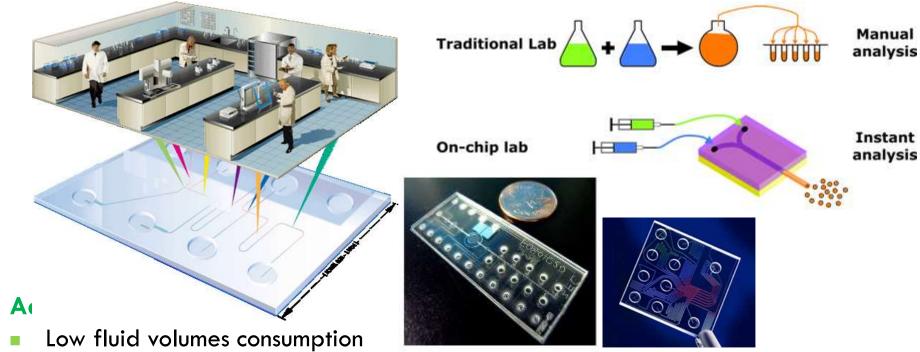
Departimento Interateneo Di Fisica "M. Merlin" Dottorato di Ricerca in Fisica XXXII ciclo

Femtosecond laser based smart procedures for the fabrication of polymeric lab on a chip devices

Industrial PhD with ST Microelectronics Lecce (Tutor: Ing. Francesco Ferrara)

3 year Ph.D activity report

PhD student: Udith Krishnan

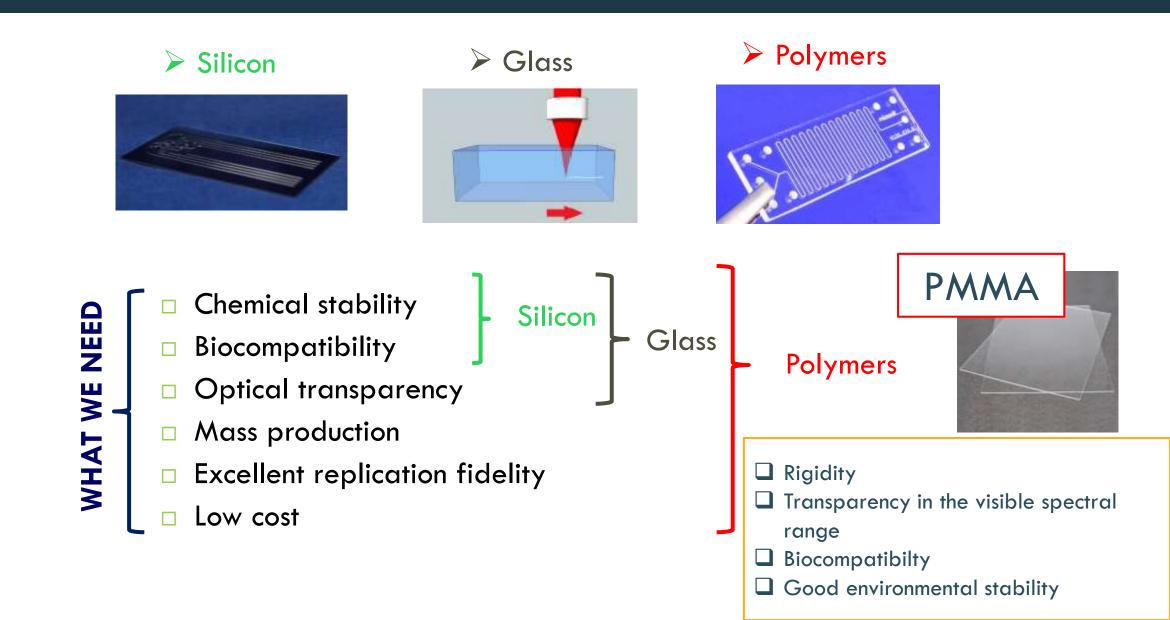

Tutor: Dr. Antonio Ancona

Outline

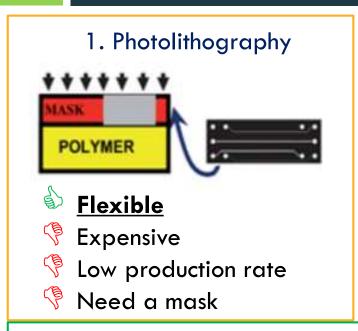
- Introduction
 - Lab-on-a-chip (LOC)
 - Materials used for LOC
 - Methods used for prototyping LOC
- Aim of the work: Smart procedure for prototyping polymeric LOC
- Experimental setup
- Design of Experiment (DoE) approach for optimizing laser parameters
- Results
 - Circulating tumour cell(CTC) capturing device fabrication
 - Bonding of CTC device
 - CTC capturing
 - Neuronal cell culture device fabrications
 - Neuronal cell culturing
- Conclusions

Lab-on-a-Chip (LOC)

Microfluidic devices integrating one or several laboratory functions on a single chip



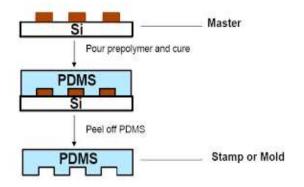
- Faster analysis and response
- Limited exposure to dangerous chemicals
- Reduced manufacturing costs
- Integration of functionalities
- Compactness
- Parallelization → high throughput analysis


Disadvantages

- Novel technology not fully developed
- Processes more complex and detection difficult at the microscale
- High precision required for their microfabrication

Materials used for LOC

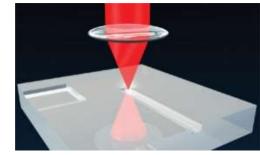
Methods used for prototyping LOC




- CAD file to device
- Material choice
 - Large feature size in less time
- Precision

- Low feature size
- Low cost
- Need an extra step for mould fabrication
- Soft material (PDMS)

3. 3D printing


CAD file to device

Resolution

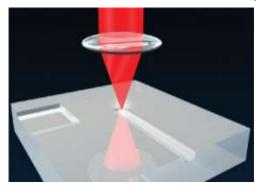
Time consume

Not transparent material

5. Fs laser microstructuring

Flexible and CAD file to device

Precision and low feature size


🖣 Expensive

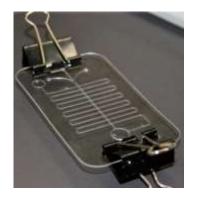
🐬 Large area structuring

Tapering

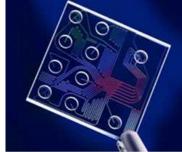
Smart procedure for prototyping polymeric LOC

Fs laser micro structuring

CAD file to device


Precision and low feature size

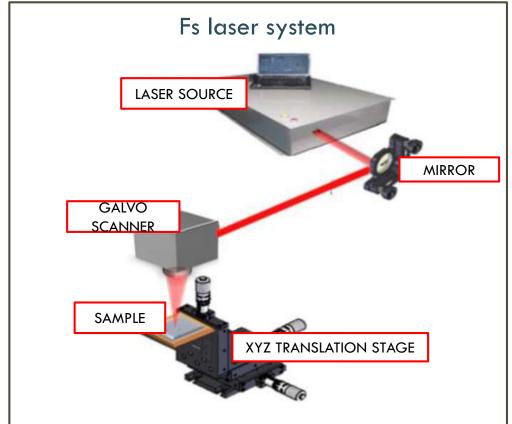
Mechanical micro milling



Large feature size in less time

Solvent assisted thermal bonding

Cheap and simple



<u>fast</u>

Deformation free

Experimental setup

Laser system: TruMicro 5050 Femto Edition laser

Wavelength: 1030nm Pulse duration: 900fs

Max. Power: 40W

Max. Pulse energy: 400µJ

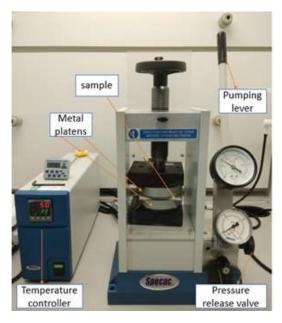
Mechanical micro milling machine

Machine: Minitech CNC Mini-Mill/GX

XYZ axis travel: 300mm x 200mm x

200mm

Feed rates: 0.1 to 100 IPM linear; 0.1


to 50 IPM 3-axis simultaneous

Repeatability: +/-0.002 mm

Spindle rotation: 90 degrees in both

directions

Hot embosser

Machine: Specac Atlas manual

hydraulic press 15T

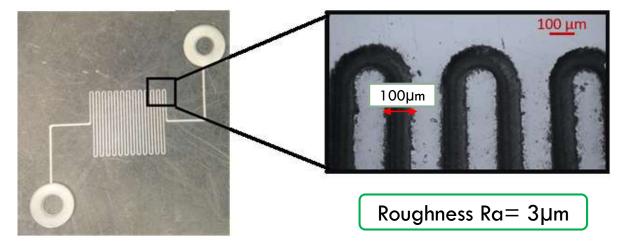
Customized capacity: 0.9 T

Associated components:

Temperature controller & chiller


DoE approach for optimizing laser parameters

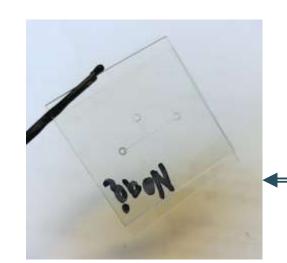
- Methodical way to quickly determine the laser process settings
- Predictive model for describing the relationship between variable depth and laser parameters
- Estimated the influence of laser R.R, pulse energy, scanning speed and hatch distance
- Test was performed super imposing two perpendicular scanning patterns
- Two level full factorial design with resolution V is defined

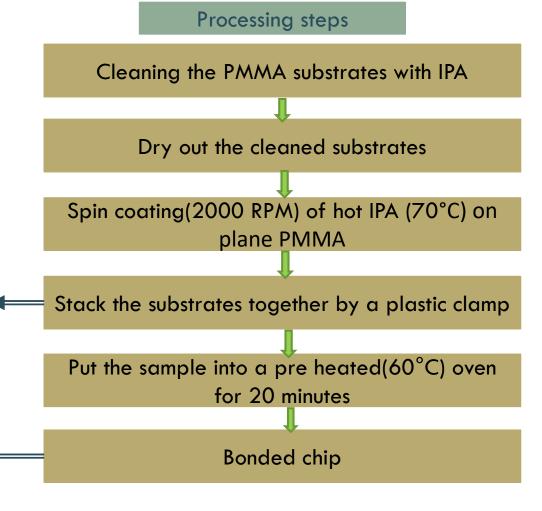

Pulse energy and R.R are the main factors affecting the depth

Results: Circulating tumour cell(CTC) capturing device fabrication

Device design and fabrication

- Serpentine shape microchannel: total length=180mm
- Square cross section: 100µm x 100µm
- Increase active path and probability of capturing cells
- 2 PMMA substrates used: (1)micropatterned and (2)plane for sealing
- Serpentine microchannel on the lower face by Fs laser ablation
- Inlet/outlet holes drilled on the upper face by mechanical micro milling

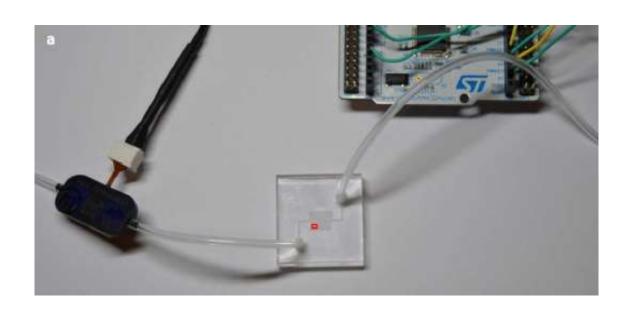


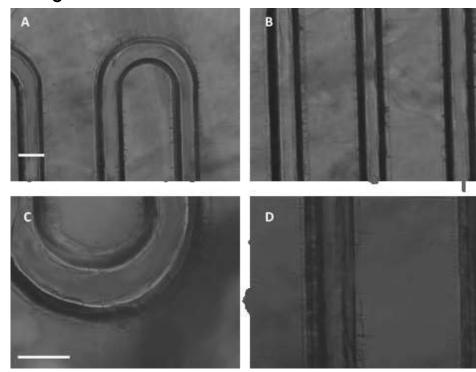

Laser parameters				
Repetition rate (R.R)	50KHz			
Short pulse energy	12µJ			
Scan speed	40mm/s			
Hatch distance	5µm			

Result: Bonding of CTC device

- Isopropyl acid (IPA) assisted thermal bonding
- Advantages: cheap, simple, fast and deformation free

Tested the fluid flow without any leakage by pumping water into the microchannel using a micropump

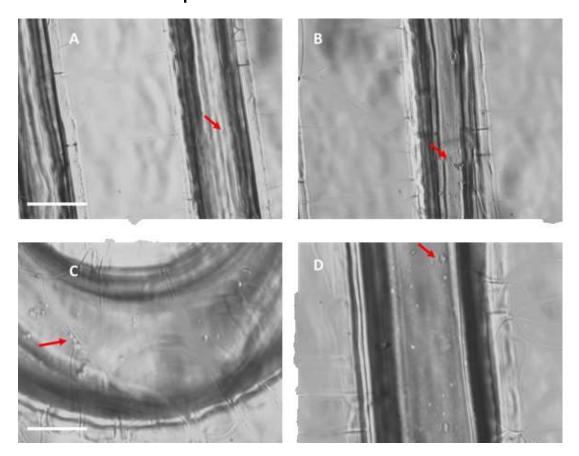



Result: CTC capturing

- The microchannels were functionalized with Anti EpCAM antibodies
- Tested the device to capture cancer cells from a mixture of normal and tumor cells
- Prepared 5ml suspensions of 10^6 cells/ml Jurkat line cells and 10^4 cells/ml OECM-1
- The cell suspensions were allowed to flow slowly through the serpentine channel with a flow rate of $8\mu l/min$

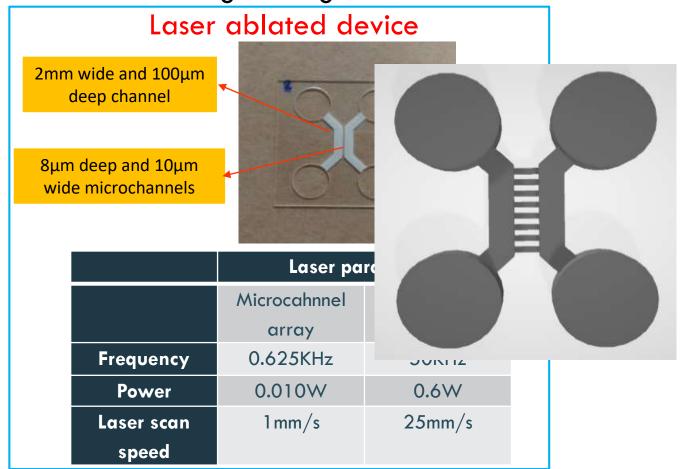
Result for Jukat cells

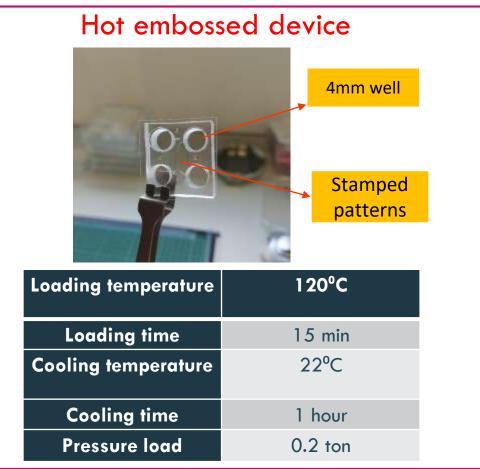
No or few Jurkat cells were identified in the channel after washing with PBS solution



Result: CTC capturing

Result for OECM-1 cells

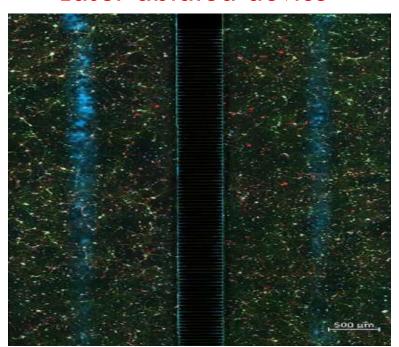

High number of OECM-1 cells were captured on the inner surface of channel

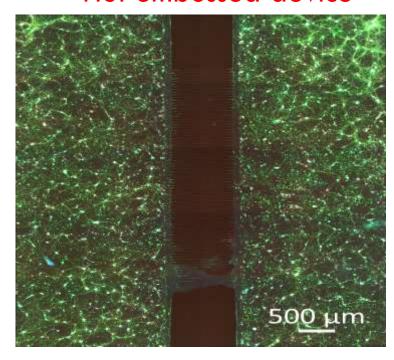


Result: Neuronal cell culture device fabrications

- Neuroscience investigates the basic function of nervous system
- Soft lithography on PDMS is conventionally used for the fabrication of devices

Device design: 2 big channels and series of microchannels




Result: Neuronal cell culturing

- Primary hippocampal cells were cultured in both devices
- Immunocytochemical staining is used for imaging of cell culture

Laser ablated device

Hot embossed device

- βIII-tubulin staining (green) reveals cellular networks formed between neurons
- This suggests PMMA does not hamper growth of primary neuronal cultures

Conclusions

- DoE procedure has been defined and optimized the laser parameters for microstructuring
- A microfluidic PMMA device has been realized and tested its functionality in capturing tumor cells
- To this purpose a smart and cost effective procedure has been established based on three steps:
 - Fabrication of the microfluidic network was done by combining
 Fs-laser and mechanical micro milling
 - 2. The device has been assembled through a facile and low cost solvent assisted thermal bonding method
 - 3. In flow and on chip functionalization of the fabricated microchannel
- PMMA microfluidic devices have been fabricated by laser ablation and hot embossing
- Both devices were tested for culturing of neuronal cells
- The adoption of these fabrication procedures allows to easily prototype devices for many different applications

Ph.D activity

Università degli Studi di Bari (1.5 years)

- DoE Approach for Optimizing the laser parameters
- Fabrication of laser ablated
 CTC and neuronal cell culture
 devices

STMicroelectronics (1 year)

- Optimization of bonding technology
- Functionalization and validation of CTC device

University of Strathclyde (6 months)

- Fabrication of hot embossed device for neuronal cell culture
- Neuronal cell culturing and imaging

Course work

Course	Professor	Period	Hours	CFU	Final test
Management and knowledge of European research model and promotion of research results	D'Orazio	June	16	2	Attestato frequenza
How to prepare a technical speech in English	White	April-May	16	2	Oral presentation
Fundamentals in advanced programming using C++ programming language	Cafagna	June-July	22	2	Final test
Interpolation Methods e techniques for Experimental Data Analysis	Pompili	September- October	20	2	Final test
Introduction to parallel Computing and GPU Programming using CUDA	Pantaleo	June	16	2	Final test
Fluidodinamica computazionale	Pascazio Giuseppe	September- October	40	4	Final test
Optical sensors and spectroscopic tecniques	Spagnolo/ Patimisco	June-July	20	2	Final test
Total			16		

Publications

- "Prediction model of the depth of the femtosecond laser micro-milling of PMMA", Annalisa Volpe, Gianluca Trotta, Udith Krishnan, Antonio Ancona. Optics and Laser Technology 120 (2019) 105713.
 https://doi.org/10.1016/j.optlastec.2019.105713
- "Smart procedure for the femtosecond laser-based fabrication of polymeric lab on a chip for tumor cells capturing", Annalisa Volpe, Udith Krishnan, Maria Serena Chiriaco, Elisabetta Primiceri, Giuseppe Maruccio, Antonio Ancona, Francesco Ferrara Submitted in Engineering journal

Poster presentations

 "Fs-laser based smart procedures for the fabrication of polymeric Lab on a Chip devices" – Science and Industry for environment, Health and Digital Society Technologies; Industrial PhD Day at Università degli Studi di Bari Aldo Moro – 26 June 2019

Conferences

• 21st International Symposium on Laser Precision Microfabrication, 23-26 June 2020 – Dresden, Germany, "Femtosecond laser based smart procedures for the fabrication of polymeric lab on a chip devices"- Oral presentation

Summer schools

• International School on Laser Micro/Nanostructuring and Surface Tribology 1-5 October 2018 — Bari, Italy. "Femtosecond laser micro-fabrication of polymeric lab-on-chip for advanced and mini-invasive diagnostics" — Talk

Thank you

Acknowledgement:

