

Quantum Simulations for Lattice Gauge Theories

Domenico Pomarico

Corso di Dottorato XXXII ciclo - Relazione attività di ricerca I anno

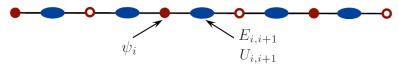
13 Novembre 2017

Supervisors: Prof. Saverio Pascazio, Dott. Francesco V. Pepe

Schwinger Model

$$\mathcal{H} = -\frac{1}{2a} \sum_{i} \left(\psi_{i} U_{i,i+1}^{\dagger} \psi_{i+1}^{\dagger} + H.c. \right) + m \sum_{i} (-1)^{i} \psi_{i}^{\dagger} \psi_{i} + \frac{g^{2}a}{2} \sum_{i} E_{i,i+1}^{2},$$

where
$$\{\psi_i, \psi_j^{\dagger}\} = \delta_{i,j}, U_{i,i+1} = e^{-iA_{i,i+1}}, [E_{i,i+1}, A_{j,j+1}] = i\delta_{i,j}.$$



Gauss law selects the physical subspace

$$\psi_i^{\dagger} \psi_i + \frac{1}{2}[(-1)^i - 1] = E_{i,i+1} - E_{i-1,i}$$

number operator

staggered vacuum

electric field divergence

Dirac Equation

In the most general setting:

• Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}$ for $N \times N$ matrices γ^{μ} with $\mu = 0, 1, \dots, D-1$

Dirac Equation

In the most general setting:

- Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \mathbb{1}$ for $N \times N$ matrices γ^{μ} with $\mu = 0, 1, \dots, D-1$
- Tr $\gamma^{\mu} = 0 \implies N = 2^{\left\lfloor \frac{D}{2} \right\rfloor}$

Dirac Equation

In the most general setting:

- Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}$ for $N \times N$ matrices γ^{μ} with $\mu = 0, 1, \dots, D-1$
- Tr $\gamma^{\mu} = 0 \implies N = 2^{\left\lfloor \frac{D}{2} \right\rfloor}$

$$SO(D-1,1)$$
 invariance \longrightarrow spinorial representation
$$\begin{cases} \frac{(D-1)(D-2)}{2} & \text{independent rotations} \\ D-1 & \text{independent boosts} \end{cases}$$

Chiral representation exists only for even *D*.

I studied free Dirac equation in D=2 implementing the boost of rest-frame positive and negative energy solutions, the interacting case and the absent chiral representation in D=3 will be considered.

Discrete Heisenberg Group

Continuous Heisenberg group with 2 parameters $\alpha, \beta \in \mathbb{R}$:

$$U(\alpha) = e^{-i\alpha A}, \quad V(\beta) = e^{i\beta E}, \quad U(\alpha)V(\beta) = e^{-i\alpha\beta}V(\beta)U(\alpha).$$

Electric field representation:

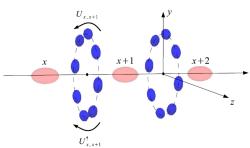
$$V(\beta)\varphi(E) = e^{i\beta E}\varphi(E),$$

 $U(\alpha)\varphi(E) = \varphi(E + \alpha)$

Discretization:

$$eta
ightarrow \sqrt{rac{2\pi}{n}} \; \ell, \ell \in \mathbb{Z}$$

$$\left\{ egin{array}{l} U \ket{E_{\ell}} = \ket{E_{\ell+1}} \; ext{for} \; \ell < n, \\ U \ket{E_{n}} = \ket{E_{1}} \end{array}
ight.$$



Non-Abelian Gauge Theories

SU(2), in a Yang-Mills matrix model:

$$A_i = A_{ia} rac{\sigma_a}{2}, \quad E_j = E_{jb} rac{\sigma_b}{2} \quad ext{with} \quad [A_{ia}, E_{jb}] = i \delta_{ij} \delta_{ab},$$

where $[\sigma_a, \sigma_b] = 2i\epsilon_{abc}\sigma_c$, with $i, j = 0, \dots, D-1$ in D dimensions.

The search for a closed algebra for gauge variables requires calculations of:

- $U_i = e^{-iA_i}$
- $[U_i, E_j]$, extended to the more general $[e^{-i\alpha_i A_i}, \beta_j E_j]$

To proceed towards discretization, the most general commutator between $e^{-i\alpha_i A_i}$ and $e^{i\beta_j E_j}$ will be obtained.

Quantum Computing

$$N \text{ qudit} : \mathscr{H} = \bigotimes_{i=1}^{N} \mathscr{H}_{i} \implies \dim \mathscr{H} = d^{N}$$

SCALABLE QUANTUM SYSTEMS computing power enhancement proportional to the number of basis states in superposition

Quantum Computing

$$N \text{ qudit} : \mathscr{H} = \bigotimes_{i=1}^{N} \mathscr{H}_{i} \implies \dim \mathscr{H} = d^{N}$$

SCALABLE QUANTUM SYSTEMS

- computing power enhancement proportional to the number of basis states in superposition
- computational complexity for simulations

Quantum Computing

$$N \text{ qudit} : \mathscr{H} = \bigotimes_{i=1}^{N} \mathscr{H}_{i} \implies \dim \mathscr{H} = d^{N}$$

SCALABLE QUANTUM SYSTEMS

- computing power enhancement proportional to the number of basis states in superposition
- computational complexity for simulations

To manage the computational resource request in a simulation a polynomial growth for the number of degrees of freedom is needed:

Singular value decomposition (SVD) applied to coefficients arrays reshaped in matrices

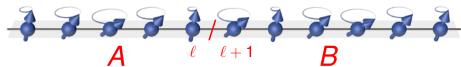
entanglement cut-off

Matrix Product States

Linear lattice with L sites: $|\psi\rangle = \sum_{\sigma} c_{\sigma_1...\sigma_L} |\sigma\rangle$, $|\sigma\rangle = |\sigma_1\rangle \otimes \cdots \otimes |\sigma_L\rangle$

Matrix Product States

Linear lattice with L sites: $|\psi\rangle = \sum_{\pmb{\sigma}} \boxed{\pmb{c}_{\pmb{\sigma}_1...\pmb{\sigma}_L}} |\pmb{\sigma}\rangle \,, \; |\pmb{\sigma}\rangle = |\sigma_1\rangle\otimes\cdots\otimes|\sigma_L\rangle$



$$\mathsf{SVD:} \ket{\psi} = \sum_{\pmb{\sigma}} \overline{\sum_{\pmb{a}_\ell} A_{1,\pmb{a}_\ell}^{(\sigma_1...\sigma_\ell)} S_{\pmb{a}_\ell,\pmb{a}_\ell} B_{\pmb{a}_\ell,\pmb{1}}^{(\sigma_{\ell+1}...\sigma_L)}} \ket{\pmb{\sigma}} = \sum_{\pmb{a}_\ell} s_{\pmb{a}_\ell} \ket{\pmb{a}_\ell}_{\pmb{A}} \ket{\pmb{a}_\ell}_{\pmb{B}}$$

Iterating site by site:

$$|\psi\rangle = \sum_{a_{\ell}, a_{\ell}} \sum_{a_{\ell}, a_{\ell}, a_{\ell}} A^{\sigma_{1}}_{1, a_{1}} \dots A^{\sigma_{\ell}}_{a_{\ell-1}, a_{\ell}} S_{a_{\ell}, a_{\ell}} B^{\sigma_{\ell+1}}_{a_{\ell}, a_{\ell+1}} \dots B^{\sigma_{L}}_{a_{L-1}, 1} |\sigma\rangle,$$

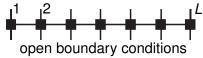
a MPS, with a possible cut-off over singular values $s_{a_{\ell}}$.

Tensor Network Operators

Matrix Product Operators (MPO) for linear lattice Hamiltonians:

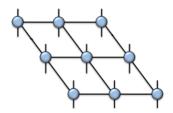
operator-valued matrices $W_{b_{\ell-1},b_{\ell}}^{[\ell]\sigma_{\ell},\sigma'_{\ell}}$

$$\mathcal{H} = W^{[1]}W^{[2]}\dots W^{[L]}$$



Periodic boundary conditions require 2 different matrices:

 $W^{[1]},W^{[i]}$ (2 \leq i \leq L) \longrightarrow a single matrix requires an increased order



Projected Entangled Pair Operator can model Hamiltonians for lattices in more dimensions

 \longrightarrow I built a cylindrical and toroidal plaquette, 2 \times 3 lattice and torus, 3 \times 3 lattice, cylinder and torus.

Tensor Network Theory

Ground state research:

---- generalized eigenvalue problem

Tensor Network Theory

Ground state research:

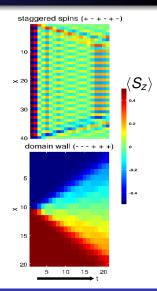
---- generalized eigenvalue problem

Time evolution:

Nearest-neighbor interaction Suzuki-Trotter expansion for the propagator:

$$e^{i(\mathcal{H}_1+\mathcal{H}_2)t}=\lim_n(e^{i\mathcal{H}_1\frac{t}{n}}e^{i\mathcal{H}_2\frac{t}{n}})^n$$

implemented in TNT with a sweep over the linear lattice.



Outlook

Main activities in progress for the second year are:

- investigation of the consequences of the absent chiral representation in odd number of dimensions;
- discretization of non-Abelian gauge groups;
- application of the tensor network scheme in more than one dimension.