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Framework



Motivations

Research activity has been focused on the dynamics of phase transition in

some important classes of fluids systems:

• Single component fluids with Liquid-Vapor Transition in 3D(Never

done before) Power-law growth for domain size expected

• Mixtures with an active component :

Energy supplied at the level of the individual constituents. These are

Fluids out of equilibrium New mechanisms of self-propulsion.

Morphology and dynamics of active emulsions.
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Methods

We use a continuum description in terms of a few coarse-grained fields

Dynamics is governed by the Navier-Stokes equation and by equations for

the evolution of the order parameter and numerically solved

Lattice Boltzmann Method (LB)

• Discretization of space and velocities introducing a lattice

• On each point of the lattice a set of velocities {ei} and distribution

functions {fi} are defined which evolve according to the discretized

Boltzmann transport equation (BGK approximation):

fi (r + ei∆t, t + ∆t)− fi (r, t) = −∆t

τ
[fi (r, t)− f eqi (r, t)]

∑
i

f eqi = ρ ,
∑
i

f eqi ei = ρu

• Expansion of the equilibrium distribution functions f eqi with

coefficient chosen in order to regain the correct continuum

equations.
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Dynamics of Liquid-Vapor Phase

Separation



Spinodal decomposition

When a fluid is quenched from an initial disordered state into a regime of

two-phase coexistence below the spinodal line, domains of the two

phases are formed and grow with time

Hydrodynamics is in general relevant and the coupling with the

velocity field can change the law of growth
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Kinetics of phase separation

Dynamical scaling hypothesis

Growth is a scaling phenomenon: despite a changing in the length scale

l(t) there exists self similarity of domain patterns

The average size of domains l(t) growths in time as a power law

l(t) ∼ tα

The growth exponent α depends on

• dimensionality d

• morphology

• presence of hydrodynamic effects

• number of order parameters and conservation
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Growth Exponents

For binary mixtures three different regimes can be derived, each

corresponding to a specific physical mechanism:

• l(t) ∼ t1/3 (Lifshitz Slyozov)

Diffusive growth: Diffusion of molecules from smaller

higher-curvature domains to larger lower-curvature ones

• l(t) ∼ σt/η (Siggia)

Viscous growth: Tubes of fluid are unstable to fluctuations of their

interfaces, and this results in pinch-off

• l(t) ∼ (σt2/ρ)1/3 (Furukawa)

Inertial growth: Curvature differences induce tangential pressure

gradients and hence a velocity field that favours the smoothing of

protuberances and dimples from interfaces

For Liquid-Vapor systems exponents are not known but expected

similar to binary mixtures

Few 2D numerical studies (Sofonea et al 2009)
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Development of a 3D LB scheme

To address the problem we developed a lattice Boltzmann scheme using a

3DQ15 geometry

and a forcing therm which encodes the properties of a van der Waals fluid

fi (r + ei∆t, t + ∆t)− fi (r, t) = −∆t

τ
[fi (r, t)− f eqi (r, t)]−∆tFint,i

• Expansion of the distributions evaluated on abscissas of

Gauss-Hermite quadrature (Abe and He 2007 )

• New isotropic discretized differential operators (Succi et al 2012) 7



Development of a 3D LB scheme

Continuity equation

∂tρ+ ∂α(ρuα)

Navier-Stokes

∂t(ρuα) + ∂β(ρuαuβ) = −∂αpi + Fint,α + ∂β[η(∂αuβ + ∂βuα)] + o(u3)

Viscosity

η = ρ(τ − ∆t

2
)

For a van der Waals fluid

Fint,α = ∂α(pi )− ∂βΠαβ

Παβ =

[
pw − kρ∇2ρ− k

2
(∇ρ)2

]
δαβ + k∂αρ∂βρ

8
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3D Liquid-Vapor Phase Separation

Lattice Boltzmann Simulations of 3D van Der Waals Fluid

High Viscosity (η = 3)

Low Viscosity (η = 1)
9



3D Liquid-Vapor Phase Separation

Mean domains size (Lattice size L = 256) (Typical run one week 60GB

RAM (RECAS HPC cluster))
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Active Liquid Vapor and Active

Mixtures



Cell motility

Motility is the ability to move spontaneously and actively, consuming

energy in the process

• The mechanistic understanding of cell crawling has been described

in various successful model based on:

Actin Polymerization

Myosin contractility

• Some cells can move also without substrate adhesion

Recent experimental results suggest the possibility of motion

solely guided buy myosin contraction1

Our goal is to provide a model and a mechanism for cell motility in

bulk both minimal and generic

1H. Kelleret al 2002
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Active force

Interaction therm

Fint,α = Factive,α + ∂αp
i − ∂βΠαβ

Pressure tensor for van der Waals fluid

Παβ =
[
pw − kρ∇2ρ− k

2 (∇ρ)2
]
δαβ + k∂αρ∂βρ

Active force

Factive,α = −ζ∂αφ 12



Free energy model

Free energy

F =

∫
dr

{
WD +

1

2
φ2 − b(ρ− ρav)φ2 + k(∇φ)2 + cφ(∇ρ)2

}

Dynamics equations

∂t(ρuα) + ∂β(ρuαuβ) = −∂αpi + Fint,α + ∂β [η(∂αuβ + ∂βuα)]

∂tφ+ ∂α(φuα) = Γ∇2

(
δF
δφ

)

Our LB simulations in 2D show contractility alone is able to catch

the origin of cell motility

13
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Model for active polar emulsion

Free energy functional

F [φ,P] =

∫
dr { a

4φ4cr
φ2(φ− φ0)2 +

k

2
|∇φ|2 +

c

2
(∇2φ)2

− α

2

(φ− φcr )
φcr

|P|2 +
α

4
|P|4 +

κ

2
(∇P)2 + βP · ∇φ}

Dynamics equations

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p +∇ · σtotal , σactive

αβ = −ζφ
(
PαPβ −

1

3
|P|2δαβ

)
∂φ

∂t
+∇ · (φv) = ∇ ·

(
M∇δF

δφ

)
∂P

∂t
+ (v · ∇) P = −Ω · P + ξD · P− 1

Γ

δF

δP
,
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Passive Emulsion

Asymmetric emulsion (10:90) In absence of activity

Hexatic order

15



Morphology of active polar emulsion

Activity greatly effects the morphology of the emulsion2

Extensile activity ζ = 0.0080 Contractile activity ζ = −0.02

2G.Negro et al., Submitted to Physica A
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Future perspectives



Future perspectives

Liquid-Vapor phase separation

• Systems of size L ≥ 512 (Parallel version of our LB scheme)

• New LB scheme in order to consider quenches at lower temperatures

Active Liquid-Vapor and Active Mixtures

• Extend the study to d = 3 in order to compare our results with real

systems and study changes in cell shape

• 3D Active Emulsions

17



Activities

• Flowing matter 2017, Porto, Poster contribution.

• FPSP 2018, Bruneck: International summer school in

Foundamental problems in Statistical Physics.

Esami sostenuti:

• C++ del Prof. Cafagna (Superato)

• Programming with Python Prof. Diacono (Superato)

• Inglese Prof. White (Superato)

• Progettazione europea Prof. D’orazio (Superato)

• Renormalization of field theories Prof. Defazio (Superato)

• Linear stability analysis Prof. Gonnella (Da sostenere)

• Interpolation Methods and techniques for Experimental Data

Analysis Prof. Pompili (Superato)

• Processi di Levy Prof. Cufaro (Da sostenere)

Morphology and flow patterns in highly asymmetric active

emulsions, G. Negro, L.N. Carenza, P. Digregorio, G. Gonnella,A.

Lamura, Submitted to Physica A.

Allegato alla presente relazione.
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