

)
dx

=

∫
∂Ω

(
∂φ̄D

∂ν
ψ − φ̄∂ψD

∂ν

)
dS = 〈νφD,γψ〉 1

2
,− 1

2
− 〈γφ,νψD〉− 1

2
, 1
2

= 〈µφ|γψ〉H−1/2(∂Ω) − 〈γφ|µψ〉H−1/2(∂Ω),

by the Gauss-Green formula and Definition 5. The result follows by density.

We denote by Hb := H−1/2(∂Ω)⊕H−1/2(∂Ω).

Definition 7. Let W be a subspace of Hb. We define the Γ-orthogonal

subspace of W as

W† :=
{

(u1, u2) ∈Hb

∣∣ 〈u2|v1〉H−1/2(∂Ω) = 〈u1|v2〉H−1/2(∂Ω), ∀(v1, v2) ∈ W
}
.



Chapter 5. Quantum boundary conditions: mathematical results 177

We say that W is a maximally isotropic subspace if W =W†.

Proposition 11. Let W be a subspace of Hb and let H̃ be the restriction of

H∗ to the domain

D(H̃) = {φ ∈ D(H∗) | (γφ,µφ) ∈ W} .

Then H̃ is self-adjoint if and only if W is a closed maximally isotropic sub-

space.

Proof. First of all we observe that

H̃ is self-adjoint ⇐⇒ G(H̃∗) = G(H̃)

and that D(H̃) ⊂ D(H̃∗) ⊂ D(H∗). The proof follows immediately by

observing that the graph of H̃ reads

G(H̃) =
{

(φ,H∗φ)
∣∣φ ∈ D(H̃)

}
=

{
(φ,H∗φ)

∣∣φ ∈ D(H∗), (γφ,µφ) ∈ W
}
,

while the graph of H̃∗ is

G(H̃∗) =
{

(φ,H∗φ) |φ ∈ D(H̃∗)
}

=
{

(φ,H∗φ) |φ ∈ D(H∗), Γ(φ, ψ) = 0, ∀ψ ∈ D(H̃)
}

Using the definition of Γ, G(H̃∗) reads:

{
(φ,H∗φ) |φ ∈ D(H∗), 〈u1|µφ〉H−1/2(∂Ω) = 〈γφ|u2〉H−1/2(∂Ω), ∀(u1, u2) ∈ W

}
,

that is:

G(H̃∗) =
{

(φ,H∗φ) |φ ∈ D(H∗), (γφ,µφ) ∈ W†
}
,

and thus G(H̃) = G(H̃∗) iff W =W†.

The closed maximally isotropic subspaces are characterized by the following

theorem, whose straightforward proof can be found in [BGP08].
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Theorem 12. A closed subspace W of Hb is a maximally isotropic subspace

if and only if there exists U ∈ U(H−1/2(∂Ω)) such that

W = {(u1, u2) ∈Hb | i(I + U)u1 = (I− U)u2} .

We can now conclude.

Proof of Theorem 5. The proof follows immediately from Proposition 11 and

Theorem 12.

Remark 7. The proof of Theorem 5 can be translated into the language of

boundary triples [BGP08], by saying that (Hb,γ,µ) is a boundary triple for

H∗. This follows by Proposition 10 and by assertion 3 of Lemma 9.

5.7 Theorem 7: the proof

In this section we are going to prove Theorem 7, which links the parametriza-

tion of self-adjoint extensions of H given by Grubb, with the one provided

in Theorem 5.

Proof. Let X @ H−1/2(∂Ω) and L : D(L) ⊂ X → X ∗ a self-adjoint operator.

For all ψ ∈ D(T ∗) we denote by (µ̃ψ)
∣∣
X the element of X ∗ defined as follows:

(µ̃ψ)
∣∣
Xu := 〈Λ−1µψ, u〉 1

2
,− 1

2
, for all u ∈ X ,

thus we have that

D(H(X ,L)) =
{
ψ ∈ D(H∗) |γψ ∈ D(L), (µ̃ψ)

∣∣
X = Lγψ

}
.

The operator ΛL : D(ΛL) ⊂ X → X is self-adjoint, where D(ΛL) = D(L).

We can define

V = C (ΛL) = (ΛL− iIX )(ΛL+ iIX )−1

and by Proposition 13 in Section 5.8 we have that V ∈ U(X ). Now observe
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that, by assertion 4 of Proposition 13, we can rewrite D(H(X ,L)) as follows

D(H(X ,L)) =
{
ψ ∈ D(H∗) |γψ ∈ D(ΛL), i(IX + V )γψ = (IX − V )Λ(µ̃ψ)

∣∣
X

}
.

For all ψ ∈ D(H∗) we denote by (µψ)
∣∣
X the element of X defined as follows:

v(µψ)
∣∣
X := 〈v,µψ〉 1

2
,− 1

2
, for all v ∈ X ∗,

Observe that

Λ(µ̃ψ)
∣∣
X = (µψ)

∣∣
X for all ψ ∈ D(H∗),

therefore D(H(X ,L)) can be rewritten as

D(H(X ,L)) =
{
ψ ∈ D(H∗) |γψ ∈ D(ΛL), i(IX + V )γψ = (IX − V )(µψ)

∣∣
X

}
.

By Lemma 14 in Sec. 5.8, one gets that the condition γψ ∈ D(ΛL) can be

dispensed with. Indeed, as long as γψ ∈ X satisfies the equation

i(IX + V )γψ = (IX − V )(µψ)
∣∣
X ,

then γψ ∈ D(ΛL). Therefore we have proved that

D(H(X ,L)) =
{
ψ ∈ D(H∗) |γψ ∈ X , i(IX + V )γψ = (IX − V )(µψ)

∣∣
X

}
.

Thus, by defining the operator U := V ⊕ IX⊥ ∈ U(H−1/2(∂Ω)), we have that

D(H(X ,L)) = D(HU), and that H(X ,L) = HU with U := C (ΛL)⊕ IX⊥ .

Now we prove the converse. Fix U ∈ U(H−1/2(∂Ω)) and consider HU , a self-

adjoint extension of H. Let PU the spectral projection of U on the Borel set

{1} ⊂ R. Define X := Ran(PU)⊥ @ H−1/2(∂Ω) and consider the operator

V = U �X∈ U(X ). Clearly, 1 is not an eigenvalue of V , therefore we can

define the self-adjoint operator

L := Λ−1
[
i(IX + V )(IX − V )−1

]
: D(L) ⊂ X → X ∗
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We know that

D(HU) = {ψ ∈ D(H∗) | i(I + U)γψ = (I− U)µψ}

By projecting on X and X⊥ the equation i(I+U)γψ = (I−U)µψ, one gets

D(HU) =
{
ψ ∈ D(H∗) | γψ ∈ X , i(I + V )γψ = (I− V )(µψ)

∣∣
X

}
.

Since (µψ)
∣∣
X = Λ(µ̃ψ)

∣∣
X , for all ψ ∈ D(H∗), we have that

D(HU) =
{
ψ ∈ D(H∗) |γψ ∈ X , i(I + V )γψ = (I− V )Λ(µ̃ψ)

∣∣
X

}
.

Again by Lemma 14, one has that

D(HU) =
{
ψ ∈ D(H∗) |γψ ∈ D(ΛL), i(I + V )γψ = (I− V )Λ(µ̃ψ)

∣∣
X

}
and thus

D(HU) = D(H(X ,L)).

5.8 The Cayley transform: supplemental

results

Let us recall some basic facts about the Cayley transform of self-adjoint

operators. For further details see [Rud91].

Definition 8. Let A : D(A) ⊂ H → H be a self-adjoint operator. We

define the Cayley transform of A, denoted by C (A), as follows

C (A) = (A− iI)(A+ iI)−1,

where I is the identity operator on H .

Conversely, let U ∈ U(H ) and assume that 1 is not an eigenvalue of U . We

define the inverse Cayley transform of U , denoted by C −1(U), as follows

C −1(U) = i(I + U)(I− U)−1.
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Proposition 13 ([Rud91]). Let A : D(A) ⊂ H → H be a self-adjoint

operator. Then

1. C (A) ∈ U(H );

2. I− C (A) is injective;

3. Ran(I− C (A)) = D(A);

4. For all φ ∈ D(A),

Aφ = i(I + C (A))(I− C (A))−1φ = C −1(C (A))φ.

5. Moreover if U ∈ U(H ) such that 1 is not an eigenvalue of U then

C −1(U) : Ran(I− U)→H

is a self-adjoint operator and C (C −1(U)) = U .

Lemma 14. Let A : D(A) ⊂H →H be a self-adjoint operator and

G(A) = {(u,Au) ∈H ×H |u ∈ D(A)}

be its graph. Let

Θ(A) = {(φ, ψ) ∈H ×H | i(I + C (A))φ = (I− C (A))ψ}.

Then G(A) = Θ(A).

Proof. Notice first that the inclusion G(A) ⊂ Θ(A) follows immediately from

property 4 of Proposition 13. We need to show that Θ(A) ⊂ G(A).

Fix (φ, ψ) ∈H ×H such that

i(I + C (A))φ = (I− C (A))ψ. (5.16)

Observe that

I− C (A) = 2i(A+ iI)−1 and I + C (A) = 2A(A+ iI)−1.
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Plugging these expressions in equation (5.16) we obtain:

A (A+ i I)−1φ = (A+ i I)−1ψ.

The right hand side belongs to D(A), thus also the left hand side belongs to

D(A). Then we can multiply both sides by A+ i I, obtaining

ψ = (A+ i I)A (A+ i I)−1φ.

Since (A + i I)−1φ ∈ D(A) and A (A + i I)−1φ ∈ D(A), it follows that (A +

i I)−1φ ∈ D(A2). The operators (A + i I) and A commute on D(A2) and we

get that

ψ = Aφ,

and thus (φ, ψ) ∈ G(A).





Conclusions

In this dissertation we have tried to motivate the importance of quantum

boundary conditions as an effective tool for describing quantum bounded

systems.

In Chapter 1 we gave an overview on the range of physical phenomena where

quantum boundary conditions have proved their essential usefulness. We re-

viewed the Casimir effect, and discussed how the force between the plates

could be attractive, repulsive or even zero according to the boundary condi-

tions chosen. We analyzed the quantum Hall effect, where the resulting edge

current can be explained in terms of chiral boundary conditions.

Interesting perspectives in quantum gravity were exposed making use of mod-

els of topology change, which may occur when energies at the Planck scale

are involved. Modifications of the space time texture were implemented in

terms of boundary conditions change at the level of Hilbert spaces.

In addition to that, we also analyzed the Aharonov-Bohm effect and com-

pared the resulting cross sections in light of different boundary conditions

imposed on the solenoid.

We understood how boundary conditions play a principal role in the study of

precise physical situations, since they represent our link between the actual

system and the mathematical model. In fact, we were able to give a physical

interpretation of boundary conditions based on scattering by plane waves,

and understood their different physical interpretations.

In the whole thesis we lingered over the case of a free nonrelativistic quantum

particle inside a cavity and analyzed different emerging physical situations.

In Chapter 2 we proved the existence of a geometric phase for a quantum

particle in a box with moving walls with the prescription of suitable boundary

184
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conditions. First of all we needed to specify the domain of definition of the

Hamiltonian. Since the walls were not fixed, the problem consisted of a

family of Hamiltonians defined over changing domains. This is already a

complicated problem that needs to be well posed. Moreover we needed to

choose a particular family of self-adjoint extensions.

After having studied its spectral decomposition we computed the one-form

connection associated to our problem and its circulation on a certain closed

path in the parameter space. A technical problem shown up: the coefficients

of the one-form needed to be handled with care, since divergent contributions

arose from the boundary and a prescription on how to renormalize the result

was indeed necessary.

In correspondence of different values of the parameter labelling the boundary

conditions, we were able to associate spectral decompositions of different

kind. In the previous discussion a non degenerate spectrum was assumed, so

that an Abelian phase was found. On the other hand there were some cases

where the spectrum could be degenerate and we considered the Wilczek-Zee

phase, which is a natural non-abelian generalization of the Berry phase.

All the considerations were made for a one-dimensional system. An interest-

ing perspective would be to exploit further degrees of freedom, which natu-

rally emerge when considering regions in higher dimensional spaces. More-

over, the particle considered was spinless. Interestingly, one could check

what happens when a spin is introduced because interactions between the

spin degrees of freedom and the boundary may reveal some new results.

In the next chapter, we left the adiabatic evolution and moved on to a dif-

ferent dynamical situation. We considered the case of rapidly alternating

boundary conditions for our particle in a cavity. This evolution à la Trotter

involved two different boundary conditions rapidly interchanging. We proved

that the limiting dynamics could be obtained from the boundary conditions

we started with and we determined the corresponding composition law.

We started with the one-dimensional case, introducing an alternative parame-

trization of the self-adjoint realizations in terms of spectral projections. Af-

terwards we moved on to higher dimensions were further difficulties were

unavoidably encountered. The problem was solved and examples were pro-



Conclusions 186

vided.

Up to now it is not known how to consider general dynamical evolutions in

the space of boundary conditions. It is only known how to treat special kinds

of dynamics. Interestingly enough, it would be challenging to adventure on

more general evolutions, trying to highlight, at least, and circumscribe the

obstructions.

In Chapter 5 we understood how to generate boundary conditions starting

from a quantum system on a manifold without boundaries. We focused on

two different approaches. Indeed, we first considered the process of generat-

ing boundaries from a manifold without boundary by means of a group action.

In particular, we considered the case of a circle, which was transformed into

a segment, where Dirichlet and Neumann boundary conditions were imple-

mented. Moreover, we investigated another way of generating more general

boundary conditions, e.g. Robin boundary conditions, by changing the met-

ric near the boundaries.

Eventually, we explored this problem in another direction. Indeed, instead

of quotienting the base manifold, we folded it in two distinct copies of a

manifold with boundary. We considered the case of a free quantum particle

on a line, which was folded into two copies of the half-line. In this manner

we were able to unitarily map the problem into a larger space, involving an

auxiliary space. Boundary conditions emerged on the half-line at the cost

of introducing the spin for our particle. Similarly we studied the case of a

particle on the unit circle, which can be folded into two copies of a segment,

with the consequent spin degrees of freedom. Eventually we discussed the

link between self-adjointness and entanglement generation, and tried to give

a perspective for further generalizations of the problem.

In the end, in the last chapter, we based on solid mathematical grounds

the results obtained in the previous sections. In particular, we stressed the

one-to-one correspondence between the set of self-adjoint extensions for the

Hamiltonian describing the free quantum particle in the cavity and the set

of unitary operators acting on the border.

We compared this result with other parametrisations well known in liter-

ature and tried to compare the pros and cons deriving from the different
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parametrizations. All the results discussed were accompanied by the respec-

tive proofs.

In this case it would be interesting to extend the aforementioned parametriza-

tion to general elliptic operators and Dirac operators, for further applications

to other physical situations.
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ary Effects in Bosonic and Fermionic Field Theories”, Int. J.

Geom. Methods Mod. Phys. 12 (2015).

[AIM05] M. Asorey, A. Ibort, and G. Marmo, “Global Theory of Quan-

tum Boundary Conditions and Topology Change”, Int. J. Mod.

Phys. A 20 (2005), p. 1001.

189



Bibliography 190

[AIM15] M. Asorey, A. Ibort, and G. Marmo, “The topology and geom-

etry of self-adjoint and elliptic boundary conditions for Dirac

and Laplace operators”, Int. J. Geom. Methods Mod. Phys. 12

(2015).

[Akk+98] E. Akkermans, J. E. Avron, R. Narevich, and R. Seiler, “Bound-

ary conditions for bulk and edge states in quantum Hall sys-

tems”, Eur. Phys. J. B 1 (1998), p. 117.

[AM07] W. Arendt and R. Mazzeo, “Spectral properties of the Dirichlet-

to-Neumann operator on Lipschitz domains”, Ulmer Seminare

12 (2007).
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on non-smooth domains”, J. Anal. Math. 113 (2011).

[Gre98] M. Greiter, “Quantum Hall quarks or short distance physics of

quantized Hall fluids”, Int. J. Mod. Phys. A 13 (1998), p. 1293.

[Gru09] G. Grubb, Distributions and Operators, Springer-Verlag, Berlin,

2009.

[Gru68] G. Grubb, “A characterization of the non-local boundary value

problems associated with an elliptic operator”, Ann. Scuola

Norm. Sup. Pisa 22 (1968).

[Gru74] G. Grubb, “Properties of normal boundary value problems for

elliptic even-order systems”, Ann. Scuola Norm. Sup. Pisa Ser.

IV 1 (1974), pp. 1–61.

[Hag90] C. R. Hagen, “Aharonov- Bohm scattering amplitude”, Phys.

Rev. D 41 (1990), p. 2015.

[Hal82] B.I. Halperin, “Quantized Hall conductance, current-carrying

edge states and the existence of extended states in a two-dimensional

disordered potential”, Phys.Rev. B 25 (1982), p. 2185.

[HL63] G. Herzberg and H.C. Longuet-Higgins, “Intersection of poten-

tial energy-surfaces in polyatomic molecules”, Disc. Farad. Soc.

35 (1963).

[HOR04] F. W. Hehl, Y. N. Obukhov, and B. Rosenow, “Is the quantum

Hall effect influenced by the gravitational field?”, Phys. Rev.

Lett. 93 (2004), p. 096804.
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