Entanglement resource theory Background Numerical Methods Results

Quantum control and resource theories

Giovanni GRAMEGNA

SECOND YEAR ACTIVITY

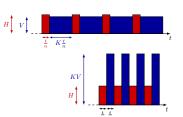
17 ottobre 2019

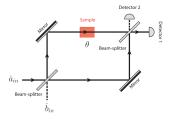
Research activity overview

intanglement esource theory Background Numerical Methods Results

Topics:

- Quantum control: alternating dynamics leading to dynamical superselection rules and controlled evolution
 - Generalized Pulsed evolution
 - Product formulas for alternating dynamics
- Quantum resource theories
 - Quantum metrology with Gaussian states
 - Entanglement resource theory





Entanglement resource theory

Entanglement esource theory Background Numerical Methods Two *distant* parties, A and B, whose systems live in $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. Physically, the locality constraint must be imposed.

- Allowed operations (LOCC):
 - Local Unitaries
 - Local Measurements
 - Classical data communication
- Free states: separable states

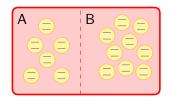
$$|\psi\rangle = |\chi\rangle \otimes |\phi\rangle$$

Resource states: entangled states

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\chi_1\rangle \otimes |\phi_1\rangle + |\chi_2\rangle \otimes |\phi_2\rangle \right)$$

Conversions between resource states:

- Deterministic conversions: $|\psi\rangle \to |\varphi\rangle$ is carried out through a protocol which never fails (if possible at all)
- Stochastic conversions: the protocol involves a quantum measurement, in which only some of the possible results lead to a successful conversion.



Conversion criteria

Entanglement esource theory Background Numerical Given $|\psi\rangle, |\varphi\rangle \in \mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B$, we say that the conversion of $|\psi\rangle$ into $|\varphi\rangle$ can happen with a success probability at most p

$$\langle \varphi | T(|\psi\rangle\langle\psi|) | \varphi \rangle \leqslant p$$

for every local operation T.

Maximal success probability

Let $|\psi\rangle\,, |\varphi\rangle\in\mathbb{C}^{\it n}\otimes\mathbb{C}^{\it m}$, with $\it n\leqslant\it m$. Defining the local density matrices

$$\psi_{A} = \operatorname{tr}_{B}(|\psi\rangle\langle\psi|), \qquad \varphi_{A} = \operatorname{tr}_{B}(|\varphi\rangle\langle\varphi|),$$

the maximal success probability in the state conversion is determined by:

$$\max_{T \in \text{LOCC}} \left\langle \varphi \right| \left. T(|\psi\rangle\!\langle\psi|) \left| \varphi \right\rangle = \min_{1 \leqslant k \leqslant n} \frac{\sum_{j=k}^n \lambda_j^\downarrow(\psi_A)}{\sum_{j=k}^n \lambda_j^\downarrow(\varphi_A)} \equiv \Pi(\lambda(\psi_A), \lambda(\varphi_A))$$

where $\lambda_i^{\downarrow}(\psi_A)$ denote the eigenvalues of ψ_A arranged in decreasing order.

In particular, when

$$\Pi(\lambda(\psi_A), \lambda(\varphi_A)) = \max_{T \in \Gamma \text{ OCC}} \langle \varphi | \ T(|\psi\rangle\!\langle\psi|) \, |\varphi\rangle = 1,$$

a deterministic conversion $|\psi
angle o |arphi
angle$ is possible.

We computed numerically

$$\Pi(\lambda(\psi_A),\lambda(\varphi_A)) = \max_{T \in \text{LOCC}} \left\langle \varphi | \ T(|\psi\rangle\!\langle\psi|) \ |\varphi \right\rangle$$

for states $|\psi\rangle$ and $|\varphi\rangle$ sampled at random from $\mathbb{C}^n\otimes\mathbb{C}^m$ uniformly (with respect to unitary rotations), in the high-dimensional limit $n,m\to\infty$.

This task requires operations with high dimensional matrices, which can be computationally demanding.

Techniques from random matrix theory allow to get the same results with a less demanding algorithm.

	Ordinary method	Tridiagonal method
Matrix realization	Dense structure	Sparse structure
Storage needed	$\mathcal{O}(nm)$	$\mathcal{O}(n)$
Computational Complexity	$\mathcal{O}(mn^2)$	$\mathcal{O}(n^2)$

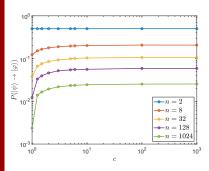
Deterministic conversion

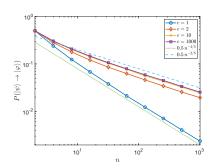
Results

$$\left|\psi\right\rangle,\left|\varphi\right\rangle\in\mathbb{C}^{n}\otimes\mathbb{C}^{m},\qquad n\leqslant m,\qquad c=m/n\geqslant1.$$

$$c=m/n\geqslant 1.$$

$$P(|\psi
angle
ightarrow|arphi
angle)=P\left(\max_{T\in \mathrm{LOCC}}ra{arphi}T(|\psi
angle\langle\psi|)\ket{arphi}=1
ight)$$





$$\lim_{m\to\infty} P(|\psi\rangle \to |\varphi\rangle) = \kappa(n) > 0$$

 $\kappa(n) > 0$ decreases in n

$$P(|\psi\rangle \to |\varphi\rangle) \simeq \frac{b}{n^{\theta}}$$

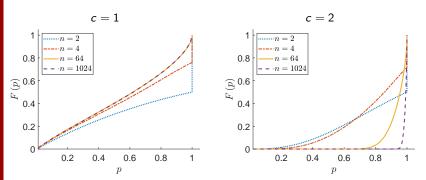
for $n, m \to \infty$ with c = m/n fixed

Maximal success probability distribution

Entanglement esource theory Background Numerical Methods Results

$$\ket{\psi},\ket{\varphi}\in\mathbb{C}^n\otimes\mathbb{C}^m, \qquad n\leqslant m, \qquad c=m/n\geqslant 1.$$

$$F(p)=P\left(\max_{T\in\mathrm{LOCC}}\bra{\varphi}T(\ket{\psi}\!\bra{\psi})\ket{\varphi}\leqslant p\right)$$



The corresponding density function f(p) = F'(p) contains a continuous part and a singular one:

$$f(p) = f_{cont}(p) + \kappa \delta(p-1)$$

Average success probability

Entanglement esource theory Background Numerical Methods Results

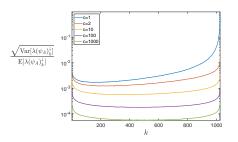
$$|\psi\rangle\,, |\varphi\rangle \in \mathbb{C}^n \otimes \mathbb{C}^m, \qquad n \leqslant m, \qquad c = m/n \geqslant 1.$$

$$\mathbb{E}\left[\max_{T \in \text{LOCC}} \langle \varphi | T(|\psi\rangle\langle\psi|) | \varphi \rangle\right] = \mathbb{E}\left[\Pi(\lambda(\psi_A), \lambda(\varphi_A))\right]$$

- c = 1: the average success probability always decreases in n
- ullet c>1: the average success probability approaches one for large n.

n

We found a connection with the fluctuations of the minimum eigenvalue of an ensemble of random matrices (here n=1024):



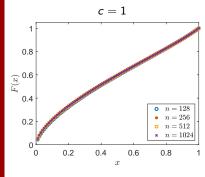
Using techniques from Random Matrix theory we find precisely (analytically):

$$\frac{\sqrt{\operatorname{Var}[\lambda(\psi_A)_n^{\downarrow}]}}{\mathbb{E}[\lambda(\psi_A)_n^{\downarrow}]} \sim \begin{cases} 1 & \text{if } c = 1, \\ \frac{1}{c^{1/6}|1 - \sqrt{c}|^{2/3}} n^{-2/3} & \text{if } c > 1. \end{cases}$$
 (1)

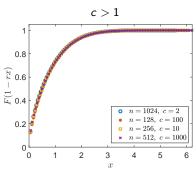
which can be used to obtain an appropriate scaling showing a universal behaviour

Scaling and universal behaviour

Entanglement resource theory Background Numerical Methods Results Using the connection we found with fluctuations of the smallest eigenvalue, we found also a rescaling of the variable $\max_{T \in \mathrm{LOCC}} \langle \varphi | T(|\psi\rangle\!\langle\psi|) | \varphi\rangle$ displaying an asymptotically universal behaviour.



$$\lim_{n\to\infty} F(1-x) = 1 - H_{\text{bal}}(x)$$



$$\lim_{n\to\infty}F(1-rx)=1-H_{\rm unb}(x)$$

$$r = \frac{1}{c^{1/6}|1 - \sqrt{c}|^{2/3}}n^{-2/3}$$

Conferences attended

Entanglement resource theory Background Numerical Methods Results

- April 15th-16th, 2019, "Current Problems in Theoretical Physics", XXV edition, Vietri sul Mare (Italy);
- June 16th-18th 2019, "51st Symposium on Mathematical Physics", *Toruń* (Poland) with **poster presentation** "Generalized product formulas and quantum control";
- September, 9th-12th 2019, "12th Italian Quantum Information Science Conference", Milan (Italy); with poster presentation "Optimal Quantum Metrology with Squeezed states".
- September 25th-27th 2019, "5th International Conference for Young Quantum Information Scientists", Sopot (Poland);

Publications

Entanglement resource theory Background Numerical Methods Results

- D. Burgarth, P. Facchi, G. Gramegna, S. Pascazio, Continuous and pulsed quantum control, MDPI Proceedings. Vol. 12. No. 1. 2019. https://doi.org/10.3390/proceedings2019012015
- D. Burgarth, P. Facchi, G. Gramegna, S. Pascazio, Generalized product formulas and quantum control, J. Phys. A: Math. Theor. 52 435301. https://doi.org/10.1088/1751-8121/ab4403
- F.D. Cunden, P. Facchi, G. Florio, G. Gramegna, *Volume of the set of LOCC-convertible quantum states*, preprint: arXiv:1910.04646.
- G. Gramegna, D. Triggiani, P. Facchi, V. Tamma, F. Narducci, Optimal Gaussian Metrology with squeezed states,in preparation.

resource theo
Background
Numerical
Methods
Results

Thank you for your attention.