
Università degli Studi di Bari "Aldo Moro" Dipartimento Interateneo di Fisica "M.Merlin"

Quantum Thermodynamics, Control and Resource Theory

Giovanni Gramegna

Corso di Dottorato di Ricerca in Fisica XXXIII ciclo

Quantum Information Theory in Thermodynamics

- Foundations of Statistical Mechanics
 - Canonical Tipicality
 - Equilibration
 - Thermalization
- Quantum fluctuation theorems
- Quantum Thermal Machines

When the allowed transformations of a system are restricted, certain states of the system become useful resources.

By casting Thermodynamics in terms of a resource theory we capture its essence: not all transformations are practically realizable.

J. Gemmer, M. Michel, G. Mahler, "Quantum Thermodynamics", Springer (2009)

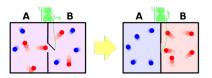
Resource Theory

Resource theory aims at determining what is possible to do given restrictions on resources available.

- An experimenter has a limited access to a physical system
 - In which way one can influence the system?
 - What state conversions are possible?
 - In which way one can take advantage of the system?

Thermodynamics Approach

- Resource Theory for Entanglement:
 - We are allowed to do only LOCC (local operations and classical communication).
 - Separable states can be obtained with LOCC → They are free
 - Entangled states cannot be obtained with LOCC → Entanglement becomes a resource.


M. N. Bera, A. Riera, M. Lewenstein, A. Winter, "Thermodynamics as a consequence of information conservation", arXiv preprint arXiv:1707.01750 (2017)

Information is physical

• Landauer's principle: The minimum work required to erase one bit of information is given by

$$W = k_B T \ln 2$$

 Solution of Maxwell paradox: the demon's memory must be erased ⇒ No violation of the 2nd principle of thermodynamics.

Bennett C. H., "The thermodynamics of computation - A review", Int. J. Theor. Phys., 21 905-40 (1982)

Canonical tipicality

 Equal a priori postulate ←→ Canonical tipicality The canonical ensemble:

$$\Omega_C = \frac{e^{-\beta H_S}}{Z},$$

with $Z = \operatorname{Tr} e^{-\beta H_S}$, can be obtained as a typical property of states in $\mathcal{H}_B \subset \mathcal{H}_S \otimes \mathcal{H}_B$:

Prob
$$(\rho_{\mathcal{S}} \sim \Omega_{\mathcal{C}}) \xrightarrow[d_{\mathcal{B}} \to \infty]{} 1$$

where $\rho_S = \text{Tr}_B(|\phi\rangle\langle\phi|)$ with $|\phi\rangle \in \mathcal{H}_B$ and $d_B = \text{dim}\mathcal{H}_B$ ($d_B \to \infty$ in the thermodynamic limit).

- Existence of untypical trajectories.
- Equilibration of a state initially out of equilibrium.

The Hamiltonian must be considered.

 \mathcal{H}_R

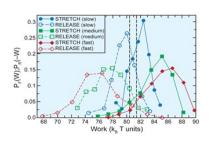
kinematic tipicality → dynamical tipicality

P. Facchi, G. Garnero, "Quantum thermodynamics and canonical typicality", Int. J. of Geom. Met. in Mod. Phys. World Scientific (2017)

Equilibration and Thermalisation

- Under what circumstances do systems reach equilibrium? How much do they fluctuate?
 - Can we consider any kind of Hamiltonian?
 - Independence from the initial bath state?
 - Subsystem state independence?
- Equilibration times: Hamiltonian dependence, set of observables considered.
- Not all the states of H_R are reachable → Distinction between "physical" and "non-physical" states.
- Under what conditions the equilibrium state is a thermal state?

Poulin D., Qarry A., Somma R. and Verstraete F., "Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space", *PRL* (2011)


Quantum Fluctuations Theorems

Classical fluctuations theorems:

 Connect probabilities for thermodynamic quantities in forward and backward processes:

$$p_F(w) = e^{\beta(w-\Delta F)}p_B(-w)$$

 Beyond the linear response regime, systems far from equilibrium.

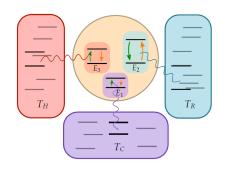
Collin D. et al., "Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies", *Nature*, (2005)

At the quantum level:

- Trajectories cannot be observed without perturbing the dynamics. →
 Work must be measured otherways.
- A large class of generalized intermediate measurements leaves the fluctuation theorems unchanged.

Quantum Thermal Machines

Issues to be adressed:


- Size limitations on the efficiency.
- Role of coherence and entanglement.

Connections with:

- Quantum Control
- Resource Theory

Potential implications in:

- Nanotechnology
- Quantum Information Processing

Schematic diagram of a three qubit refrigerator (inside the yellow circle) coupled to three thermal reservoirs.

M. Horodecki, J. Oppenheim, "Fundamental limitations for quantum and nanoscale thermodynamics", *Nature Communications* (2013).

First year activity

- Quantum Control
 - Continuous and Pulsed approach
 - Generalized Trotter Product Formula
 - Connection with thermal machines
- Quantum Typicality when the state is not generic (e.g. with requirements of symmetry or additional constraints)
- Equilibration with restricted resources (e.g. local Hamiltonians)
- Resource Theory in quantum fluctuation theorems: non equilibrium states as a resource.