

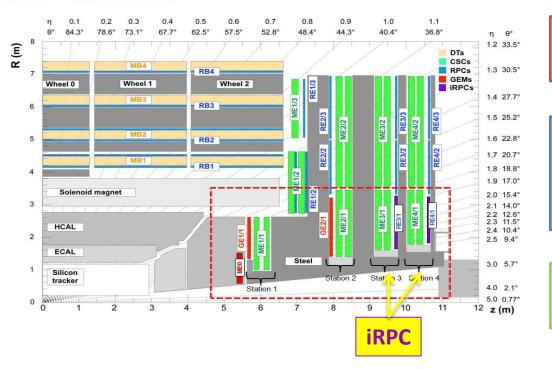
UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO

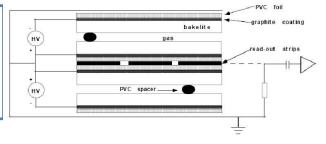
PhD School in Physics XXXII Cycle Activity report on the II year

CMS-RPC system upgrade project for the phase II of LHC

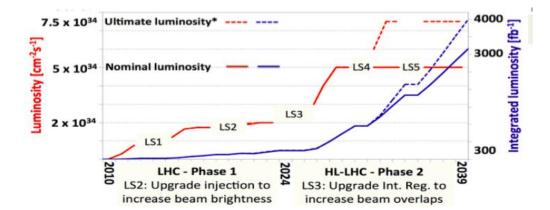
Supervisor: Dott.ssa Gabriella Pugliese

PhD student: Andrea Gelmi


Bari, 16 Oct 2018


- >II year research activities:
 - 1. Longevity study of the CMS-RPC present system
 - 2. R&D RPC system extension and study of the expected background at HL-LHC in the RE3-4/1 stations
- > Schools, conferences and publications
- > Future plans

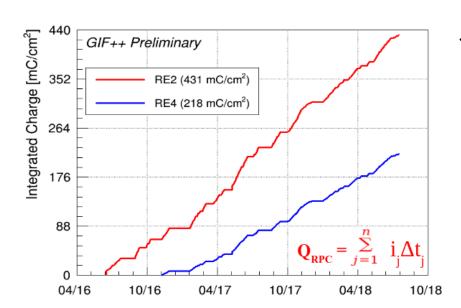
CMS


The CMS-RPC system

- > RPC system covers $0 < |\eta| < 1.9$
- > 1056 chambers: 480 in Barrel & 576 in Endcap
- ➤ Working in avalanche mode
- ➤ Double gas-gaps RPC
- > HPL bulk resistivity: $\rho = 1 6 \cdot 10^{10} \Omega cm$
- > 2 mm gas gap and electrodes thickness

- > RPC information for muon trigger, reconstruction and identification
- High and stable RPC performance during LHC operation

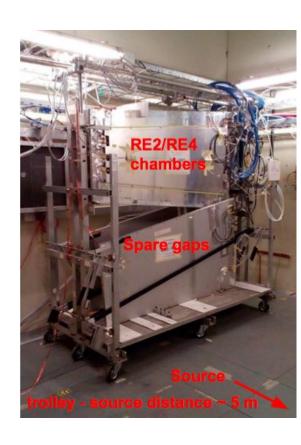
RPC Upgrade program in view of HL-LHC:


- 1. CONSOLIDATION of present RPC system
- 2. RPC system EXTENSION at high eta region

1. Consolidation of the present RPC system

Expected conditions @ HL-LHC:

Max rate ~ 600 Hz/cm²
Max integrated charge ~ 840 mC/cm²



❖ Setup @ GIF++:

- → 2 **RE2** chambers (Irr & Ref)
- → 2 **RE4** chambers (Irr & Ref)
- ❖ Daily measurements: Current & rate with background.
- ♦ Weekly measurements: Current and rate at different background conditions and without background.
- ❖ 3-4 time per year: Argon resistivity measurements.
- ❖ 3-4 times per year Test beam: Performance measured with muon beam ② several background conditions.

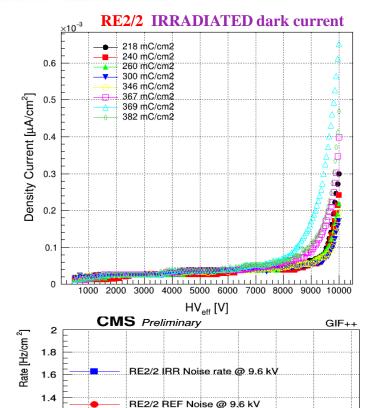
Accumulated charge:

RE2 IRR RE4 IRR: ⇒ $Q_{Int} = 431 \text{ mC.cm}^2$ ⇒ $Q_{Int} = 218 \text{ mC.cm}^2$ 51 % 26 %

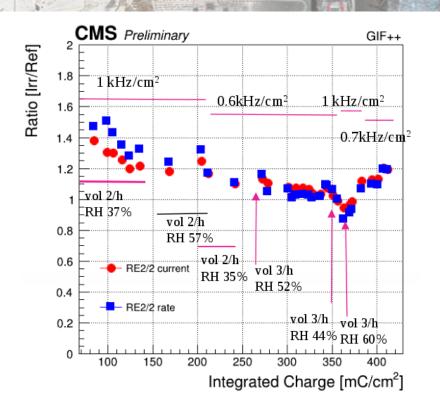
1.2

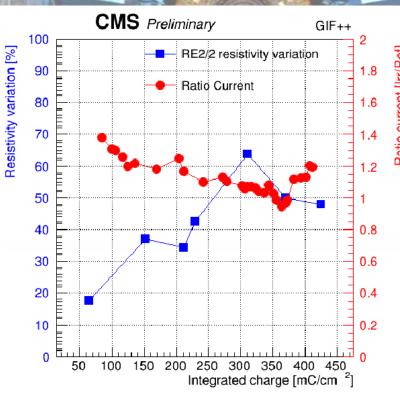
8.0

0.6


0.4

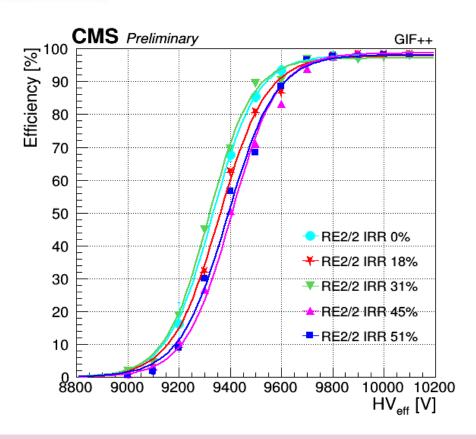
150

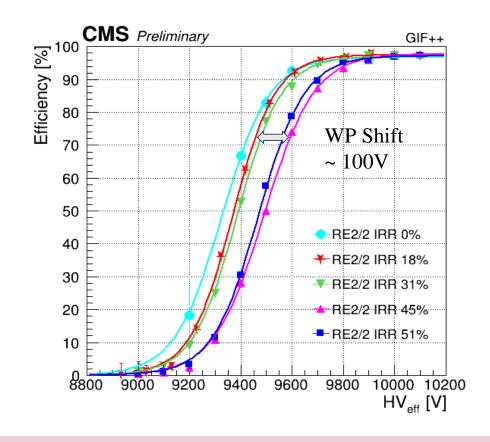

200


250

Detector parameters monitoring

300 350 400 450 Integrated Charge [mC/cm ²]





- **❖** Dark currents & noise rate almost stable
- **Electrodes resistivity increase** due to the too low humidity and gas flow rate with respect to the high background rate → Currents and rate decrease
- Recoverable effect mitigated with the gas RH increase at 60 %

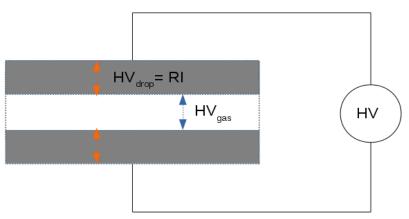
RPC performance monitoring

Efficiency vs HV_{eff} measured without background

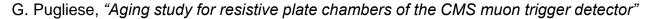
★ Stable performance: stable WP and efficiency

Efficiency vs HV_{eff} measured with background (600 Hz/cm²)

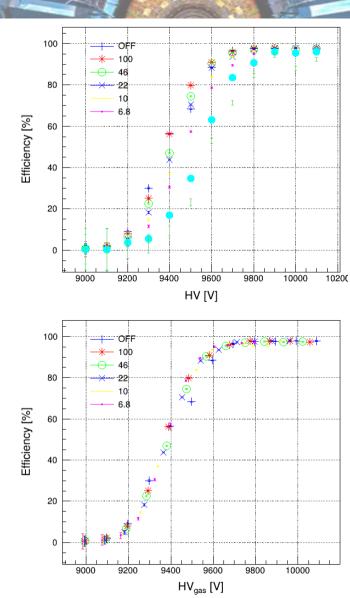
- Stable performance
- ★ WP shift of ~ 100 V during MAY and AUG 2018 TB (45% and 51% integrated charge)



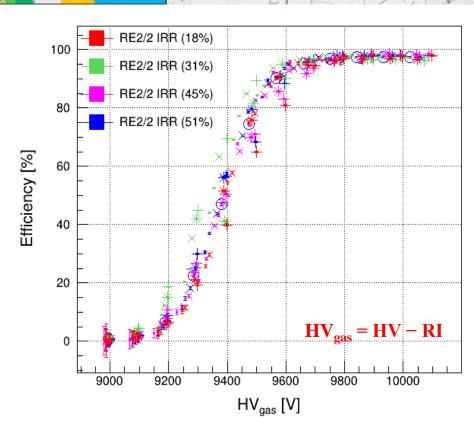
HV correction


The effective voltage applied to the gas volume (HV_{gas}) is reduced by the voltage drop (HV_{drop}) across the electrodes:

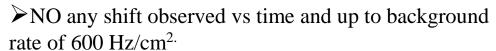
$$HV_{gas} = HV - RI$$

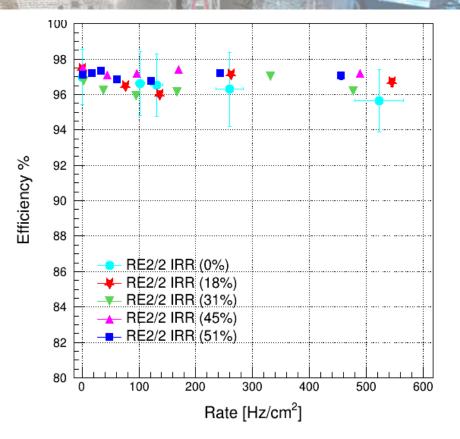

Where **R** the bakelite resistance and **I** is the current produced by the ionizing particles.

The efficiency plotted as a function of HV_{gas} does not depends on the background conditions.

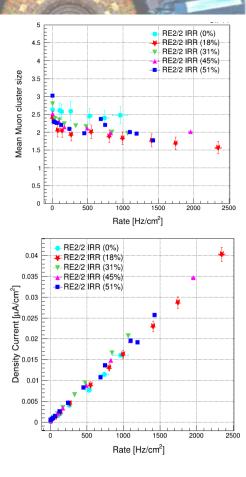


G. Aielli, "Further advances in aging studies for RPCs"



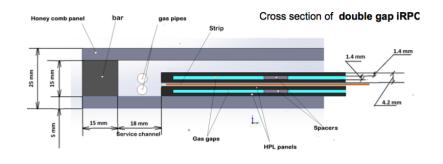


RPC performance monitoring



Efficiency at different ABS and at different Integrated charge (different TB) overlap.

Efficiency @ WP remains stable in time up to the maximum expected rate (600 Hz/cm²).


2. RPC system extension & background rate study

RPC system extension to complement existing ME3-4/1 (1.8< $|\eta|$ <2.4) and increase the muon system redundancy extending the contribution of RPCs for both muon tracking and triggering in the forward region

Improved RPC will complete the coverage in the RE3-4/1 Endcap stations.

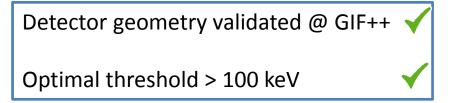
iRPC baseline:

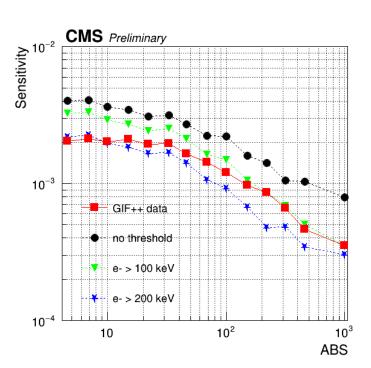
- gas gaps 1.4mm
- electrodes 1.4mm

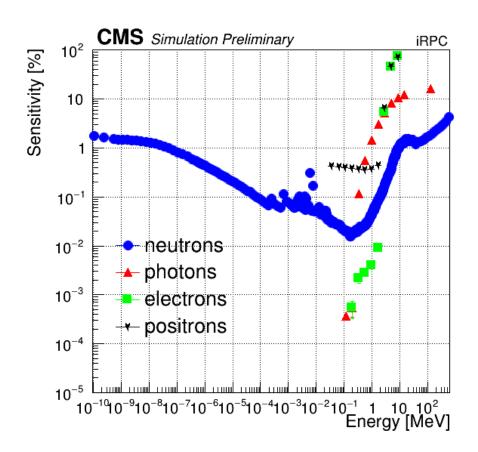
Study to accurately **estimate** the **expected background hit rate** $R_{iRPC}(E)$ at HL-LHC in the forward region RE3-4/1.

Incident fluxes $oldsymbol{\phi_{bkg}^{\mathit{CMS}}(E)}$ FLUKA simulation

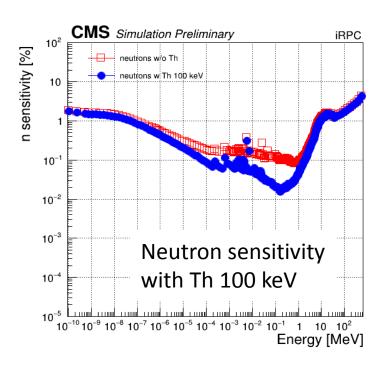
Detector sensitivity $S(E) = \frac{N_{HIT}}{N_{bkg}}$ (E)


GEANT simulation


Hit rate $R_{iRPC}(E) = oldsymbol{\phi}_{bkg}^{CMS}(E) imes S(E)$

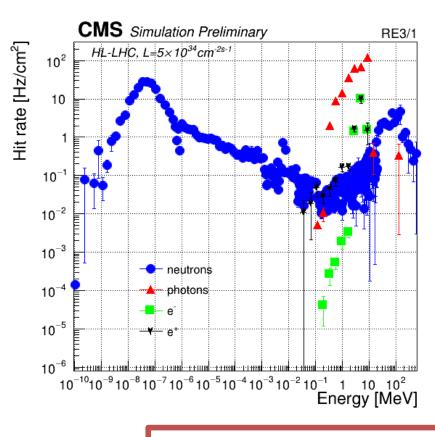


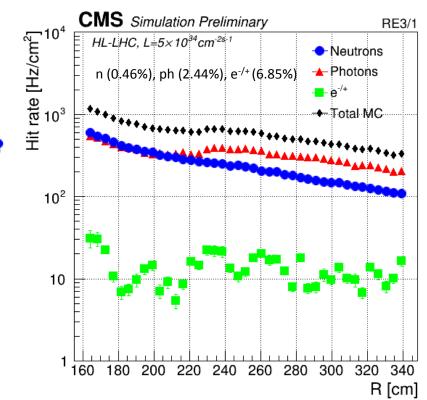
iRPC sensitivity

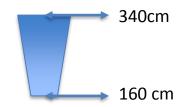

iRPC sensitivity applying the threshold of **100 keV** on the charged particles which reach the gas gap.

Threshold effect:

10% less sensitivity. More evident difference in the neutron sensitivity $10^{-4} < E_n < 1$ MeV.






iRPC background

$$R_{iRPC}(E) = \phi_{bkg}^{CMS}(E) \times S(E)$$

Expected background hit rate vs R calculated scaling the incident background flux with the **AVERAGE** iRPC sensitivity.

Particles	RE3/1 HIT RATE Hz/cm^2	RE4/1 HIT RATE Hz/cm^2
Neutrons	251 ± 33	211 ± 20
Gammas	304 ± 23	243 ± 18
Electrons/ Positrons	13 ± 3	19 ± 9
TOT HIT- RATE	568 ± 27	473 ± 19

Average background rate of $\approx 600 \text{ Hz/cm}^2$ indicates the requirement of a minimum rate capability of $\approx 2 \text{ kHz/cm}^2$ for the iRPCs when considering a safety factor of 3.

Schools and conferences

Schools:

- > RD51 Gaseous detectors lectures, 11-15 December 2017, CERN, Switzerland
- First International RPC detector school, 14-17 February 2018, Mexico City, Mexico
- > XXX National seminar of nuclear and subnuclear physics, 5-12 June 2018, Otranto, Italy
- > CMS Machine Learning workshop, 2-4 July 2018, CERN, Switzerland

International conferences:

- XIV Workshop on Resistive Plate Chambers and Related Detectors (RPC 2018), 19-23 February 2018, Puerto Vallarta, Mexico Oral presentation: "Longevity studies for the CMS-RPC system"
- ➤ 14th Pisa Meeting on Advanced Detectors PM2018, 27 May 2 June 2018, La Biodola, Isola d'Elba, Italy Poster: "Background rate study for the CMS improved-RPC at HL-LHC using GEANT4"
- ➤ Incontri di Fisica dele Alte Energie IFAE 2018, 4-6 April 2018, Milano, Italy.

 National conference, oral presentation: "RPC upgrade project for CMS Phase II"

First author publications:

- > "Longevity studies for the CMS-RPC system", A. Gelmi et al., JINST, JINST-017P-0818, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors". Under review.
- *"Background rate study for the CMS improved-RPC at HL-LHC using GEANT4"*, A. Gelmi et al. (on behalf of the CMS collaboration), Nucl. Instrum. Meth., NIMA-D-18-00307R1, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors". Already reviewed, going to print.

CMS Publications:

CMS Collaboration Author since 11th November 2017 (85 papers)

> <u>"The Phase-2 Upgrade of the CMS Muon Detectors",</u> CMS Collaboration, CERN-LHCC-2017-012. CMS-TDR-016

RPC group publications:

- > "RPC upgrade project for CMS Phase II", M.I. Pedraza et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "R&D results of iRPC tested at GIF++ for CMS Phase II upgrade", J. H. Lim et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- ➤ "Fast timing measurement for CMS RPC Phase II upgrade", C. Combaret et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "RPC Radiation Background Simulations for the High Luminosity Phase in the CMS Experiment", B. Carpinteyro et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "CMS RPC background studies during LHC run II", R. Trejo et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".

RPC group publications:

- ➤ "High rate, high time precision RPC detector for LHC", F. Lagarde et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- ➤ "The CMS RPC Detector Status and Operation at LHC", M.Shah et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "Test of a real-size Mosaic MRPC developed for CMS muon upgrade", Y. Yu et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "CMS RPC efficiency measurement using the Tag and Probe method", J. Goh et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "CMS RPC Integrated Charge", M. Cecilia et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".

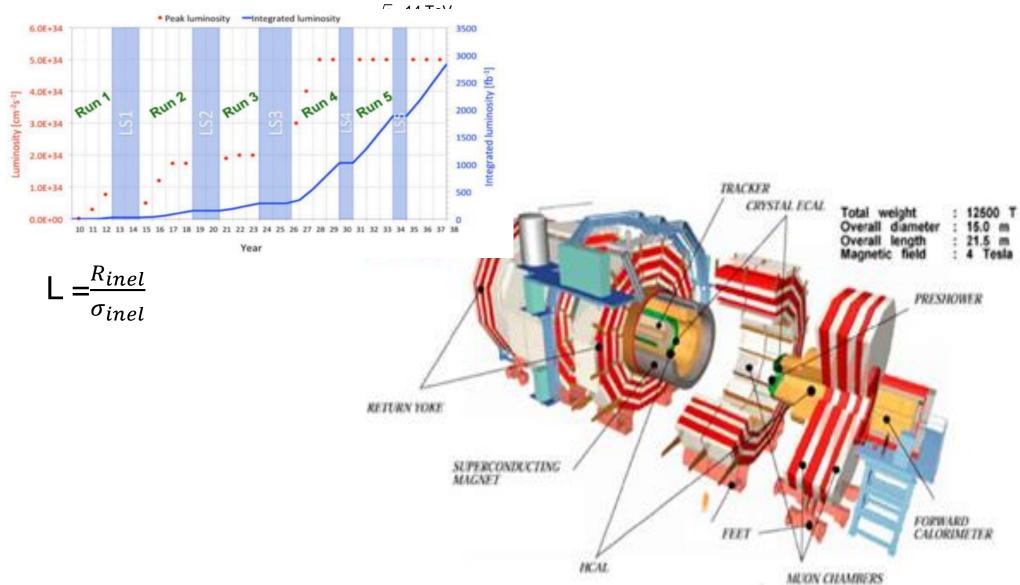
RPC group publications:

- > "The CMS RPC system calibration", R. Reyes et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- ➤ "RE3/1 and RE4/1 chambers integration with Forward region of CMS Muon spectrometer", E. Voevodina et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- > "CMS RPC Condition Data Automation", O. M. Colin et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".
- ➤ "Search for Heavy Stable Charged Particles in the CMS Experiment using the RPC phase II upgraded detectors", G. Sanchez et al. (on behalf of the CMS collaboration), JINST, Proceeding of: "XIV Workshop on Resistive Plate Chambers and Related Detectors".

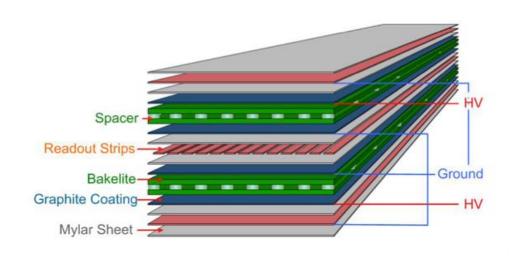
SimilFellow at CERN, starting from July 2018 for one year (July 2019)

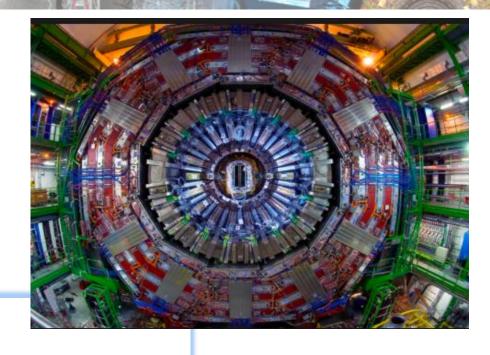
> RPC longevity studies

➤ CMS Endcap trigger performance during HL-LHC: study the impact on the muon L1 trigger of the upgraded RPC system with improved time resolution (new link system) and with extended acceptance with the installation of the RE3-4/1 stations

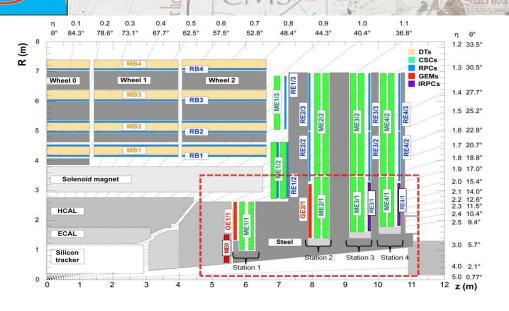

Thanks

for your attention


Back up



CMS


CMS RPC System

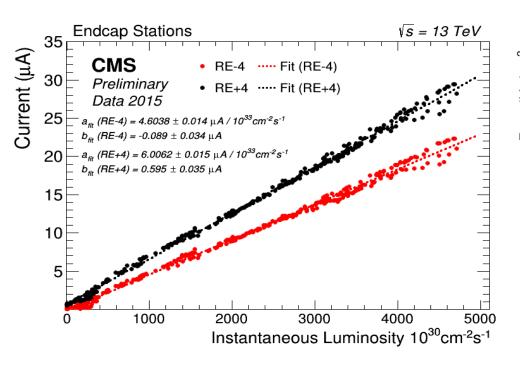
- > Covers $0 < |\eta| < 1.8$
- ➤ 1056 chambers (480 in Barrel and 576 in Endcap)
- ➤ 120000 electronic channels and 400 m² of active area
- > Double gaps gas chamber: 2 mm gas width
- **Electrodes:** High Pressure Laminate
- **HPL** bulk resistivity: $\rho = 1 6 \times 10^{10} \Omega \text{cm}$
- ► Humidified Gas mixture: $C_2H_2F_4 + isoC_4H_{10} + SF_6$ (40% of H) 95.2% 4.5% 0.3%
- Close loop with 10% -15% of fresh gas
- ➤ Operated in avalanche mode

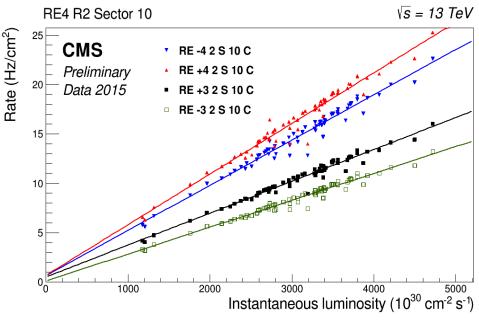
1. Consolidation present RPC system

RPC @ LHC

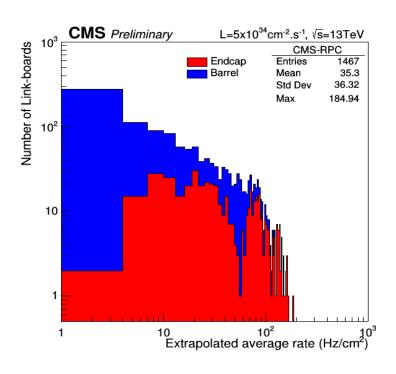
- \triangleright Covers $0 < |\eta| < 1.8$ with 1056 chambers
- Double gap RPC
- > RPC information used in the Muon Trigger, reconstruction and identification
- ➤ High and stable RPC performance (efficiency 95 %) with the increasing of luminosity

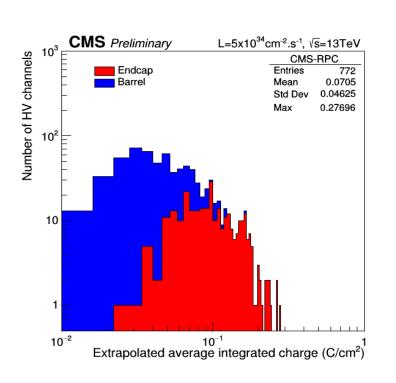
The RPC system has been certified for 10 years of LHC (at nominal luminosity of 10^{34} cm²s) to maximum rate of 300 Hz/cm² and 0.05 C/cm²

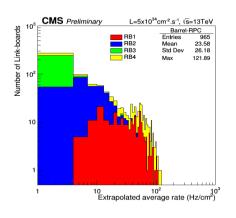

By the end of LS3 the RPCs will be 20 years old and be required to operate beyond the design specification

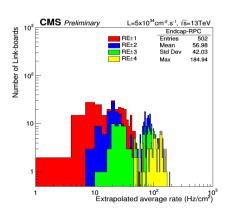

To maintain high and stable muon performance through **HL-LHC**:

➤ LONGEVITY STUDIES: The detector is expected to maintain excellent performance up to 3 times the expected HL-LHC conditions (integrated charge and rates).

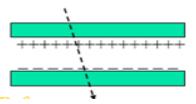

Current and rate vs Luminosity



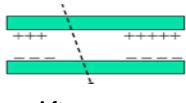




Expected conditions at HL LHC Background rates and Integrated charge



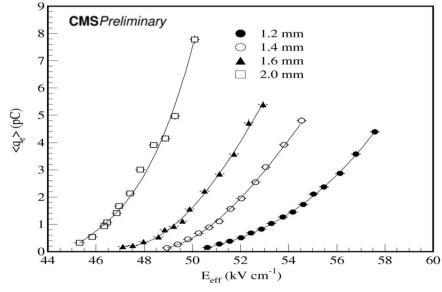
iRPC design

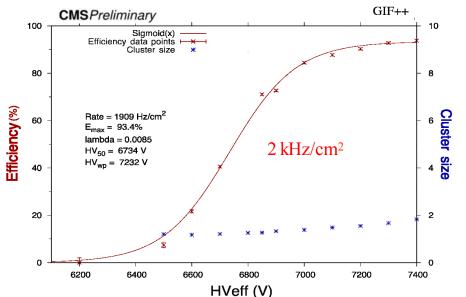

- □ Present CMS RPC chambers certified up to $300Hz/cm^2$, irradiated with photons up to an integrated charge of 0.05 C/cm²: not suitable for the high forward region.
- \square Rate capability of the RPC is related to the voltage drop in the resistive plate: $\Delta V = IR = \rho dq \Phi$

- electrode resistivity ρ : as low as the RPC principle still stands (> ~10⁸-10⁹ Ω cm)
- *electrode thickness d*: depends on electrode material
- \rightarrow possible with both glass and HPL
- produced charge q (+ increasing FE electronics sensitivity):
 depends on gas mixture, number of gaps, and thickness of gaps
 → beneficial also for chamber aging

Before

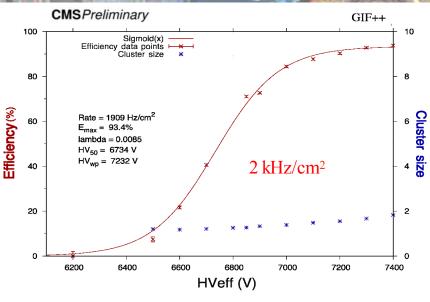
After

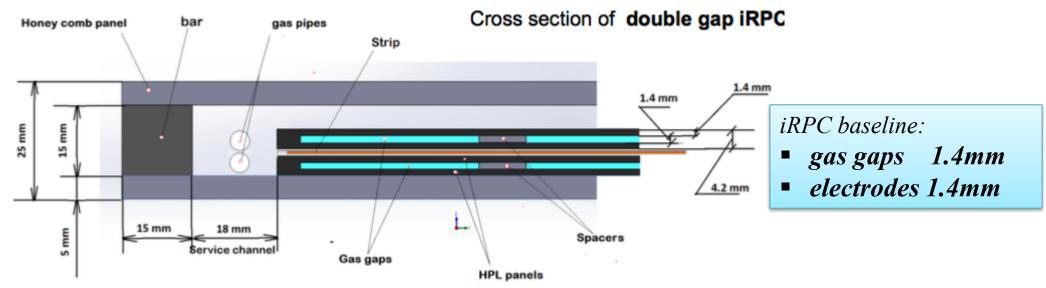

iRPC design


	RPC	iRPC
Gas Gap	2 mm	1.4 mm
High Pressure Laminate	2 mm	1.4 mm
Resistivity (Ωcm)	1 - 6 x 10 ¹⁰	$0.9 - 3 \times 10^{10}$
Strip pitch	2-4 cm	0.7-1.2 cm
Electronics Threshold	150 fC	10 fC
Chamber dimension	10 degrees	20 degrees

The thinner gap thicknesses:

- retard the fast growth of the pickup charges
- reduce aging effects
- reduction of the high improving the robustness of the system


Large-size chamber iRPC 1.4 mm has been tested at Gamma irradiation Facility (GIF++) at several gamma rate values. Achieved rate capability with more than 94% of efficiency at 2 kHz/cm²



During last years, an intense R&D program has been done, and several RPC prototypes have been built using similar technology of the present RPC but having different geometry configurations in order to satisfy the CMS requirements.

RPC gas mixture

In view of a reduction of the Green-House gases emission an extended R&D program has been started.

```
The CMS RPC gas mixture has a high Global Warming Potential (GWP ~ 1433)
95.2\% C_2H_2F_4 (tetrafluoroethane): GWP = 1430 \rightarrow active gas
0.3\% SF_6 (sulphur hexafluoride): GWP = 23900 \rightarrow electronegative gas
4.5\% C_4H_{10} (isobutane): GWP = 3.3 \rightarrow quencher gas
```

This gas mixture has been optimized to ensure a stable and long term operation of the system at LHC.

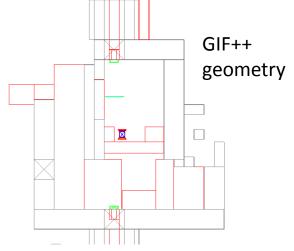
Strategy to find a suitable ecogas:

- ✓ Search for candidates with a low GWP to replace the $C_2H_2F_4$ within the gas used as Freon replacement in the industry.
- \triangleright Study the detector performance with these new gases (efficiency, time resolution, streamer probability) also in combination to other gases (like the CO_2).
- ➤ Study the detector longevity performance in presence of gamma background on few candidate gas mixtures at GIF++.

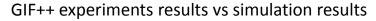
iRPC Background rate study @ HL-LHC

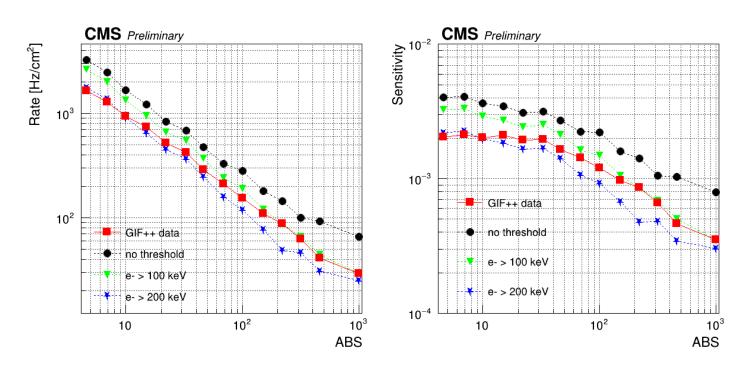
The goal of the study is to accurately estimate the expected **background hit rate** $R_{iRPC}(E)$ at HL-LHC in the forward region RE3-4/1 where will be installed the new improved RPC (iRPC).

The estimation of the background hit rate is done scaling the incident background fluxes $\phi_{bkg}^{CMS}(E)$ obtained by FLUKA with the iRPC sensitivity S(E).

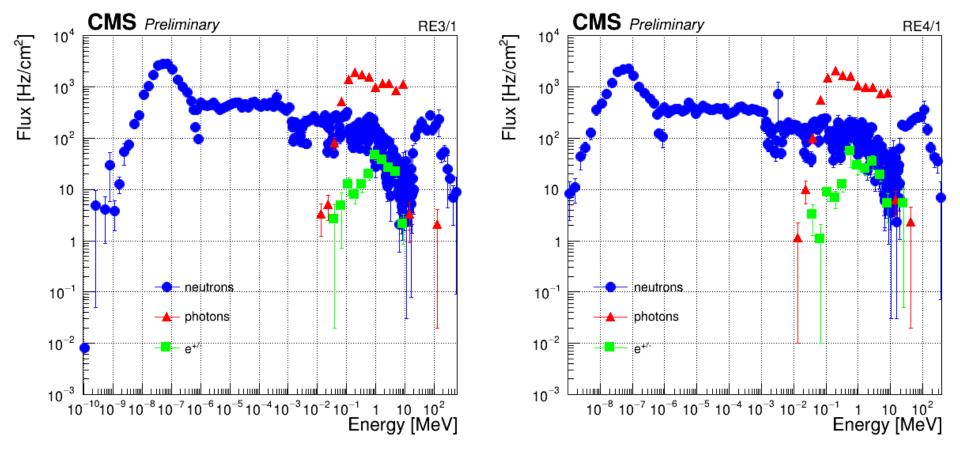

$$R_{iRPC}(E) = \Phi_{bkg}^{CMS}(E) \times S(E)$$
from FLUKA simulation from GEANT simulation

The GEANT Monte Carlo simulation allows to study the **sensitivity S(E)** of the iRPC at HL-LHC background conditions. The detector sensitivity is defined as the probability for a background particle N_{bkg} (neutrons, gammas, electrons, positrons) at a given energy reaching the surface of the iRPC, to producing a signal in the detector N_{HIT} .


$$S(E) = \frac{N_{HIT}}{N_{bkg}} (E)$$


iRPC geometry simulation

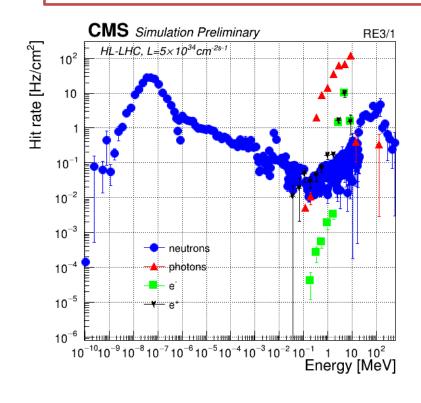
The comparison between experimental results (GIF++) and simulation results (iRPC geometry implemented in the GIF++ geometry) suggest to apply an energy threshold for the primary and secondary charged particles that produce a signals in the gas gaps.

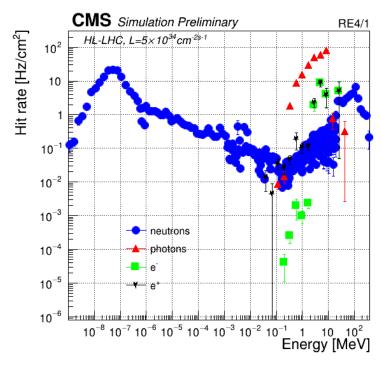


CMS BACKGROUND

Background particles $\phi_{bkg}^{CMS}(E)$:

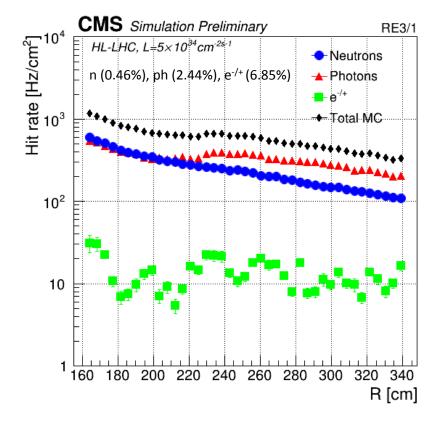
neutrons, gammas, electrons and positrons

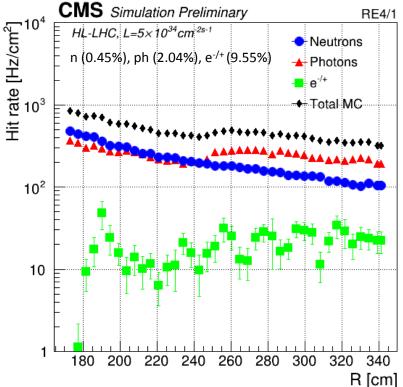

Average flux of incident particles over the total detector surface (along R)



iRPC Background

$$R_{iRPC}(E) = \phi_{bkg}^{CMS}(E) \times S(E)$$


convolution between the incident background fluxes $\phi_{bkg}^{CMS}(E)$ and the sensitivity S(E).

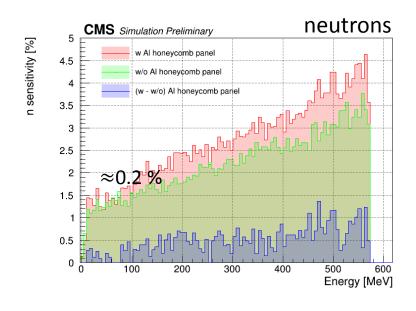


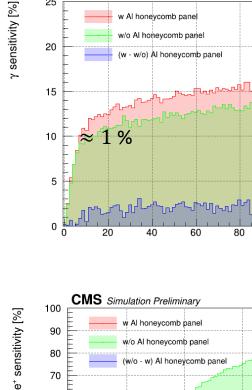
iRPC Background

Expected background hit rate vs R calculated scaling the incident background flux with the **AVERAGE** iRPC sensitivity applying the threshold.

Particles	RE3/1 HIT RATE Hz/cm^2	RE4/1 HIT RATE Hz/cm^2
Neutrons	251 ± 33	211 ± 20
Gammas	304 ± 23	243 ± 18
Electrons/ Positrons	13 ± 3	19 ± 9
TOT HIT- RATE	568 ± 27	473 ± 19

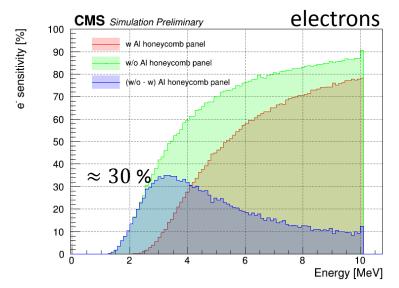
iRPC vs RPC sensitivity

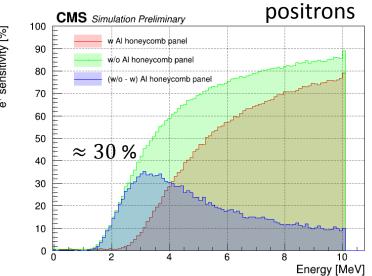

Average iRPC sensitivity from the convolution between the incident background fluxes $\phi_{bkg}^{CMS}(E)$ and the sensitivity S(E).


Particles	iRPC sensitivity	RPC sensitivity	∆ iRPC - RPC
Neutrons	0.468 % <u>+</u> 0.004 %	0.26 % ± 0.03 %	0.21 %
Gammas	2.446 % ± 0.006 %	1.6 % ± 0.2 %	0.85 %
Electrons	6.619 % ± 0.003 %	35 % ± 16 %	-28,39 %
Positrons	7.102 % <u>+</u> 0.012 %	35 % <u>+</u> 16 %	-27.90 %

Possible reasons of the differences:

- Different energy spectrum
- Different detector geometry


Aluminium honeycomb panel influence



CMS Simulation Preliminary

v Al honevcomb panel w/o Al honevcomb panel

gammas

Energy [MeV]