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1 Introduction

In this brief review I will report on the research activity that I carried on during my PhD. Our
work is mainly concerned with the modellization and numerical simulation of Biological fluids, like
suspensions of biological filaments such as actomyosin, mictrotubules bundles activated with kinesin
motors and bacterial cultures, which are "active" and evolve far from thermodynamic equilibrium.
In fact they are internally driven by continuous injection of energy at the level of the individual
constituents. Among the variety of biological process, cell motion is one of the most fascinating.
Understanding how cells move around their surroundings has gained much attention in the recent
past, mainly because answering this question would constitute a substantial step-forward in dissecting
the fundamental mechanisms underlying biomedical problems like wound-healing and tissue self-
assembly during embryogenesis [1]. Spontaneous movement and deformation are physically driven
by the cell cytoskeleton. The cytoskeleton consists of protein filaments and motors which constantly
consume chemical energy (ATP) and convert it to work. In particular, actin filaments interact with
myosin motors to generate contraction forces in the cell, which can drive cell motion and division
[2, 3].

Most of the research has focused, both experimentally and theoretically, on cells migration on a
two-dimensional substrate (crawling) [4, 5], mainly because such experimental systems are easily ac-
cessible hence this motion is more readily observable. These studies have stimulated the development
of theories which now provide a detailed outline of some basic migration mechanisms, including
the formation of lamellipodia arising from actin polymerization at the cell front, adhesion-mediated
traction, and actomyosin contractility. The crawling motility mode requires actin cytoskeleton to be
anchored to the substrate throughout focal adhesions, that are clusters of trans-membrane proteins
binding to the substrate [6]. However some cells, such as breast tumor cells, can also “swim” in a
straight line inside a 3D tissue or a polymeric fluid [7]. Unlike cell crawling, in this case there is
no solid surface present, and no cellular protrusion reminiscent of a lamellipodium (the cell shape
instead remains roughly spherical). The lack of protrusions suggests that actin polymerisation may
not be crucial for 3D cell swimming. Indeed, myosin motors contraction is believed to be the sole
responsible for cell polarisation and motility [7]: together with some experiments on tumor cells [8],
this observation suggests that cell swimming may be primarily driven by myosin activity.

In this review we will first present results regarding a minimal scalar model to study the role of
compressibility in cell motion.
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Experiments on concentrated suspensions of bacteria or cytoskeletal extracts have shown that
active systems often exhibit orientational order. Indeed they have been successfully modelled by
Liquid Crystal (LC) theories, able to reproduce unexpected behaviors arising in active fluids, such as
spontaneous flow, active turbulence and superfluidic states [9]. Although chirality is an ubiquitous
feature of biological matter, its role in many biological processes, including which motion, has
not been extensively studied yet. Left-right asymmetry may be due to thermodynamic (passive)
or non-equilibrium (active) effects. For instance, flagella of some bacteria, acto-myosin filaments
as well as microtubule bundles are all examples of intrinsically chiral systems that may eventually
apply a non equilibrium active torque on the surrounding fluid environment, thus leading to motility.
Despite much effort has been taken to understand the hydrodynamics of active nematic/polar fluids
in bidimensional environments, much less is known about chiral systems and in general about active
matter in three dimensional geometries [10]. In the second part of this review we will present some
results regarding a system which is inherently chiral and apolar and that can be modelled - in the
passive limit - as a Cholesteric Liquid Crystal (CLC). Specifically we examined the behavior of a
3D CLC droplet with tangential anchoring of the director at its surface. Previous studies on achiral
(nematic) shell showed that activity can only sustain oscillatory motion of topological defects on the
surface, while motility of polar droplet is driven by symmetry breaking of its shape [11]. Our results
show that intrinsically chiral droplets display instead a much richer dynamical behavior, and we will
review some of them in the second part of this assay.

2 Hydrodynamics of contraction-based motility in a compressible ac-
tive fluid

Models of contraction-induced motility have been proposed in Refs. [11, 12, 13, 14]. All these
considered the case of an active droplet moving inside a simple (Newtonian) and passive outer
fluid. In some cases, the material inside the droplet was an active liquid crystal, in which case the
onset of motility required rectifications of orientational splay fluctuations of an order parameter
linked to actin polarisation [11, 12]. Instead we study by lattice Boltzmann simulations a simpler,
single-phase, compressible actomyosin system, where a high density droplet (actomyosin blob)
simply emerges due to active contraction. For sufficiently strong activity, we find the self-assembled
droplet swims inside a low density actomyosin background. The setup we consider could be studied
experimentally with quasi-2D or 3D compressible actomyosin suspensions. Additionally, once
the droplet emerges, the system is approximately equivalent to an active compressible actomyosin
droplet swimming inside a generic compressible and passive fluid (as the density of motors in the
background is very small). Therefore, our results can be qualitatively compared to experiments
studying the motion of cells or cell extracts within polymeric or viscoelastic fluids. Indeed, we show
that the hydrodynamic flows in the region outside the droplet are reminiscent of the flow of matrigel 1

surrounding swimming cells.

2.1 Hydrodynamic model

We model an actin suspension as a compressible fluid with local density ρ , and myosin via its
concentration field φ . Rather than considering the case in which actin is enclosed in a droplet [14],

1At least at large times, matrigel can be viewed as a viscous fluid rather than a solid.
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we study a single-fluid set-up with a compressible actin gel initially uniform in the simulation domain.
The dynamical equation of motion for the actin density ρ is the continuity equation,

∂tρ +∂αρvα = 0 , (1)

with vα the velocity of the actin fluid. The latter obeys the following Navier-Stokes momentum
balance equation,

∂tρvα +∂β (ρvαvβ ) = F int
α +Factive

α +F interface
α +Fviscous

α , (2)

where Fviscous
α = ∂β [η(∂β vα +∂αvβ )] is the usual viscous term, with η shear viscosity of the fluid.

The term

F int
α =−∂αPi +∂αGρ , (3)

accounts for pressure-driven flows. The quantity Pi = ρT is the usual ideal pressure. The presence
of the additional term proportional to G gives a compressibility proportional to T −G. Hence
G measures the deviation from the ideal behaviour of the fluid, being temperature fixed in our
simulations. The third term

F interface
α = kρ∂α(∇

2
ρ) (4)

represents interfacial forces, with the constant k controlling the surface tension of actin (which
controls the width of interfaces between high and low actin densities). The presence of the active
component (myosin motors with local density φ ), and its effects on the fluid, are encoded in the final
term,

Factive
α = ζ ∂αφ , (5)

which accounts for an active isotropic pressure – if ζ > 0 this active pressure is contractile. The
parameter ζ measures the strength of myosin-induced contraction. Contractility depends also on the
concentration of myosin motors φ , which evolves according to the following advection-diffusion
equation:

∂tφ +∇.(φv) = D∇
2
φ −B∇

2
ρ−K(∇2)2

φ . (6)

Here the local advection velocity of myosin equals that of actin, meaning that all motors are
permanently attached to the actomyosin gel. The parameter D is the myosin diffusion coefficient,
while K controls the myosin surface tension, quantifying the ability of the myosin droplet to oppose
deformation. The term proportional to B is an effective non-equilibrium term, whose effect is to
ensure that myosin remains enclosed in actin domains. Higher order gradients terms can in principle
be added, but they would not alter the following results. The study is conducted by varying G
(“compressibility modulus”) and the activity parameter ζ .

The equations of motion are solved by means of a hybrid lattice Boltzmann (LB) scheme, as the
one described in chapter LB.

Simulations have been performed on a periodic square lattice of size L = 128, for the 2D case,
and a periodic cubic lattice of size L = 128 for 3D simulations. Unless otherwise stated, initial
conditions are φ = 1 inside a droplet of radius R1 = 3, and 0 outside , while ρ set equal to ρ = 1
inside a droplet of radius R2 = 15, and ρ = 0.4 elsewhere. Parameter values are, T = 0.97, k = 0.1,
D = 10−3, B = D, K = 10−3. All quantities in the text are reported in lattice (simulation) units.

3



Figure 1: (a-c) Snapshots of the evolution of ρ , for a simulation in which ρ has been initialized
randomly around 1(panel (a)), while φ as a droplet of radius R = 3 (isoline for φ = 1 in panel (a)),
for ζ = 0.1 and G = 0.95. (d) Contour plot of φ with superimposed active force, for the same
configuration shown in (c). The isoline for ρ = 2 is plotted in white.

2.2 Results

We start by presenting the results of our 2D simulations.
The first finding is that contractility alone is able to create a droplet of active fluid (actin,

represented by ρ) even in the absence of a free energy favouring phase separation in the passive
limit (ζ = 0). Initialising the system with ρ = ρ0 +δρ , where ρ0 = 1 and δρ some small random
fluctuations, whereas φ (motor concentration) initially set to 1 inside a droplet of radius R1 = 3 and
zero elsewhere, nucleation of a droplet at the centre of the system is observed. Droplet formation
occurs for any value of the activity ζ . This clustering phenomenon is due to the interplay between
myosin contraction and the cross diffusion term proportional to B in Eq. (6), which recruits myosin to
regions of high actin concentration. Similar results are obtained with φ fluctuating around a uniform
value. In all cases, we observe the formation of a single droplet in steady state. Some snapshots
of the evolution of the actin density field ρ are reported in Figure 1, together with the steady state
contour plots of both ρ and φ .

In addition, for every value of the parameter G there is a critical value of activity ζ for which
motion occurs. To become motile, the droplet first needs to polarise, breaking the circular symmetry
in the myosin distribution. The asymmetry in φ can be quantified by analysing the quantity (φ(x)−
φ(−x)), with x a position along a line oriented with the direction of motion, and passing through
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Figure 2: (a) Contour plot of the density ρ with superimposed velocity field, for G = 0.88 and
ζ = 0.3. The colour code here is the same of that displayed in Figure 1. (b-main figure) Plot of the
quantity φ(x)−φ(−x), at different times, and (b-inset) φ profiles along the x-direction at different
times, for the same case of figure (a). The cyan curve corresponds to the time when the droplet starts
moving along the x-direction.

the centre of mass of the actin droplet. For an isotropic droplet, we expect (φ(x)−φ(−x)) to be
identically zero. Figure 2(b) shows how the myosin field asymmetry develops over time for G = 0.88
and ζ = 0.3 (a case for which we have motion). At early times φ is nearly symmetric (red curve in
the main plot), whereas later myosin redistributes until an asymmetric steady state is reached, and
the droplets starts to move (brown curve in the inset of Figure 2(b)).

Figure 2(a) also shows the velocity field of our compressible active system. Inside the droplet,
the active contractily-driven flows rearrange to give a simple directed flow. There is an opposing
flow outside the droplet, which is required for overall momentum conservation (as there are no
boundaries or other momentum sinks). The counteracting flow involves a number of vortices which
upon azymuthal averaging give a net flow in the direction opposing that of the droplet motion. Whilst
vortex patterns are associated with spurious microcurrents in a passive phase-separated systems in
lattice Boltzmann simulations [15], the magnitude of the flow is over an order of magnitude larger
in our active case, and the pattern is different as the vortices in front and behind of the droplet are
much larger (we also noted that the spurious passive and the active azymuthal flows are also fitted by
different functional forms).

In experiments with cell swimming in a viscous fluid, for instance in a matrigel, the environment
is fully 3-dimensional. It is therefore of interest to ask whether contraction-driven flows can rearrange
to yield motility in a periodic 3D geometry. To answer this question, we performed simulations in
a cubic domain of size L = 128. Remarkably, we find that also in 3D droplets – again assembled
through myosin-mediated contraction of the compressible actin fluid – become self-motile for
sufficiently strong activity. Intriguingly, the solvent flow counteracting droplet motion has now a
different form (Figure 4). Two vortex−like structures originate from the poles perpendicular to the
migration axis and converge toward the droplet rear, while the outer fluid is pushed away in front of
the droplet. This pattern is similar both to that observed experimentally in cells “swimming” in 3D
matrigel [7], and to that reported in previous numerical simulations of a self-motile active-liquid
crystal droplet [16]. The emergence of this flow patterns is interesting, as our model is significantly
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Figure 3: (a) Critical value of the radius of the droplet Rc as activity varies (continuous curves),
for G = 0.95 (main figure), and G = 0.9 (inset), and the result of the fit (dashed lines) with the
proportionality law reported in the text(Eq. 7). (b) Steady state center of mass velocity V as activity
varies, for G = 0.95 (main figure), and G = 0.9 (inset).

simpler than the ones previously considered. We interpret the similarity in the flow patterns far from
the droplet as due to the fact that the dilute actomyosin background within which the droplet moves
may be viewed as an essentially passive viscous polymeric fluid (such as matrigel).

We argue that the mechanism giving rise to the symmetry-breaking instability of a non−motile
configuration and ensuring directional motility of a self-propelling cell, is a positive feedback loop,
closely related to the one leading to actin accumulation (Figure 1). Here, after e.g. a fluctuation
in actin density creates an asymmetry in gradients, the flow generated by contraction is also asym-
metrical, and recruits motors faster along the regions where gradients are steeper. This leads to
further asymmetric contraction, and to a motile pattern due to the flow imbalance, hence creating
an autocatalytic effect [17]. The coupling leads to build motor concentration, which is limited by
surface tension and diffusion, resisting the runaway and providing a compensating term which is
necessary to achieve a steady state. The droplet breaks symmetry and becomes motile when the
activity parameter exceeds a threshold. The threshold behaviour originates from the fact that the
total myosin stress needs to overcome the effects of actin viscosity and myosin diffusion. Increasing
activity for a given value of G, or decreasing G for a given value of ζ , the droplet assumes an
accentuated elliptical form.

To understand more quantitatively the effect of the model parameters on the droplet motion,
we measured the radius of the self-assembled actin droplet and its velocity in steady state, as a
function of the activity parameter ζ , and for different values of the parameter G. The droplet radius
at the onset of motion is plotted in Figure 3(a) for two values of G (G = 0.95 in the main figure and
G = 0.9 in the inset). It follows to a good approximation an inverse square root law:

Rc ∼

√
1
ζ
. (7)

Such a dependency was suggested by linear stability analysis of a related problem [14].
Figure 3(b) shows a plot of the center of mass velocity versus ζ for two values of G (G = 0.95

in the main figure and G = 0.9 in the inset). A phase diagram in the (G− ζ ) plane is instead shown
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Figure 4: (left panel) Isosurface at ρ = 2, with superimposed flow field for ζ = 0.34 and G = 0.87,
in 3D. (right panel) Phase diagram in the ζ (activity)-G(compressibility) plane, for the transition to
motile droplet.

in Figure 4. The steady droplet velocity increases with activity and is bigger for higher values of G.
At the same time, decreasing the elastic modulus of the gel – i.e., approaching the incompressible
limit G = 0 – leads to an increase in the activity threshold above which motion is observed. This is
consistent with the intuitive expectation that active isotropic contraction cannot lead to motion in this
limit (as it is simply equivalent to a redefinition of the pressure). Here for the values of activity ζ we
are constrained by the stability of our LB implementation, and for the values of G by the chosen
values of T . We checked that fixing T to other values does not change the physical picture discussed,
as it solely change the location of the transition line to a motile droplet.

3 Rotation and propulsion in 3d active chiral droplets

Understanding the outcome of the interplay between chirality and activity is an important and timely
question. In stark contrast with the case of achiral active nematics, which has commanded a lot of
attention in recent years, very little is known about the dynamics of chiral active systems. Previous
work has mainly focused on cases where chirality only enters the system because of activity, in
the form of a nonequilibrium torque dipole [18, 19]. Instead, we consider here a system which
is inherently chiral and apolar, and so can be modelled – in the passive phase – as a cholesteric
liquid crystal (CLC) [20, 21]. Specifically, here we study a 3d active CLC droplet with tangential
orientation of the director at its surface. In this setup, an active nematic droplet can only sustain
uniform rotational motion, driven by bend deformations localised around the equatorial circle of the
droplet (Fig. 1). Instead, an intrinsically chiral droplet displays a much richer dynamical behaviour.
First, we find that a force dipole activity enables a new motility mode, where the rotational motion
of the surface defects is converted into propulsion. This mechanism requires chirality to reconfigure
the pattern of surface defects. It is not possible in a nematic, where the symmetry in defect position
prevents any translational motion. Second, a torque dipole activity sets up a sustained mirror rotation
of two pairs of disclinations which periodically adsorb onto and depin from the droplet surface.
Again, no such state can be found in an originally nematic system. We also characterise how the
active flow and orientation patterns evolve as the ratio between the droplet size and pitch increases –
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a procedure favouring the formation of focal conics in passive cholesterics.

3.1 Model

We considered an incompressible fluid with mass density ρ and divergence-free velocity v(r, t).
To characterize the state of the system we introduced two order parameters: a scalar conserved
concentration field φ(r, t) and the Q-tensor that respectively account for the concentration of active
material and its orientational order. The equilibrium properties of the system are described by the
following Landau-De Gennes free energy functional:

F
[
φ ,Qαβ

]
=
∫

dV
[

a
4

φ
2(φ −φ0)

2 +
kφ

2
(∇φ)2

+A0

[
1
2

(
1− χ(φ)

3

)
Q2− χ(φ)

3
Q3 +

χ(φ)

4
Q4
]

+
K
2
[
(∇ ·Q)2 +(∇×Q+2q0Q)2]+W (∇φ) ·Q · (∇φ)

]
(8)

where the constants a,kφ define the surface tension and the interface width among the two phases,
whose minima are found in 0 and φ0. The liquid crystal phase is confined in those regions where
χ(φ) = χ0 +χsφ > 2.7, with χ0 = 10χs = 2.5. The gradient terms in KQ account for the energy cost
of elastic deformations in the one-constant approximation, while |q0|= 2π/p0, where p0 is the pitch
of the cholesteric helix. Right-handed chirality is achieved by requiring q0 to be positive. Tangential
anchoring is obtained for W < 0. The dynamical equations governing the evolution of the system
are: (i) a convection-diffusion equation for φ

∂t +∇ · (φv) = ∇ ·
(

M∇
δF

δφ

)
, (9)

where M is the mobility parameter; (ii) the Beris-Edwards equation for the Q-tensor:

(∂t +v ·∇)Q−S(W,Q) = ΓH, (10)

where we introduced W = ∇v and the strain-rotational derivative

S(W,Q) = (ξ D+ΩΩΩ)(Q+ I/3)+(Q+ I/3)(ξ D−ΩΩΩ)−2ξ (Q+ I/3)Tr(QW), (11)

with D and ΩΩΩ respectively denoting the symmetric and asymmetric part of W. The parameter ξ

controls the aspect-ratio of the liquid crystal molecules and aligning properties to the flow (we chose
ξ = 0.7 to consider flow-aligning rod-like molecules). On the right-hand side of equation (10) Γ is
the rotational viscosity and

H =−δF

δQ
+

I
3

Tr
(

δF

δQ

)
(12)

is the molecular field driving the system towards equilibrium. (iii) The Navier-Stokes equation rules
the hydrodynamics of the system:

(∂t +v ·∇)v = ∇ ·
[
σ

pass +σ
act] . (13)
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We split the stress tensor contribution in a passive and an active term. The first one accounts for
the dissipative/reactive contributions and can be expressed as the sum of the isotropic pressure
σ

hydro
αβ

=−pδαβ , with p the hydrodynamic pressure and the viscous stress σ visc
αβ

= 2ηDαβ , with η

the shear viscosity. The relxation dynamics of the two order parameters affect the hydrodynamics
through the following passive terms:

σ
bm =

(
f − δF

δφ

)
δαβ −

δF

δ (∂β φ)
∂αφ , (14)

where f is the free energy density,

σ
el
αβ

=−ξ Hαγ

(
Qγβ +

1
3

δγβ

)
−ξ

(
Qαγ +

1
3

δαγ

)
Hγβ

+2ξ

(
Qαβ −

1
3

δαβ

)
QγµHγµ +QαγHγβ −HαγQγβ . (15)

The active stress tensor is given by:

σ
act
αβ

=−ζ φQαβ − ζ̄ εαµν∂µ(φQνβ ). (16)

This is explictly derived by coarse-graining the force and the torque dipoles exerted by the swimmers.
The dynamical equations have been integrated by means of a hybrid lattice Boltzmann (LB)

method.

3.2 Cholesteric droplet with active force dipoles: screwlike propulsion

We now consider the case of a cholesteric droplet, still with active force dipoles only. The two
key control parameters are now θ and N. For a fixed value of N, increasing ζ again leads to three
possible regimes, as in the nematic limit. For sufficiently large cholesteric power (e.g., N = 2, Fig. 5),
the first active regime encountered is, however, fundamentally different from the rotating phase of
active nematics. Now the surface defect pattern is a pair of nearby +1 defects, reminiscent of a
Frank-Price structure which is seen in passive cholesterics, but only with much larger N (N ≥ 5 [21]).
The configuration of director field which we observe is known as radial spherical structure [20, 22],
with some additional distortions in the cholesteric layers due to activity (as suggested by the inset in
Fig. 5g that gives an insight into the cholesteric arrangement in the interior of the droplet). There
is a suggestive analogy between this structure and a magnetic monopole – representing the radial
orientation of the helical structure at the droplet centre – with its attached Dirac string [23, 22],
joining the centre of the droplet with the defect pair. In our simulations the latter represents the
region of maximal layer distortion and energy injection, as suggested by the intensity of the velocity
field, plotted in Fig. 5g.

The two surface defects rotate around each other: as they do so, the pair periodically separates and
reconvenes. At the same time, the droplet undergoes a global rotation with oscillating angular velocity
(Fig. 5h). Remarkably, this time the rotation is accompanied by a translation along the direction
of the rotation axis – thereby resulting in a screwlike motion, with the axis of the rototranslation
parallel to the Dirac string. This motility mode is compatible with the chiral symmetry of the
system, which introduces a generic non-zero coupling between rotations and translations. Strong
deformations induced by the two close rotating +1 defects are responsible of the intense flows that
develops internally at the droplet and is maximum at the rear (see Fig. 5g) thus powering propulsion.
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Figure 5: Screw-like propulsion in a chiral droplet with active force dipoles. Panels (a-e) show
snapshots at different times of a chiral active droplet for the case at N = 2 and ζ = 10−3. The
contour-plot of the biaxility parameter on the droplet surface serves to identify the position of the
two +1 defects, labelled with greek characters α and β , whose configuration can be appreciated
by looking at panel (f). The screw-like rotational motion generates a strong velocity field in the
interior of the droplet in proximity of the two defects. The velocity field has been plotted in panel
(g) on a plane transversal to the plane of rotation of the two defects (dashed line in panel (f)). The
inset shows the contour plot, on the same plane, of the Qxx component of the Q-tensor, exhibiting
an arrangement similar to the radial spherical structure. Panel (h) shows the time evolution of the
angular velocity of the droplet for some values of ζ . The inset shows the mean angular velocity
and the translational velocity of the droplet as a function of ζ both for N = 2 and N = 3. Panel (i)
summarizes the droplet behavior as a function of ζ and N.

Symmetry of the flow corresponds to that of a macroscopic pusher. Mechanistically, therefore,
activity is required to power droplet rotation, and chirality is needed to couple rotation to motion. As
the motion is screwlike, the linear and the angular velocity are proportional to each other – a similar
argument to that used for active nematics also shows that they should both scale approximately
linearly with θ , and we found this to hold for our simulations (Fig. 5h, inset).

A phase diagram in a portion of the (N,ζ ) plane is shown in Fig. 5i. The results, not depending
on the (random) initial conditions, show that for small activity the droplet sets into a quiescent
regime indipendently of the cholesteric power: this is characterized by weak bending deformation of
the LC network on the droplet surface, which are not enough to power any self-sustained motion. As
activity is increased different behaviors arise: for null or weak cholesteric power (N 6 1) stationary
rotational motion sets up while screwlike propulsion needs the defects to relocate to one hemisphere
creating a dipolar pattern. This is found to be only possible for a limited range of ζ and only for
N = 2,3. Indeed, at higher cholesteric power (N > 4), the droplet sets into the chaotic phase even at
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Figure 6: Disclination dance in a chiral droplet with active torque dipoles. Panels (a-d) show
snapshots of the droplet and the disclination lines for the case at N = 1 and ζ̄ =−5×10−3. The four
+1/2 defects rotate in pairs in opposite directions (top defects rotate anti-clockwise, while bottom
defects rotate oppositely). As the defects rotate the two disclination lines first create a link (b), then
they recombine (c) and finally relax into a configuration close to the initial one (a) but rotated. The
angular velocity, null on average, oscillates from positive to negative values as shown in panel (e).
Here the time evolution of the free energy shows that F oscillates with a double frequency. Inset
shows the behavior of ωy and F in the region framed with the black box. Marked dots here denote
the points corresponding to the snapshots.

intermediate activity, a regime characterized by defect nucleation and disordered droplet motility
that can be found at any N for sufficiently large values of ζ .

3.3 Cholesteric droplets with active torque dipoles: rotation and disclination dance

We next consider the case of a cholesteric droplet with active torque dipoles. These are able to
introduce a nonequilibrium twist in a nematic droplet [24], whose handedness may reinforce or
oppose the handedness of the thermodynamic twist, which is determined by q0. The strength of the
nonequilibrium twist can be measured by the dimensionless number θ̄ = |ζ̄ |R/K, whilst that of the
equilibrium one can be assessed by N.

We find that the most interesting dynamics, in the case of a right-handed twist (q0 > 0), occurs
for ζ̄ < 0 (torque dipole corresponding to bottle cap opening, leading to a conflict between the
nonequilibrium and equilibrium twist). In this situation, for N = 1, we find that the droplet is
pierced by two disclination lines which end in +1/2 surface defects at ζ̄ =−5×10−5. The droplet
regularly alternates opposite sense rotations, along±ŷ, which are tightly regulated by the disclination
dynamics (Fig. 6). The helical axis is here approximately parallel to ẑ, with the director almost
parallel to x̂ in the centre of the droplet.

At the beginning of the rotation cycle shown in Fig. 6, the disclinations wind once around each
other in a right-handed fashion. Equivalently, if we were to orient both the disclinations along the
positive ŷ axis, we can associate the single crossing visible in the projection of Fig. 6a with a positive
writhe [25] (as the top disclination can be superimposed on the bottom one via an anticlockwise
rotation). As the system evolves, due to the internal torque dipoles, the pair of surface defects in
the top hemisphere rotates counterclockwise, while that in the bottom hemisphere rotates clockwise
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(Fig. 6b). This motion increases the winding of the disclinations, until they rewire to form two
separate right-handed helices (Fig. 6c – if we were to extend the two disclinations along ẑ, they would
be unlinked). The regular switches in the sense of droplet rotation beat the time of the disclination
dance visualised in Fig. 6a-d. Rotation inversion occurs just at the time when the defect rewiring
happens as the effect of the top/bottom asymmetry in the disclination configuration: these are regions
of strong deformation leading to greater energy injection, thus strengthening the vortical flow in the
corresponding emisphere and leading to the consequent oscillation of the angular velocity. We find
that the evolution of the angular velocity mirrors that of the overall free energy of the system, with a
small time delay: we argue that this is because the stress stored in the elastic deformations plays a
large role in powering the motion. Moreover, the frequency of the free-energy oscillation is twice
that of the angular velocity fw (see panels (e-f)), a behavior in line with the fact that configurations
in panel (a) and (d) are specular with respect to the rotation plane and energetically equivalent.

Unlike in the active nematic case, where rotation is powered by force dipoles, here the dynamics
is driven by torque dipoles. The different physics leaves a signature in the scaling of the (maximal)
angular velocity, which now can be estimated as |ζ̄ |/R from dimensional analysis. We confirmed
this behavior simulating cholesteric droplets of different radius, ranging from R = 18 to 32, keeping
fixed the pitch of the cholesteric helix p0 = 64.

N=2  =-0.007 N=2  =-0.01 N=4  =-0.01

d e f

a b c

Figure 7: Active torque dipoles. Panel a shows a snapshot of the droplet and the disclination lines for
the case at N = 2 and ζ̄ =−7×10−3. In this case the droplet sets into rotational motion (notice the
difference of the order of magnitude of the angular velocity in panel d with respect to the analogue
cases presented in the main text for a droplet fueled by force dipoles only). Panel b and e show the
case at N = 2 and ζ̄ =−10−2, characterized by the dancing of the disclination lines. Panel c shows a
snapshot of the droplet and its disclination lines for the case at N = 4 and ζ̄ =−10−2, in the chaotic
regime – see panel f – characterized by nucleation of surface defects (panel c).

The scenario concerning the properties of a cholesteric droplet fueled by torque dipoles, is highly
sensitive to both the active doping and the twisting number N. Indeed, the dynamics described
so far at N = 1 is stable only for a limited range of activity (5×10−3 6 |ζ̄ | 6 12×10−3). Small
values of |ζ̄ | (< 5×10−3), are not enough to excite the splitting of the two boojums and generate
instead bending deformations of the LC pattern at N = 1, similar to those shown in Fig. ??a. In
this case the droplet sets into a stationary rotational motion characterized by small angular velocity
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(|ω| ∼ O(10−6)) (7). If activity exceeds a critical threshold, |ζ̄ |> 12×10−3, nucleation of further
defects on the droplet surface leads to droplet deformation with consequent chaotic dynamics (Supp.
Fig. 1). The competition between active and equilibrium chirality has important effects when N is
changed. Indeed, a further key dimensionless number to determine the behaviour of a cholesteric
droplet with active torque dipoles is ζ̄/(q0K), or equivalently, the ratio between the pitch and
the “active torque length” K/ζ̄ . The latter can be thought of as the nonequilibrium pitch, or the
modulation in twist due to the action of the active flow. We would then expect that for larger q0 (i.e.,
larger N at fixed R), a rotating regime as in Fig. 6 can be obtained by increasing ζ̄ (Supp. Fig. 1). Our
simulations confirm, indeed, that the range of stability of stationary rotation widens as N is increased,
while the set up of the mirror rotation regime moves towards more intense |ζ̄ |. Nevertheless, if
N > 4, the droplet directly moves from the rotational to the chaotic regime, analogously to what
happens in a cholesteric droplet fueled by force dipoles only.

It is notable that the disclination dance which we observe at intermediate |ζ̄ | is also reminiscent
of that seen experimentally in active nematic shells [26, 27, 28] made up of microtubule-molecular
motor mixtures. Despite the confined geometry is different, our results suggest that the underlying
mechanism powering rotation observed in the aforementioned studies, may be related to torque
rather than force dipoles.
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