

Active Turbulence & Complex Fluids

L.N. Carenz

Active Turbulence & Complex Fluids

Livio Nicola Carenza

Università di Bari

(ロ) (레) (토) (토) (토) (연)

Project Plan

Active Turbulence & Complex Fluids

L.N. Carenza

Active Turbulence

- Complex Fluids
 - Active Nematics
 - Analysis of defects in 3D systems
 - Cholesteric droplet gauged to electric field
- Development of high performance computing skills

Project Plan

Active Turbulence & Complex Fluids

- Active Turbulence
- Complex Fluids
 - Active Nematics
 - Analysis of defects in 3D systems
 - Cholesteric droplet gauged to electric fields
- Development of high performance computing skills

Project Plan

Active Turbulence & Complex Fluids

- Active Turbulence
- Complex Fluids
 - Active Nematics
 - Analysis of defects in 3D systems
 - Cholesteric droplet gauged to electric fields
- Development of high performance computing skills

Active Fluids

Active Turbulence & Complex Fluids

L.N. Carenza

What is active matter?

- Living organisms, Janus particles, biological compounds etc. ⇒ Internal Energy Consumption;
- Far-from-equilibrium dynamics ⇒ NESS (Non Equilibrium Steady States);
- Collective effects (i.e. Assembling)
- Active Fluids: why are they important?
 - Significant contribution to the understanding of peculiar fluid machanisms;
 - Medical and technological applications
- Both theoretical and experimental interest

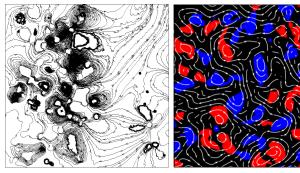
Active Fluids

Active Turbulence & Complex Fluids

- What is active matter?
 - Living organisms, Janus particles, biological compounds etc. ⇒ Internal Energy Consumption;
 - Far-from-equilibrium dynamics ⇒ NESS (Non Equilibrium Steady States);
 - Collective effects (i.e. Assembling)
- Active Fluids: why are they important?
 - Significant contribution to the understanding of peculiar fluid machanisms;
 - Medical and technological applications.
- Both theoretical and experimental interest

Active Fluids

Active Turbulence & Complex Fluids


- What is active matter?
 - Living organisms, Janus particles, biological compounds etc. ⇒ Internal Energy Consumption;
 - Far-from-equilibrium dynamics ⇒ NESS (Non Equilibrium Steady States);
 - Collective effects (i.e. Assembling)
- Active Fluids: why are they important?
 - Significant contribution to the understanding of peculiar fluid machanisms;
 - Medical and technological applications.
- Both theoretical and experimental interest

Tipical flow structure in active fluids

L.IV. Carenza

(a) Bonelli, Carenza, Gonnella, Marenduzzo, Orlandini, Tiribocchi (b) Giomi

Is This Turbulence? Not yet any definitive answer in

literature!

The state of art

- Active Turbulence & Complex Fluids
- L.N. Carenza

- Until now in literature:
 - Single-component fluids;
 - 2D computer simulations;
- Our project
 - Multi-component fluid ⇒ Confining Turbulence
 - Active Polar Component
 - Passive Isotropic Component
 - Surfactant (favours emulsification)
 - 3D computer simulations ⇒ **HPC** skills required
 - Matching experimental research

The state of art

- Active Turbulence & Complex Fluids
- L.N. Carenza

- Until now in literature:
 - Single-component fluids;
 - 2D computer simulations;
- Our project
 - Multi-component fluid ⇒ Confining Turbulence
 - Active Polar Component
 - Passive Isotropic Component
 - Surfactant (favours emulsification)
 - 3D computer simulations ⇒ HPC skills required
 - Matching experimental research

Our model (Bonelli, Carenza, Gonnella, Marenduzzo, Orlandini, Tiribocchi)

Active Turbulence & Complex Fluids

$$\mathcal{F}[\phi, \mathbf{P}] = \int d\mathbf{r} \left[\frac{a}{4\phi_{cr}^2} \phi^2 (\phi - \phi_0)^2 + \frac{k}{2} (\nabla \phi)^2 + \frac{c}{2} (\nabla^2 \phi)^2 \right.$$
$$\left. - \frac{\alpha}{2} \frac{(\phi - \phi_{cr})}{\phi_{cr}} \mathbf{P}^2 + \frac{\alpha}{2} \mathbf{P}^4 + \frac{\kappa}{2} (\nabla \mathbf{P})^2 + \beta \mathbf{P} \cdot \nabla \phi \right]$$
$$\rho \left(\partial_t + \mathbf{v} \cdot \nabla \right) \mathbf{v} = -\nabla P + \nabla \cdot \boldsymbol{\sigma}$$
$$\sigma_{\alpha\beta}^{act} = -\zeta \phi \left(P_\alpha P_\beta - \frac{\mathbf{P}^2}{3} \right)$$

Lattice Boltzmann Method

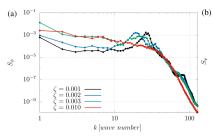
Active Turbulence & Complex Fluids

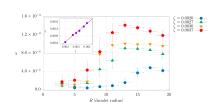
L.N. Carenza

Discretized version of the Boltzmann Transport Equation

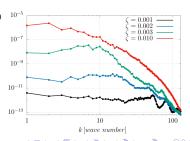
- Space discretization;
- Velocity dicretization.

$$egin{aligned} f_k(oldsymbol{x}_k + oldsymbol{e}_k \Delta t, t + \Delta t) - f_k(oldsymbol{x}_k, t) &= \ &- rac{1}{ au} (f_k - f_k^{eq}) \end{aligned}$$


Riproducing N-S equation if constraints are satisfied:


$$\rho(\mathbf{x},t) = \sum_{k} f_{k}(\mathbf{x},t) \qquad \rho \mathbf{v} = \sum_{k} f_{k}(\mathbf{x},t) \mathbf{e}_{k}$$

What has been done

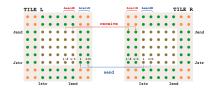

- Morphology Characterization;
- Flow Characterization:
- Two articles submitted;

Active Turbulence & Complex Fluids

L.IV. Carenza

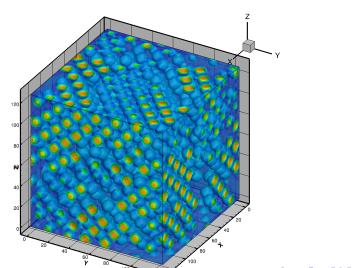
HPC for Grid Computation

Active Turbulence & Complex Fluids


L.N. Carenza

Some common issues in computational fluid mechanics

- Memory required (RAM $\sim 10^2 Gb$)
- Processing times ($\sim 3,5y$)


HPC approach required

- Pure MPI (grid division)
- Hybrid approach ⇒ MPI+CUDA

3d active emulsion

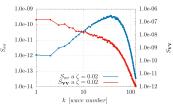
Active Turbulence & Complex Fluids

L.N. Carenza

Kolmogorov Turbulence vs. Active Inverse Turbulence

Active Turbulence & Complex Fluids

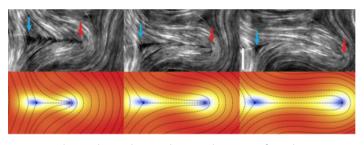
..N. Carenza


Kolmogorov Turbulence

- High Reynolds Number
- Energy flow from large to small scales

Active Inverse Turbulence

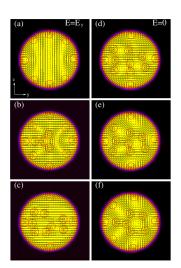
- Low Reynolds Number
- Inverse Energy Flow



Defects Dynamics in 3D systems

..N. Carenz

Giomi, Bowick, Mishra, Sknepnek, Marchetti, *Defect dynamics in active nematics*, Phil.Trans.R. Soc.A 372


- Nematic Defects characterization in 3d geometries is still uncomplete ⇒ Advanced Mathematical Tools are required.
- Defects pair formation may play a crucial role in the onset of turbulence

Cholesteric Liquid Crystals

Active Turbulence & Complex Fluids

..N. Carenza

- Director field anchoring dramatically influences defect dynamics
- Coupling to electric field
- Expansion to the 3D systems: never treated before!

Fadda, Gonnella, Marenduzzo, Orlandini, Tiribocchi, *Switching dynamics in cholesteric liquid crystal emulsions*, The Journal of Chemical Physics 147, 064903 (2017)

Active Turbulence & Complex Fluids

- Active Turbulence Characterization;
- Devolepment of hybrid HPC tecniques for LBM (MPI+CUDA)
- 3D analysis of topological defects in polar and nematic systems
- Characterization of cholesteric liquid crystals in 3D geometries with applied electric fields

Active Turbulence & Complex Fluids

- Active Turbulence Characterization;
- Devolepment of hybrid HPC tecniques for LBM (MPI+CUDA)
- 3D analysis of topological defects in polar and nematic systems
- Characterization of cholesteric liquid crystals in 3D geometries with applied electric fields

Active Turbulence & Complex Fluids

- Active Turbulence Characterization;
- Devolepment of hybrid HPC tecniques for LBM (MPI+CUDA)
- 3D analysis of topological defects in polar and nematic systems
- Characterization of cholesteric liquid crystals in 3D geometries with applied electric fields

Active Turbulence & Complex Fluids

- Active Turbulence Characterization;
- Devolepment of hybrid HPC tecniques for LBM (MPI+CUDA)
- 3D analysis of topological defects in polar and nematic systems
- Characterization of cholesteric liquid crystals in 3D geometries with applied electric fields