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1 Introduzione

Scopo del progetto è lo studio della dinamica di transizione di fase in alcune importanti classi
di sistemi fluidi. Partendo dal caso di fluido ad una singola componente vogliamo studiare la
separazione di fase tra liquido e vapore e la legge di crescita dei domini delle due fasi, in un sistema
raffreddato al di sotto del punto critico. Tale studio trova motivazione nel fatto che, come si preciserà
meglio in seguito, questo sistema non è stato mai studiato in dimensione d = 3. Vogliamo poi
considerare miscele di fluidi con una componente attiva, che rappresentano sistemi biologici o
materiali biosintetici, e studiare nuovi meccanismi di autopropulsione. Il Tratto caratterizzante dei
sistemi attivi è rappresentato dal fatto che i costituenti sono in grado di assorbire energia, da serbatoi
interni o dall’esterno, e dissiparla in attività come crescita, duplicazione, autopropulsione[1]. Essi
costituiscono un campo di ricerca di enorme interesse, all’interfaccia tra fisica della materia soffice,
meccanica statistica e biofisica.

Questo studio sarà condotto utilizzando metodi numerici Lattice Boltzmann (LB)[2], già utilizzati
in passato per lo studio della dinamica di fluidi complessi.

Per tutti i sistemi in oggetto è conveniente descrivere l’ enorme numero di gradi di libertà
interagenti in termini di pochi campi coarse grained. La descrizione dinamica nel continuo richiede
la definizione di un modello termodinamico per il sistema in esame. Utilizzeremo un approccio à la
Ginzburg-Landau in cui l’ energia libera è espressa come una funzione polinomiale degli invarianti
del parametro d’ordine rispetto al gruppo di simmetria del sistema. A partire da questo ricaviamo le
forze termodinamiche (tensore di pressione e potenziale chimico) che sono inserite nelle equazioni di
evoluzione dinamica. Le corrispondenti equazioni sono quella di Navier-Stokes, quella di continuità
e quella per l’ energia (se necessaria). Nel caso delle miscele fluide e dei cristalli liquidi bisogna
considerare anche un ulteriore insieme di equazioni che descrivono l’evoluzione del parametro d’
ordine, che può essere una quantità scalare, vettoriale o tensoriale, a seconda del sistema considerato
e delle sue simmetrie. Un approccio analitico, che risolva le equazioni di evoluzione, è possibile
solo per sistemi e geometrie molto semplici. Diviene dunque essenziale sviluppare e adottare un
approccio numerico. I metodi LB, in particolare, rappresentano tecniche computazionali moderne
usate in fluidodinamica per la simulazione del campo di velocità e per lo studio degli effetti da esso
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Figure 1: Rappresentazione delle velocità reticolari nella geometria utilizzata D3Q15.

generati. Essi sono costruiti a partire da particelle che si muovono tra i siti di un reticolo regolare
secondo l’ equazione del trasporto di Boltzmann discretizzata (LBE). Tale approccio trascura gli
effetti microscopici, ma tiene conto dell’ esistenza di difetti topologici a scale intermedie, come per
esempio le interfacce nelle miscele di fluidi, e l’ accoppiamento di questi oggetti con il campo di
velocità.

Nell’ambito del progetto il secondo anno è stato dedicato ai seguenti punti:

• Studio della separazione di fase tra liquido e vapore, in un sistema raffreddato al di sotto del
punto critico, e determinazione delle leggi di crescita dei domini delle due fasi in dimensione
d = 3. A tal fine è stato utilizzato uno specifico schema LB sviluppato e implementato
nell’ambito delle attività del primo anno.

• Utilizzando una modellizzazione Liquido-Vapore, con l’aggiunta di un ulteriore campo atto a
rappresentare la concentrazione di materiale attivo, si è sviluppato e studiato numericamente
un modello per il meccanismo all’origine della motilità cellulare in assenza di substrato.

• Studio numerico della morfologia della dinamica e della reologia di miscele di fluidi in cui
una delle due componenti è attiva.

2 Dinamica della separazione di fase Liquido Vapore in 3D

Quando un fluido, inizialmente in uno stato disordinato, viene istantaneamente raffreddato ad una
temperatura al di sotto della linea spinodale1, in una regione di coesistenza tra due fasi, si formano
domini delle due differenti fasi che crescono nel tempo. In tal caso la separazione di fase prende il
nome di decomposizione spinodale.

Tipicamente la crescita di tali domini è un fenomeno di scala, ovvero esiste una singola lunghezza
caratteristica l tale che la struttura dei domini appare la stessa durante l’evoluzione temporale, quando
tutte le lunghezze sono riscalate rispetto a l. Quanto detto prende il nome di ipotesi di scaling

1curva nel diagramma temperatura-densità (o composizione per sistemi a più componenti) luogo dei punti caratterizzati
da derivata seconda dell’energia libera di Gibbs nulla.
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Figure 2: Diagramma di fase ottenuto numericamente per diversi valori del coefficiente k, che
controlla la larghezza delle interfacce, e confronto con quello teorico ottenuto con la costruzione di
Maxwell (curve continue).

dinamico[3], ed è supportata dai risultati di simulazioni numeriche e esperimenti per il fattore di
struttura e le funzioni di correlazione. Tipicamente la taglia media dei domini l(t) cresce nel tempo
secondo legge a potenza, con un esponente α che dipende dalla morfologia, struttura dei domini,
dimensione del sistema, presenza di effetti idrodinamici e numero di componenti del parametro
d’ordine e se esso è conservato o meno.

Per le miscele binarie si possono distinguere tre differenti regimi [3], ognuno caratterizzato
da uno specifico meccanismo fisico di crescita, la cui esistenza può essere dedotta analizzando le
equazioni della dinamica, le equazioni di Navier-Stokes e l’equazione di evoluzione del parametro
d’ordine, e assumendo che esista una sola lunghezza caratteristica rilevante:

• Diffusivo
Nelle fasi immediatamente successive ad un quench, i.e. una brusca diminuzione di temper-
atura, il meccanismo di crescita dei domini è la diffusione di molecole da domini più piccoli,
a curvatura più grande, a domini più grandi con curvatura inferiore. Si può mostrare che
l’esponente con cui i domini crescono nel tempo è in questo caso α = 1/3.

• Idrodinamico Viscoso
Quando, durante il processo di separazione di fase, l’idrodinamica comincia ad essere rilevante
ma le velocità sono piccole e variano poco nel tempo, si può assumere che il termine inerziale
nelle equazioni di Navier-Stokes sia trascurabile. Imponendo quindi che le forze viscose siano
bilanciate da forze di interfaccia si trova, in questo regime α = 1 (come messo in evidenza per
la prima volta da Siggia).

• Idrodinamico Inerziale
Per velocità più elevate, il fenomeno fisico rilevante diviene il bilancio tra le forze di interfaccia
e le forze inerziali. Sotto queste assunzioni si trova α = 2/3.
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Figure 3: Snapshots della densità ρ , per un sistema di taglia L = 256 e viscosità η = 3 (a-c) e η = 1
(d-f). Notiamo come la separazione di fase sia ritardata nel caso di viscosità più alta, e come i domini
appaiano meno regolari.

Il regime inerziale, per piccoli valori della viscosità, e il regime viscoso, per valori più alti
della viscosità, sono stati osservati numericamente in un importante lavoro di Keadon et al. [4], per
miscele binarie in 3D.

Per sistemi a singola componente con separazione di fase Liquido-Vapore, in cui il parametro
d’ordine è la densità ρ , che non è localmente conservata, non è noto quali debbano essere gli
esponenti di crescita. I pochi risultati in letteratura riguardando solo sistemi 2D[5], e riportano
l’esistenza di un regime inerziale, e di un regime caratterizzato da un esponente di crescita α = 1/2
per viscosità sufficientemente elevate.

Parte dell’attività di ricerca, durante il primo anno, è stata dedicata allo sviluppo e all’implementazione
di uno schema LB per lo studio della separazione di fase liquido vapore in 3D, mentre durante il
secondo anno si è provveduto alla parallelizzazione dello stesso, al fine di considerare sistemi di
grandezza sino ad ora impossibili da simulare.

L’approccio LB prevede una discretizzazione dello spazio fisico e delle velocità consentite a
livello di ciascun sito reticolare, in base ad opportune proprietà geometriche. Nel caso specifico si è
scelto un modello D3Q15 (3 dimensioni spaziali e 15 velocità reticolari (Fig. 1)). L’evoluzione del
fluido è definita a partire da un insieme discreto di N funzioni di distribuzione { fi} (i = 0, ...,N−1),
che obbediscono alla equazione del trasporto di Boltzmann nell’approssimazione BGK:

fi(r+ ei∆t, t +∆t)− fi(r, t) =−
∆t
τ
[ fi(r, t)− f eq

i (r, t)] , (1)

dove r e t rappresentano coordinate spaziali e tempo, rispettivamente, {ei} (i = 0, ...,N − 1) è
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Figure 4: Snapshots a differenti istanti di tempo dell’interfaccia liquido-vapore per un sistema di
taglia L = 512 per un quench poco profondo a T = 0.99 e viscosità η = 1, per cui si osserva, a
questa temperatura, l’esponente α = 1/2, presente invece da η = 2 in poi a T = 0.95.

l’insieme delle velocità discrete, ∆t è il time step, e τ è il tempo di rilassamento che caratterizza il
rilassamento verso e distribuzioni di equilibrio f eq

i . La ricetta LB prevede che per le distribuzioni
di equilibrio, e eventualmente anche per i termini di forza dell’equazione del trasporto se presenti,
si effettui una espansione i cui coefficienti dovranno essere determinati in modo da ottenere le
corrette equazioni della dinamica nel limite continuo. A tal fine si è scelto di sviluppare uno schema
LB basato su una derivazione rigorosa della LBE per mezzo di una proiezione di Gauss-Hermite
della corrispondente equazione nel continuo[6]. La dimensionalità del problema in esame ha anche
reso necessario prendere in considerazione metodi di discretizzazione degli operatori differenziali
diversi da quelli standard. La scelta ottimale è risultata essere quella della di operatori con errori
di discretizzazione isotropi [7]. Alla fase di implementazione è seguita la fase di test del codice. Il
diagramma di fase della separazione liquido-vapore è stato ricostruito numericamente e risulta essere
consistente con quello teorico ottenuto attraverso la costruzione di Maxwell (Fig.2).

In figura 3 sono riportati alcuni snapshots della densità ρ , per un sistema di taglia L = 256, per
viscosità η = 3 (Serie superiore) e η = 1 (Serie inferiore). I casi riportati fanno riferimento a due
valori tipici, in lattice units (LU), di bassa e alta viscosità per il sistema in esame. Essi dipendono dal
modello LB considerato e il massimo e il minimo η sono limitati dalla stabilità numerica del codice.

Notiamo come la separazione di fase sia ritardata nel caso di viscosità più alta, e che i domini
appaino meno regolari. Queste differenze si riflettono sull’andamento della taglia media dei domini
l(t) nel tempo (Fig. 5). Questa è stata misurata come il primo momento del fattore di struttura
della densità e sembra suggerire, per il momento, l’esistenza di due regimi: uno caratterizzato da
un esponete α = 2/3 per bassi valori della viscosità (Fig.5a), e un regime di crescita con α = 1/2
(Fig.5b) per grandi valori della viscosità. L’esistenza di un regime iniziale, per alti valori di viscosità,
di crescita accelerata prima del regime 1/2, ha suggerito di considerare sistemi di taglia più grande.
Per poter considerare sistemi di taglia L = 512 è stato necessario parallelizzare il nostro schema LB,
tramite lo standard open MPI. Si è inoltre convenuto di considerare qunech meno profondi, dato che
in vicinanza del punto critico la tensione superficiale del sistema liquido-vapore ha un andamento
con la temperatura simile a quello delle miscele binarie. I risultati sono mostrati in figura 6(a),
dove risulta evidente un regime lineare seguito da una crescita con esponente α = 1/2 per valori di
viscosità più elevata. Il differente comportamento tra i diversi valori di viscosità è marcato da un
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Figure 5: Taglia media dei domini in funzione del tempo, per un reticolo di taglia L = 256, per bassa
viscosità (a) e viscosità più alta (b). Nel caso di bassa viscosità gli andamenti appaiono consistenti
con un esponente di crescita α ' 2/3 (retta tratteggiata in (a)), mentre nel caso di viscosità più alta
gli andamenti suggeriscono un esponente α ' 1/2 (retta tratteggiata in (b) ).

differente comportamento nel tempo della separation depth (figura 6(b)), osservabile che misura la
distanza dei domini di una fase dal loro stato di equilibrio.

Qualitativamente si può intuire, dalla dinamica della interfaccia tra liquido e vapore (figura 4(c)),
come su sistemi più grandi, una volta raggiunto l’equilibrio, la crescita dei domini sia dominata dalla
diffusione dell’interfaccia, piuttosto che dal meccanismo di pinch-off (figura 4(a-b)), che determina
ad alta viscosità, una crescita rapida con esponente α = 1.

Questa linea di ricerca proseguirà in collaborazione con il Prof. Sofonea, dell’università di
Timisoara, esperto nell’ambito dello sviluppo ed implementazione di algoritmi LB su GPU, per
confrontare i risultati sin qui ottenuti con schemi LB più precisi, sebbene meno efficienti.

3 Goccia di liquido attiva

Capire le regole che governano il moto di una cellula (o cell motility) è un problema affascinante
in biofisica poiché il meccanismo che governa la motilità è puramente auto-organizzato[8]. Il
meccanismo della cell-motility è anche di enorme interesse in campo biomedico, sia per il suo ruolo
centrale nell’auto-assemblamento di tessuti nella crescita embrionale, necessaria per la rigenerazione
di tessuti, sia per comprendere il meccanismo con cui le cellule formano metastasi nel cancro. Il
cosiddetto Crawling, moto di una cellula su substrato[8], è stato ampiamente studiato sia dal punto
di vista teorico sia numericamente. Al contrario, il moto di una cellula in bulk, ad esempio una
cellula che si muove in un ambiente 3D o nella matrice extracellulare, necessita ancora di una
completa comprensione e modelizzazione dal punto di vista teorico. Un ruolo fondamentale nella
motilità cellulare è ricoperto dalla miosina. Essa è una proteina motrice, rintracciabile nelle cellule
eucariotiche, responsabile del movimento basato sui filamenti di actina. Sia la contrazione della
miosina che la polimerizzazione della actina contribuiscono al moto della cellula. In particolare
la contrazione è la sola responsabile per la polarizzazione della cellula[9]. I risultati numerici
riportati in letteratura fanno riferimento tutti a sistemi composti da una goccia di gel attivo polare il
cui moto è dominato dall’instaurarsi di difetti nel campo di polarizzazione [10]. Tuttavia, recenti
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Figure 6: (a)Taglia media dei domini in funzione del tempo, per un reticolo di taglia L = 512. (b)
Separation depth in funzione del tempo, per un reticolo di taglia L = 512.

risultati sperimentali [11] suggeriscono che per alcuni tipi di cellule il moto può essere guidato
esclusivamente dalla contrazione e dalla concentrazione di miosina presente.

Il nostro obiettivo è quello di sviluppare un modello per il moto cellulare che sia governato dalla
sola contrazione della miosina, e che dunque sia isotropo e non prenda in considerazione la dinamica
del campo di polarizzazione.

Partiamo quindi modellizzando la cellula come una goccia di liquido in equilibrio termodinamico
con il vapore. Si è preso in considerazione questo sistema, e non ad esempio una miscela binaria,
poiché ci aspettiamo che sia necessario che il fluido sia comprimibile perché ci sia motilità guidata
dalla contrazione. All’interno della goccia aggiungiamo una certa concentrazione di miosina (Fig.
7). Supponiamo che essa sia posizionata a sinistra nella cellula. La miosina è contrattile quindi
’spinge il flusso’, ovvero crea un flusso maggiore a sinistra piuttosto che a destra e questo dovrebbe
essere sufficiente a far muovere la cellula. Introduciamo quindi un campo scalare che rappresenta la
miosina, che sia nullo all’esterno della cellula e valga 1 all’interno. La miosina crea contrazione, e
l’interplay tra contrazione e asimmetria dovrebbe generare il moto della cellula. La concentrazione
di miosina deve essere considerata nell’equazione della pressione che quindi risulterà essere uguale
a

p = ρT −φζ −Gρ , (2)

ζ è la contrattilità(ζ < 0), mentre G è un parametro legato alla comprimibilità del sistema..
Le equazioni che governano la dinamica del sistema sono le equazioni di Navier Stokes per la

velocità e l’equazione di convezione-diffusione per l’evoluzione della concentrazione di miosina φ :




ρ
Dv
Dt =−∇p+η∇2v− 2

3 η∇(∇.v)

∂φ

∂ t +∇.(φv) = Γ∇2( δF
δφ

) .

(3)

Nell’equazione di Navier Stokes compare il gradiente della pressione e quindi la variazione di
velocità è legata al gradiente di concentrazione di miosina.
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Figure 7: (a) Contour plot della densità rho e (b)-(c) campo di velocità per due differenti valori di
attività per una goccia in d=2 e d=3.(d)-(e) Raggio della goccia e velocità del centro di massa al
variare dell’attività ζ per due differenti valori del parametro G.

Nell’equazione di convezione-diffusione, l’energia libera è data da

F =
∫

dr {a
2

φ
2 + k(∇φ)2−b(ρ−ρav)φ

2 + cφ(∇ρ)2} . (4)

Il terzo e il quarto termine vengono introdotti per permettere che la miosina rimanga all’interno
della cellula (i.e., goccia di liquido).

I risultati ottenuti confermano che il meccanismo proposto, che impiega la contrazione della
miosina all’interno della goccia di liquido per generare la motilità della stessa, sia sufficiente per
il moto in assenza di substrato. La contrazione è infatti sufficiente a creare una goccia di actina, e
sussiste un range per i parametri G e ζ per il quale si osserva motilità della goccia(Fig. 7(a)-(b)). Tale
risultato è confermato anche dalle simulazioni in d=3 7(c). Si è inoltre provveduto a caratterizzare il
moto della goccia Fig. 7(e) e l’andamento del raggio critico della goccia per cui si ha moto al variare
del’attività Fig.7(d). Il diagramma di fase nel piano G−ζ completa lo studio (non mostrato qui) che
è stato sottomesso come research article alla rivista EPL.

4 Studio della reologia di una miscela attiva simmetrica

In questa sezione verranno presentati i risultati riguardanti la caratterizzazione reologica di una
emulsione polare attiva. L’attività di ricerca nel campo della materia attiva è stata principalmente
focalizzata su sistemi a singola componente e in minor misura sul comportamento di miscele costituite
da componenti attive e passive. Recenti studi su miscele binarie con una componente attiva hanno
mostrato che l’attività può causare instabilità all’interfaccia tra le due componenti[12, 13]. Il modello
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Figure 8: Rapporto (viscosità apparente)/(viscosità del fluido isostropo) vs tempo, per una miscela
attiva polare con ζ = 0.005, confinata tra due pareti aventi velocità in unità LB vw = 0.01.

che presentiamo costituisce una generalizzazione dei modelli citati nel fatto che l’emulsificazione
della componente attiva è favorita dalla presenza di un surfattante aggiunto alla miscela. In questo
modo si ottiene un sistema in cui è possibile controllare la quantità di materiale attivo disperso.
Questo consente di controllare non solo l’intensità ma anche la distribuzione spaziale dell’input
energetico, dovuto alla presenza dell’attività, nel sistema. Questo sostituisce un enorme progresso
sia dal punto di vista teorico che per l’influsso di tali studi in ambito tecnologico, dando la possibilità
di progettare nuovi materiali biosintetici, le cui caratteristiche e proprietà possono essere controllate
da un singolo parametro.

I fluidi attivi presentano una serie di fenomeni estremamente interessanti tra i quali il manifestarsi
di un regime di super-fluido, e stati di viscosità negativa osservati recentemente in una sospensione
di Escherichia Coli[14]. Nell’ambito del nostro modello vogliamo caratterizzare questi stati di
superfluidità e indagare il meccanismo alla base di queste peculiari caratteristiche reologiche dei
sistemi attivi.

Le variabili idrodinamiche del problema sono la densità del fluido ρ , la sua velocità v, la
concentrazione di materiale attivo φ , e la polarizzazione P, che determina l’orientazione media della
componente attiva.

Le equazioni che governano l’evoluzione del sistema sono

ρ

(
∂

∂ t
+v ·∇

)
v = −∇p+∇ ·σ total , (5)

∂φ

∂ t
+∇ · (φv) = ∇ ·

(
M∇

δF
δφ

)
, (6)

∂P
∂ t

+(v ·∇)P = −Ω ·P+ξ D ·P− 1
Γ

δF
δP

, (7)

nel limite di fluido incomprimibile. La prima è l’equazione di Navier Stokes dove p la pressione
isotropica e σ total è il tensore degli stress totale [15].
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Le equazioni (6)-(7) governano l’evoluzione temporale del campo di concentrazione e della
polarizzazione della componete attiva del fluido. Dato che la concentrazione di materiale attivo è
una quantità localmente conservata la sua evoluzione temporale sarà dettata da una equazione di
convezione-diffusione, Eq. (6), dove M è la mobilità, F un funzionale di energia libera che verrà
definito a breve, e δF/δφ il potenziale chimico.

La dinamica del campo di polarizzazione segue invece una equazione di advezione-rilassamento,
Eq. (7), derivante dalla teoria dei cristalli liquidi. Qui Γ rappresenta la viscosità rotazionale, ξ è
una costante che controlla la forma delle particelle attive, (positiva per particelle rod-like e negativa
per particelle disk-like ), h = δF/δP è il campo molecolare. D = (W +W T )/2 e Ω = (W −W T )/2
rappresenta la parte simmetrica e anti-simmetrica del tensore gradiente del campo di velocità
Wαβ = ∂β vα , dove gli indici greci denotano le componenti cartesiane. Il tensore degli stress σ total

considerato nelle equazioni di Navier-Stokes del modello, Eq. (5), può essere suddiviso in un pezzo
passivo di equilibrio ed in uno attivo di non equilibrio:

σ
total = σ

passive +σ
active. (8)

La parte passiva rappresenta la risposta elastica dal soluto ed è a sua volta somma di tre termini:

σ
passive = σ

viscous +σ
elastic +σ

interface. (9)

Il primo è un termine di stress viscoso che può essere scritto come σ viscous
αβ

= η(∂αvβ +∂β vα) dove
η è la viscosità di shear. Il secondo termine rappresenta lo stress elastico [15]:

σ
elastic
αβ

=
1
2
(Pαhβ −Pβ hα)−

ξ

2
(Pαhβ +Pβ hα)

−κ∂αPγ∂β Pγ , (10)

Dove κ è la costante elastica del cristallo liquido e il parametro ξ dipende dalla geometria come già
accennato. In più ξ stabilisce se il fluido tende ad allinearsi con il flusso (|ξ |> 1) o fare tumbling
(|ξ | < 1) sotto shear. Il terzo termine deriva dalla teoria delle miscele binarie. Esso include il
contributo dovuto all’interfaccia tra la fase attiva e passiva:

σ
inter f ace
αβ

=

(
f −φ

δF
δφ

)
δαβ −

∂ f
∂
(
∂β φ

)∂αφ . (11)

Nell’ultima espressione f è la densità di energia libera. Il contributo attivo al tensore degli stress,
è dato da [16, 17]

σ
active
αβ

=−ζ φ

(
PαPβ −

1
3
|P|2δαβ

)
, (12)

dove ζ è il parametro di attività che è positivo per sistemi extensile (pushers) e negativo per quelli
contractile (pullers). Lo stress attivo guida il sistema fuori dall’equilibrio fornendo energia. In
assenza di attività, le proprietà termodinamiche della miscela sono codificate nel seguente funzionale
di energia libera che accoppia l’energia libera del modello di Landau-Brazowskii [18] all’energia
libera di un cristallo liquido polare :

F [φ ,P] =
∫

dr{ a
4φ 4

cr
φ

2(φ −φ0)
2 +

k
2
|∇φ |2 + c

2
(∇2

φ)2

− α

2
(φ −φcr)

φcr
|P|2 + α

4
|P|4 + κ

2
(∇P)2 +βP ·∇φ} . (13)
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Il funzionale introdotto costituisce una generalizzazione dell’energia introdotta in [16], per una
miscela binaria attiva.

Il primo termine, moltiplicato per la costante fenomenologica a > 0, descrive le proprietà di bulk
della miscela, il secondo e il terzo determinano la tensione superficiale. Il termine di bulk è scelto
in modo da avere una energia libera con due minimi, uno a φ = 0 corrispondente alla componente
passiva, e l’altro in φ ' φ0, corrispondente alla fase attiva.

Figure 9: (a)-(c)-(e) φ contour plots per shear
rate γ̇ = 7.8 ∗ 10−5 e rispettivamente ζ =
0.0005,0.0015,0.005.(b)-(d)-(f) Profili di veloc-
ità mediati per lo stesso valore di γ̇ e Eractive =
5.7 ∗ 10−2 curva (arancione), Eractive = 1.7 ∗
10−1(blue), Eractive = 5.7 ∗ 10−1 (light-green) e
Eractive = 1.14 (rossa) . Eractive è un numero adi-
mensionale direttamente proporzionale all’attività
ζ .

Il nostro studio, teso alla caratterizzazione
reologica della emulsione in presenza di attività,
ha messo in evidenza l’esistenza di un deter-
minato range di shear rate γ̇ e attività estensile
ζ > 0 per il quale il sistema mostra, durante
la sua evoluzione temporale, stati di viscosità
negativa e finestre di superfluidità (Fig. 8). Le
differenti morfologie e i profili di velocità me-
diati sono mostrati in Fig. 9 per differenti val-
ori di attività a fissato shear rate. Il profilo di
velocità in Fig. 9(d) corrisponde ad una situ-
azione di unidirected motion, mentre i profili
in Fig. 9(f) sono tipici profili di viscosità neg-
ativa. Il meccanismo alla base dei differenti
regimi, lineare, unidirected e inverso è carat-
terizzabile nell’ambito del nostro modello. Le
caratteristiche reologiche sono infatti determi-
nate dalla direzione del campo di polarizzazione
in vicinanza delle pareti. Se la polarizzazione
è allineata al flusso ad entrambe le pareti la vis-
cosità risulta essere positiva, mentre se risulta
essere in verso opposto al flusso per entrambe
le pareti la viscosità è negativa e i profili di
velocità risultano invertiti. Se invece la polariz-
zazione è allineata nello stesso verso del flusso
ad una parete e in verso opposto all’altra si
hanno stati di unidirected motion, in cui il bulk
si muove in una sola direzione. Questi peculiari
fenomeni, osservati in alcuni recenti esperimenti
su sistemi biologici, risultano per la prima volta
tutti osservabili e caratterizzabile nell’ambito
del nostro modello. Il fenomeno della presenza
di regimi di viscosità negativa rappresenta un
primo passo verso la progettazione di motori biologici.

5 Attività didattica e partecipazione a scuole e conferenze

Durante il secondo anno di dottorato è stata svolta attività di supporto alla didattica nell’abito del
corso di Meccanica statistica avanzata, nello specifico per la parte riguardante la Teoria del gruppo
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di rinormalizzazione in Meccanica Statistica.
Si è inoltre trascorso, dal mese di Ottobre 2017 al mese di Dicembre 2017 un periodo all’estero

presso il dipartimento di fisica J.Maxwell dell’università di Edimburgo, sotto la supervisione del
Prof. Marenduzzo.

Come partecipazione a conferenze e scuole si riporta quanto segue:

• Winter scholl in active matter Tel Aviv university

• Tim 18 Conference Timisoara Dove si è presentato il lavoro dal titolo Morphology and flow
patters in higly asymmetric active emulsions

• DSFD 18 Conference Wochester Ma. USA, dove si è presentato il lavoro dal titolo Unidi-
rected motion and negative viscosity in active polar emulsions

• Italian soft matter days Padova, Italy, dove si è presentato un poster dal titolo Morphology
and flow patterns in polar active emulsions.

6 Pubblicazioni

Morphology and flow patterns in highly asymmetric active emulsions, G. Negro, L.N. Carenza,
P. Digregorio, G. Gonnella,A. Lamura, Physica A 2018.
Allegato alla presente relazione.

7 Lavori in sottomissione

In silico recostruction of myosin contraction based cell motility,G. Negro, G. Gonnella,A. Lamura,
D. Marenduzzo EPL.
LB methods for active fluids, G. Negro, L.N. Carenza, G. Gonnella,A. Lamura, A. Tiribocchi.

8 Lavori in preparazione

Sheared active polar emulsion, G. Negro, L.N. Carenza, G. Gonnella,A. Lamura, A. Tiribocchi.
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h i g h l i g h t s

• The morphology and the dynamics of an emulsion made of a polar active gel and an isotropic passive fluid is studied.
• We focus on the case of a highly off-symmetric ratio between the active and passive components.
• In absence of activity the stationary state is characterized by an hexaticaly ordered array of droplets.
• Small amount of activity favors the elimination of defects in the array of droplets.
• Rising activity new and interesting morphologies arises depending on whether the system is contractile or extensile.
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a b s t r a c t

We investigate numerically, by a hybrid lattice Boltzmannmethod, themorphology and the
dynamics of an emulsionmade of a polar active gel, contractile or extensile, and an isotropic
passive fluid. We focus on the case of a highly off-symmetric ratio between the active and
passive components. In absence of any activity we observe an hexatic-ordered droplets
phase, with some defects in the layout. We study how the morphology of the system is
affected by activity both in the contractile and extensile case. In the extensile case a small
amount of activity favors the elimination of defects in the array of droplets, while at higher
activities, first aster-like rotating droplets appear, and then a disordered pattern occurs. In
the contractile case, at sufficiently high values of activity, elongated structures are formed.
Energy and enstrophy behavior mark the transitions between the different regimes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The capability of different systems of using energy taken from their environment to go out of thermal equilibrium,
gives rise to a wealth of behaviors [1]. They range from swarming, self-assembly, spontaneous flows to other collective
properties [2–5]. This boosted a deep interest in addressing their study in order to look for possible new physics, explore
common features between different systems, and develop new strategies in designing synthetic devices and materials with
smart properties.

Self-propelled objects represent a remarkable example of active matter. Starting from the seminal model of Vicsek [6]
for swarms, it was later realized that common features can be traced in several systems at different scales promoting
the introduction of statistical models able to describe such behaviors [7–10]. Another example of active matter, sharing

* Corresponding author.
E-mail addresses: giuseppe.negro@ba.infn.it (G. Negro), l.carenza@studenti.uniba.it (L.N. Carenza), pasquale.digregorio@ba.infn.it (P. Digregorio),

g.gonnella@ba.infn.it (G. Gonnella), a.lamura@ba.iac.cnr.it (A. Lamura).

https://doi.org/10.1016/j.physa.2018.03.011
0378-4371/© 2018 Elsevier B.V. All rights reserved.
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many properties with suspensions of swimmers, is made by active gels that have been introduced to model mixtures of
polar biological filaments with (active) motor proteins [11–13]. Their continuum modeling is based on the liquid-Crystal
description of long filaments in the nematic phase supplemented with additional contributions to introduce the motor
activity [14,1,2].

Research in this field has beenmainly focused on single-component active systems and to a lesser extent on the behavior
of solutions of active and passive components. Mixtures of self propelled and passive particles have been studied by
Brownian-like simulations [15,16], focusing on the role of activity in separating the two components of the mixtures. Binary
fluids with an active component have been considered in [17,18] showing that the active part may cause instabilities on
active passive interface. Recently [19] a model has been introduced where emulsification of the active component is favored
by the presence of surfactant added to the mixture. This model generalizes the aforementioned active gel theory to describe
the behavior of a mixture of isotropic passive and polar active fluids. The goal was to have a system with a tunable amount
of active material that can be dispersed homogeneously in the fluid. This would also represent a further important step in
the study of active turbulent fluids [20,21] (with the possibility of tuning the intensity but also the spatial distribution of
energy input in the system).

In [19] a symmetric mixture of active and passive components was considered. Their equilibrium configurations are
dominated by the formation of local ordered lamellae [22–26]. It was shown that activity may modify such a configuration
leading to a variety of morphologies whose formation strongly depends on the intensity and the kind of active doping.
Indeed, polar active fluids are said to be either extensile (e.g. bacterial colonies andmicrotubules bundles) or contractile (e.g.
actine and myosin filaments) according to the nature of the stress exerted by the active component on its neighborhood.
Furthermore, intensity of active doping can be tuned by keeping under control the amount of fuel available to active particles.
This corresponds experimentally to keeping under control the amount of ATP in active gels of bundled microtubles [27]
or the amount of oxygen available, the concentration of ingredients, or the temperature in bacterial suspensions. In the
present model this is done by introducing a parameter representing the strength of the active stress acting in the system
(see Section 2). The main result was that, even if under symmetric conditions, activity modifies lamellar configurations into
an emulsion of passive droplets in an activematrix at sufficiently high contractile activity. On the other hand, lamellae change
their morphology into rotating active droplets in the extensile case.

In this work we complement the previous analysis by considering a highly off-symmetric mixture with a 10 : 90 ratio
of the active and passive components both for extensile and contractile systems. Here the equilibrium state of the fluid is
characterized by an ordered array of droplets of the minority phase positioned at the vertices of a triangular lattice. We will
show that, despite the strong unbalance between the two components, activity greatly affects themorphology of the system,
leading to the development of a wide range of patterns both for the concentration and the velocity field. In the extensile case
a small amount of activity favors the elimination of defects in the system, as shown by measuring the number of defects in
Voronoi tessellation. By increasing activity, isolated droplets tend to merge forming larger ‘islands’ of active material and
then, at still larger activity, big rotating droplets are observed. In the contractile case activity promotes the rupture of the
hexagonal phase and the appearance of a matrix of the active component in the passive flowing background, differently
from what happened in the symmetric case. The morphological study is supported by the analysis of the kinetic energy and
enstrophy behavior.

The dynamic equations for the concentration of the active material and the polarization, which fixes the average
orientation of the active component, are derived from a proper free-energy functional and supplemented with the Navier–
Stokes equations for the whole fluid in the incompressible limit. These equations are numerically solved by using a hybrid
lattice Boltzmann method [17,28–32].

The paper is organized in the followingway. The next Section is devoted to present the thermo-hydrodynamic description
of the system, the numerical method, and the set of parameters relevant for the present study. In Sections 3 and 4 the results
for the morphology and the corresponding flow patterns will be shown and related to the observed behaviors of energy and
enstrophy. Finally, a discussion with some remarks and possible future lines of investigation will conclude the paper.

2. Model

We outline here the hydrodynamic model and the numerical method used to conduct our study. We consider a fluid
comprising amixture of activematerial and solventwith totalmass densityρ. The physics of the resulting compositematerial
can be described by using an extended version of the well-established active gel theory [1,2,17,32–34]. The hydrodynamic
variables are the density of the fluid ρ, its velocity v, the concentration of the activematerial φ, and the polarization P, which
determines the average orientation of the active material. The dynamic equations ruling the evolution of the system are

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p + ∇ · σ total , (1)

∂φ

∂t
+ ∇ · (φv) = ∇ ·

(
M∇

δF
δφ

)
, (2)

∂P
∂t

+ (v · ∇) P = −Ω · P + ξD · P −
1
Γ

δF
δP
, (3)
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in the limit of incompressible fluid. The first one is the Navier–Stokes equation, where p is the isotropic pressure and
σ total is the total stress tensor [35]. Eqs. (2)–(3) govern the time evolution of the concentration of the active material and
of the polarization field, respectively. Since the amount of active material is locally conserved, the time evolution of the
concentration field can be written as a convection–diffusion equation, Eq. (2), where M is the mobility, F a free energy
functional as defined later, and δF/δφ is the chemical potential. The dynamics of the polarization field follows an advection–
relaxation equation, Eq. (3), borrowed from polar liquid crystal theory. Here Γ is the rotational viscosity, ξ is a constant
controlling the aspect ratio of active particles (positive for rod-like particles and negative for disk-like ones), h = δF/δP is the
molecular field.D = (W+W T )/2 andΩ = (W−W T )/2 represent the symmetric and the antisymmetric parts of the velocity
gradient tensorWαβ = ∂βvα , where Greek indexes denote Cartesian components. These contributions are in addition to the
material derivative as the liquid crystal can be rotated or aligned by the fluid [35]. The stress tensor σ total considered in the
Navier–Stokes equation of the model, Eq. (1), is split into the equilibrium/passive and non-equilibrium/active part:

σ total
= σ passive

+ σ active. (4)

The passive part represents elastic response from solutes and is, in turn, the sum of three terms:

σ passive
= σ viscous

+ σ elastic
+ σ interface. (5)

The first term is the viscous stress written as σ viscousαβ = η(∂αvβ + ∂βvα) where η is the shear viscosity. The second term is the
elastic stress analogous to the one used in nematic liquid crystal hydrodynamics [35]:

σ elastic
αβ =

1
2
(Pαhβ − Pβhα) −

ξ

2
(Pαhβ + Pβhα)

− κ∂αPγ ∂βPγ , (6)

where κ is the elastic constant of the liquid crystal and the parameter ξ depends on the geometry, as already mentioned. In
addition ξ establishes whether the fluid is flow aligning (|ξ | > 1) or flow tumbling (|ξ | < 1) under shear. The third term is
borrowed from binary mixtures theory. It includes interfacial contribution between the passive and the active phase:

σ
interface
αβ =

(
f − φ

δF
δφ

)
δαβ −

∂ f
∂

(
∂βφ

)∂αφ . (7)

Here f is the free energy density. The active contribution to the stress tensor, not stemming from the free energy, is given
by [33,36]

σ active
αβ = −ζφ

(
PαPβ −

1
3
|P|

2δαβ

)
, (8)

where ζ is the activity strength that is positive for extensile systems (pushers) and negative for contractile ones (pullers).
The active stress drives the system out of equilibrium by injecting energy into it and satisfies the symmetry P → −P.

The thermodynamics properties of the binary mixture, in absence of activity, are encoded in the following free-energy
functional that couples the Landau–Brazovskii model [37] to the distortion free-energy of a polar system:

F [φ, P] =

∫
dr {

a
4φ4

cr
φ2(φ − φ0)2 +

k
2
|∇φ|

2
+

c
2
(∇2φ)2

−
α

2
(φ − φcr )
φcr

|P|
2
+
α

4
|P|

4
+
κ

2
(∇P)2 + βP · ∇φ} . (9)

This is a generalization of the free energy functional for active binary mixtures defined in [33]. The first term, multiplied by
the phenomenological constant a > 0, describes the bulk properties of the fluid, the second and third ones determine the
interfacial tension. Notice that here a negative value of k favors the formation of interfaces while a positive value of c has
to guarantee the stability of the free-energy [37]. The Landau–Brazovskii model, with only the φ terms in the first line of
Eq. (9), when the composition is symmetric, has a transition line for kcr = −

√
8cã/15, in the mean field approximation [38],

where ã = aφ2
0/8φ

4
cr is half the coefficient of the φ quadratic term in (9). Lowering k from positive to negative values leads

the system tomove from pure ferromagnetic phase to configurationswhere interfaces between components are favored; for
values lower than kcr the system exhibits a periodic behavior such that the equilibrium state of the system is characterized
by lamellae. For asymmetric compositions droplets of the minority phase are stable [22,39,40]. The bulk term is chosen in
order to create two free energy minima, one (φ = 0) corresponding to the passive material and the other one (φ ≃ φ0)
corresponding to the active phase; φcr = φ0/2, where φcr is the critical concentration for the transition from isotropic
(|P| = 0) to polar (|P| > 0) states. The bulk properties of the polar liquid crystal are instead controlled by the |P|

2 and
|P|

4 terms, multiplied by the positive constant α. The choice of φcr has been made in order to break the symmetry between
the two phases and confine the polarization field in the active phase φ > φcr . The second last term proportional to (∇P)2
describes the energy cost due to elastic deformation in the liquid crystalline phase, gauged by the elastic constant κ (in the
single elastic constant approximation). Finally, the last term takes into account the orientation of the polarization at the
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(a) (b)

Fig. 1. (a) Snapshot of φ contour plot for a configuration in the stationary regime at ζ = 0, for a portion of size L = 128, of a system of original size L = 256.
The color code displayed here is the same of all the contour plots in the rest of the work. (b) Voronoi tessellation for the same configuration in (a). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Snapshots of φ contour plots (upper panels), and corresponding Voronoi tessellation (lower panels) at times 2 × 105 (a), 12 × 105 (b), 40 × 105

(c), 62 × 105 (d) for ζ = 0.006 on a lattice of size L = 256. The box in Fig. 2c indicates a region in which the droplet size is bigger compared to the rest of
the system. The final configuration (Fig. 2h) is almost-completely hexatically ordered as witnessed by the presence of very few defects. These latter ones
are in correspondence of the hole visible in Fig. 2d in the same position.

interface of the fluid. If β ̸= 0, P preferentially points perpendicularly to the interface (normal anchoring): towards the
passive (active) phase if β > 0 (β < 0).

The equations ofmotion of the exotic polar active emulsion, Eqs. (1)–(3), are solved bymeans of a hybrid lattice Boltzmann
(LB) scheme, which combines a LB treatment for the Navier–Stokes equation (see Appendix for more details) with a finite-
difference predictor–corrector algorithm to solve the order parameter dynamics. Simulations have been performed on a
periodic square lattice of size L = 256. The concentration φ ranges from φ ≃ 0 (passive phase) to φ ≃ 2 (active phase).
Unless otherwise stated, parameter values are a = 4 × 10−3, k = −6 × 10−3, c = 10−2, α = 10−3, κ = 10−2, β = 0.01,
Γ = 1, ξ = 1.1, φ0 = 2.0, and η = 1.67. All quantities in the text are reported in lattice units.
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Fig. 3. (Main figure) Defects ratio (droplets without 6 neighbors over the total number of droplets in the configuration) vs. activity, in the stationary time
regime, for systems of size L = 256. The figurative dashed line stands for the fact that increasing activity it is no more possible a coherent defects analysis,
due to the formation of asters first and completely non definite structures for strong activity (see next figures). (Inset) Global hexatic order parameter (10)
as a function of activity.

Wehave considered a 10 : 90mixture of the active and passive component following two initialization procedures. In one
case we started from a random configuration of polarization and concentration. The latter has been initialized considering a
random variation of ten percent around its average value. Starting from this configuration, the system has been equilibrated
without activity. Then, activity has been switched on and the evolution of the system studied. In the other procedure the
random initial configuration has been evolved in the presence of activity. We checked that the two procedures lead to the
same behavior at late times. The results presented in the following generally are obtained with the second initialization
procedure.

3. Extensile case

3.1. Small activity, hexatic order, and defects

Having in mind to fully characterize the behavior of the system as the value of activity changes, we begin by considering
the case when the activity is off. In this case, at equilibrium, the system is characterized by an ordered array of droplets as
can be seen looking at the contour plot of the concentration φ in Fig. 1a. The droplets (and their centers of mass) can be
easily pinpointed by putting a proper cutoff on the concentration field to distinguish active regions from passive ones. Each
closed region of lattice sites that falls beyond the cutoff, is identified as a droplet. A good choice for the cutoff with our choice
of the parameters is seen to be φ ∼ 1.5. Droplets are hexatically ordered, that is they occupy vertices of a triangular lattice,
besides the presence of some defects. A Voronoi tessellation is used in order to unambiguously identify the nearest-neighbors
network for the centers of mass of each droplet. Voronoi tessellation establishes a partitioning of the space with one closed
region for each center of mass, according to the following rule: the region associated to the ith droplet contains all the points
of the space that are closer to its center of mass than to any other droplets. In Fig. 1b it is shown the use of this analysis.
Droplets with 5 nearest neighbors are highlighted in red, while those with 7 neighbors in blue. Observe that most of the
defects appear in pairs indicating the presence of dislocations in the system [41].

For non-zero, but still small (positive) values of ζ , the hexatic-droplet phase survives. At sufficiently high values of ζ , but
still in the small activity regime, activity is able to reduce the number of defects, driving the system in an almost completely
ordered phase, as shown in the time evolution of Fig. 2, at ζ = 0.006. The system first forms transient differently-oriented
domains bounded by grain-boundary defects (an example of a closed grain boundary is shown in Fig. 2g), then they shrink
during the time evolution and disappear at the end, leaving a single hole in the layout.We checked that if instead of switching
on activity from the beginning, we start from configurations equilibrated without activity, and then we switch it on, the
defects dynamics is not significantly affected. In the course of this evolution we also observe other features, here only
transient, that play a major role at larger activity. In Fig. 2b few larger aster-like droplets are observed. We refer as aster-like
droplets, big rotating droplets or simply asters to non-circular droplets which have the shape of an aster associated to the
formation of vortices in the velocity field, aswill be seen later. The presence of these aster-like dropletswill be a predominant
feature in the large activity regime aswill be seen further in the text.We observe also a slight increase of droplets size during
time evolution of the system as highlighted in Fig. 2c. At the end, for ζ = 0.006 and slightly larger values of ζ , activity is
such to let the droplets rearrange in an almost defect-free final configuration. To better understand the effect of activity
on the hexatic arrangement we plot in Fig. 3 the defects ratio D (with respect to the number of droplets) as the activity
varies. We see that for very small values of activity, the hexatic order survives but there is no appreciable change in the
number of defects with respect to the passive limit. However, for values of ζ around 0.006, or slightly larger, for the longest
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(a) ζ = 0.0072. (b) ζ = 0.0074. (c) ζ = 0.0076.

(d) ζ = 0.0078. (e) ζ = 0.0080. (f) ζ = 0.0090.

Fig. 4. Snapshots of φ contour plots at late times for different choices of ζ > 0, for a lattice of size L = 256.

simulated times, the hexatic order is enhanced as activity is such to remove the defects. At larger values of ζ a change in
the overall morphological behavior of the mixture will be observed and the defects analysis looses significance. In order to
further characterize order in the droplet phase we use a hexatic order parameter, as the one used for studying hexatic order
and phase transitions in two-dimensional systems [42]. Local hexatic order parameter and its global average are defined, as
in [43], by

ψ6i =
1
Ni

Ni∑
j=1

exp 6iθij, Ψ6 =
1
N

⏐⏐⏐⏐ N∑
i=1

ψ6i

⏐⏐⏐⏐, (10)

where Ni is the number of neighbors of the ith droplet, θij is the angle that droplets i and j form with a reference axis, and
N is the total number of droplets. As shown in the inset of Fig. 3, the measure of Ψ6 is consistent with the picture found by
looking at the number of defects. As activity is increased from 0, the global hexatic parameter fluctuates around a positive
value, whichmeans that the system is partially hexatically ordered except for some defects. Within the activity range where
we see no defects, Ψ6 reaches its saturation value 1, being the system in a perfectly ordered phase.

3.2. Larger activity and aster-like droplets

Starting from ζ = 0.0072 aster-like droplets are no more transient and the system morphology, at late times, becomes
dominated by the presence of these structures.1 The transition to this regime can be analyzed, qualitatively, looking at
the panels in Fig. 4. Here a series of snapshots of φ contour plots for different values of activity are reported, starting from
ζ = 0.0072 up to ζ = 0.0090. A small number of isolated aster-like droplets linger at late times for ζ = 0.0072 (Fig. 4a),
while for bigger values of activity these structures start grouping (Fig. 4b) filling progressively a large portion of the system
(Figs. 4d–4f) at the expense of small droplets. The mechanism of formation of the aster-like droplets can be intuited looking
at Figs. 4a and 4b. First, bigger droplets thicken in a portion of the system, leading two of them to merge, then the new
big droplet starts rotating while incorporating neighboring droplets until an aster-like structure is fully stable. The time
evolution of the kinetic energy per unit volume Ek =

∑
rρv(r)

2/2, for ζ = 0.0072, is shown in Fig. 5 (blue curve) and
reproduces the aster formation: The system sits in the droplet configuration with a constant value of kinetic energy density
until the merging of the two droplets leads to a strong discontinuity in the energy density. When the aster-like droplets are

1 We checked the behavior until t = 3.5 × 106 as can be seen from the time evolution of the kinetic energy in Fig. 5.
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Fig. 5. Time evolution of kinetic energy for different values of ζ . Themiddle blue curve is the time evolution for the same system of Fig. 4a. For ζ = 0.006
(bottom yellow curve) the peak corresponds to the formation of asters as explained in the text but at late times the stationary state is characterized by an
hexatic order and the kinetic energy goes to zero. The top red curve corresponds to the case ζ = 0.0078 and is displayed in order to show that the system
reach a stationary state.

(a) ζ = 0.0030. (b) ζ = 0.006. (c) ζ = 0.0072.

Fig. 6. Snapshots of φ contour plots with superimposed the velocity field at late times with different choices of ζ > 0, for a portion of size L = 120 for
cases (a) and (c), and of size L = 100 for case (b), of a system of original size L = 256. Averaged modules, over lattice sites, of velocities for the three cases
are 3.473 × 10−4 , 7.232 × 10−4 and 1.974 × 10−3 respectively.

fully stable, there is a strong contribution to the kinetic energy coming from their angular velocity. These structures then
begin to slow down until they disappear, and the energy density returns to a lower constant value. Then, again, new asters
are formed and do not disappear even at late times. In contrast, at lower activity (yellow curve in Fig. 5, for ζ = 0.006) asters
disappear and the kinetic energy goes to zero remaining constant for the time checked. The red curve in Fig. 5 corresponds
to the case ζ = 0.0078. The kinetic energy is appreciably greater then the previous cases and increases until a stationary
state is reached. For this value of activity asters are continuously formed and never disappear in the system.

The velocity field at different activities is displayed in Fig. 6. We see that the resulting aster-like droplets (Fig. 6c) have
a velocity field much stronger that the one around droplets (see caption of Fig. 6c). They behave as a vortical source for the
velocity field and for this reasonwe refer to them also as big rotating droplets. The velocity field as activity varies reproduces
the behaviors so far discussed. At ζ = 0.006 (Fig. 6b) we distinguish vortical structures that are not localized anymore in
correspondence of the droplets, as for smaller values of the activity (Fig. 6a), but start mixing with neighboring vortices.

3.3. Very large activity and overview

At even larger values of activity (ζ ≳ 0.01) the aster-like structures are destroyed by the flow and no clear morphological
pattern can be observed. The system appears completely mixed as it will be shown.

A better characterization of the behavior of the system in this regime comes from the study of hydrodynamic quantities
such as the kinetic energy per unit volume Ek and the enstrophy per unit volume defined as ε =

∑
rω(r)

2/2, where
ωi = ϵijk∂jvk is the vorticity vector and ϵijk is the completely anti-symmetric Levi-Civita tensor. Kinetic energy represents a
measure of the strength of fluid flows in the system, while enstrophy can be used to figure out whether the velocity field
has developed vortical structures. The graphs in Fig. 7 show the behavior of energy and enstrophy averaged in time over
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Fig. 7. Plot of kinetic energy and enstrophy per unit volume averaged in time as functions of ζ > 0.

Fig. 8. Snapshots of φ contour plot with superimposed streamtraces, at late times, for ζ = 0.09, for a lattice of size L = 256. The color code is the same of
that displayed in Fig. 1a. The prevalence of green regions means that the system is almost completely mixed. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

uncorrelated configurations as functions of the activity. They are both null for ζ = 0 and raise to reach a peak in the range
0.01− 0.02. Values are significantly different from 0 at ζ = 0.0072 and this corresponds to the formation of vortical asters.
If activity is raised over ζ ≃ 0.007, the number of vortical structures increases until ζ ≃ 0.02. For larger values of ζ asters
become unstable and flexible, elongated rotating structures are formed until one arrives at configurations like that of Fig. 8,
at ζ = 0.09, with the velocity field exhibiting a pattern like the one shown. When these structures start melting, rotational
contribution to the kinetic energy starts decreasing while the kinetic energy stays approximately constant. In this regime
weak vortical flows span the system. Such flows dissipate energy while moving, according to the dissipative nature of the
fluid, andweaken in intensity until they expire in small and slow vortices or simplymerge inmore intense flows as suggested
by the streamtraces displayed in Fig. 8.

4. Contractile case

We now consider the case of contractile (ζ < 0) emulsions. For slightly negative values of ζ , configurations at late times
are similar to the extensile case.

Increasing |ζ |, the hexatic order is progressively lost: First a change in the droplet dimension and shape is observed, as
it can be seen in Fig. 9a. This leads the fluid flow to assume different configurations throughout the system. At very low
contractile activity, not shown, the velocity field is small in magnitude and enforced in regions close to droplets creating
vortical structures that rotate around the center of the droplets themselves. For values of activity, such as ζ = −0.008,
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(a) ζ = −0.008. (b) ζ = −0.02.

(c) ζ = −0.008. (d) ζ = −0.02.

Fig. 9. (a)–(b) Snapshots of φ contour plots at late time for different choices of ζ < 0, for a system of size L = 256. (c)–(d) Snapshots of φ contour plots
with superimposed the velocity field at late times, for the same choices of ζ < 0 as in (a) and (b) respectively, for a portion of size L = 70 of a system of
original size L = 256. Averaged modules, over lattice sites, of velocities for the two cases are 9.201 × 10−4 and 1.143 × 10−3 respectively.

Fig. 10. Plot of energy and enstrophy per unit volume as functions of ζ . Both energy and enstrophy are two order of magnitude less compared to the
extensile case (Fig. 5). This is mainly due to the absence of asters in this case.

droplets start oscillating, following the flow (Fig. 9c) and, eventually, merging (see Figs. 9a and 9c) thus creating elongated
structures. For large enough activity the hexagonal pattern is lost (Fig. 9b). Flow fields are sustained by the active stress
that continuously drives energy into the system and generates flows that are not confined around the droplets anymore,
but move throughout the system as it is shown in Fig. 9d. This happens for values of ζ ranging from −0.01 to −0.02 but for
even stronger values, themerging of structures throughout the system affects the equilibrium configuration so strongly that
when ζ ≲ −0.02, it is not possible to distinguish any kind of definite pattern anymore.

Here again, together with the morphology it is useful to look at the behavior of the kinetic energy and enstrophy per
unit volume. The graphs in Fig. 10 show their behaviors averaged in time over uncorrelated configurations of the system for



G. Negro et al. / Physica A 503 (2018) 464–475 473

different values of the activity ζ . Both energy and enstrophy are null when ζ = 0, according to the fact that in absence of
an energy source no fluid flow can be sustained in a dissipative fluid; then they increase until ζ ≃ −0.01 when enstrophy
reaches a peak. This trend fits the morphology behavior presented before: As far as droplets are preserved, the velocity field
creates vortical structures around them that raise in strength for stronger values of activity, butwhen themerging of droplets
starts affecting the morphology, the local vortical structures are progressively replaced by flows without ordered structure.
This brings energy to stay approximatively constant for values ζ ≲ −0.02 while enstrophy collapses rapidly.

5. Conclusions and perspectives

This work shows how activity modifies the equilibrium hexatic-ordered droplets configuration of an highly asymmetric
active emulsion.

In the extensile case we found three different regimes. For ζ up to 0.005 hexatic order is preserved, while is enhanced
for values of ζ around 0.006, which is the critical value for a transition to a regime dominated by big-rotating droplets. In
fact, starting from ζ = 0.0072 the systemmorphology becomes characterized by the presence of aster-like droplets. At even
larger values of activity (ζ ≳ 0.01) the aster-like structures are destroyed by the flow and the system appears completely
mixed. We have scored the transitions studying energy and enstrophy behaviors. In the case of contractile emulsions, for
slightly negative values of ζ stationary configurations are similar to the extensile case while, strong contractile activity gives
rise to elongated structures.

In the future we plan to extend these studies to three dimensional systems, where even richer morphologies ad flow
patterns ca be expected.
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Appendix. Numerical method

In the LB scheme the evolution of the fluid is defined in terms of a set of N discrete distribution functions {fi} (i =

0, . . . ,N − 1) which obey the dimensionless Boltzmann equation in the BGK approximation:

fi(r + ei∆t, t +∆t) − fi(r, t)

= −
∆t
τ

[fi(r, t) − f eqi (r, t)] ,
(A.1)

where r and t are the spatial coordinates and the time, respectively, {ei} (i = 0, . . . ,N−1) is the set of discrete velocities,∆t
is the time step, and τ is a relaxation time which characterizes the relaxation towards the equilibrium distributions f eqi . The
shear viscosity η is related to τ by the relationship η = c2∆t 2τ−1

6 . The value of N depends on the space dimensions and the
lattice geometry. The moments of the distribution functions allow to write the conservation laws for the density and total
momentum in the form:∑

i

f eqi = ρ

∑
i

f eqi eiα = ρvα .
(A.2)

The second moment, which describes the balance between energetic densities at stake, is fixed in order to find the
hydrodynamic equations in the continuum limit. It is given by∑

i

f eqi eiαeiβ = Παβ + ρvαvβ , (A.3)

whereΠαβ represents the pressure tensor. Introducing the nematic tensor Qαβ = PαPβ −
1
3 |P

2
|δαβ , the pressure tensor can

be written as

Παβ = −pδαβ + 2ξ (Qαβ +
1
3
δαβ )Qγ ϵHγ ϵ

− ξHαγ (Qγ β +
1
3
δγ β ) − ξ (Qαγ +

1
3
δαγ )Hγ β

− ∂αQγ ν
δf

δ(∂βQγ ν)
+ QαγHγ β − HαγQγ β ,

(A.4)
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Table A.1
Equilibrium distribution coefficients.

A0 = ρ − 20A2 A1 = 4A2 A2 =
[Παβ+vζ (Qαβ+

1
3 δαβ )]δαβ

24v2

B0 = 0 B1 = 4B2 B2 = ρ/12v2

C0 = −2ρ/3v2 C1 = 4C2 C2 = −ρ/24v2

D0 = 0 D1 = 8D2 D2 = ρ/8v2

G0αβ = 0 G1αβ = 4G2αβ G2αβ =
[Παβ−

1
2Πδδ δαβ+vζ (Qαβ+

1
3 δαβ )]

8v4

where H is the field conjugated to the nematic tensor and p the ideal gas pressure.
The equilibrium distributions are expanded up to the second order in the velocities

f eqk = Ak + Bkvαekα + Ckv2+

Dkvαvβekαekβ + Gkαβekαekβ ,
(A.5)

where the index k labels the different directions on the discretized lattice. The Ak, Bk, Ck, Dk and Gkαβ are characteristic
parameters to be determined to get the right hydrodynamic equations in the continuum limit by imposing the conditions
given by Eqs. (A.2)–(A.3). For a two-dimensional square lattice with N = 9 velocities (D2Q9), which is the model here
considered, these parameters are reported in Table A.1, and the lattice velocities are e0 = (0, 0), e1,2 = (±u, 0), e3,4 =

(0,±u), e5,6 = (±u,±u), e7,8 = (∓u,±u) with u = ∆x/∆t ,∆x being the lattice mesh size. In Table A.1 k = 0 corresponds
to the rest lattice velocity,while k = 1 and k = 2 correspond to the velocities directed towards the first and secondneighbors,
respectively.

The LB scheme is coupled with a finite-difference predictor–corrector algorithm, in order to solve simultaneously
Eqs. (1)–(3). This method was previously used to study the hydrodynamics of binary fluids [28,44], liquid crystals and active
matter [30,45].
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1 Introduction

The goal of this article is to describe the use of Lattice
Boltzmann Methods in the study of large scale proper-
ties of active fluids [1–6], showing also recent progress in
few relevant topics. Active fluids are living matter or bio-
logically inspired systems with the common characteristic
of being composed by self-propelled (or active) units that
burn stored or ambient energy into work or systematic
movement. An example in nature is given by the cell cy-
toskeleton (or by cell extracts) in bulk suspensions in pres-
ence of molecular motors (e.g. myosin or kinesin) [7, 8].
In these solutions molecular motors exert forces on cy-
toskeletal filaments (actin filaments and microtubules) [9]
and trigger their motion in the surrounding fluid. These
forces, exchanged through transient and motile contact
points between filaments and motor proteins, result from
the conversion of chemical energy, typically coming from
ATP hydrolysis, into mechanical work. Such systems are
commonly termed “active”.

Active systems show many interesting physical prop-
erties, of general character, related to their collective be-
havior, remarkable especially when compared with their
analogue in passive or equilibrium systems. Pattern for-
mation is an example. A disordered array of microtubules
may arrange into spiral or aster configurations when the
concentration of motor proteins (for instance kinesin) is
sufficiently high [7]. Suspensions of bacteria, in spite of
their low Reynolds numbers, can exhibit turbulent flow
patterns [10, 11], marked by traveling jets of high col-
lective velocities and surrounding vortices. Active fluids
also exhibit peculiar rheological properties. Depending on
the characteristic of the active stress (contractile or ex-
tensile, see in the following), activity is either capable
to heighten viscosity, enough to develop shear-thickening
properties in contractile systems [12–16], or to induce a
“superfluid” regime under suitable conditions in extensile
suspensions. [17]. Other relevant properties have emerged
in the study of fluctuation statistics [18–23], while non-
equilibrium order-disorder transitions have been studied

? Present address: Insert the address here if needed

in several models [24]. Fluctuations and phase transitions
have been especially analyzed in the context of agent-
based models. The flocking transition [25], for instance,
was the first one to be studied in a model of point-like
particles moving at fixed speed and with aligning inter-
action [26]. Activity by alone actually favors aggregation
and can induce a phase transition, often called motility
induced phase transition (MIPS) [27]. This has been nu-
merically studied by using simple particle-based models of
active colloids with excluded volume interactions and dif-
ferent shapes [28–35]. The particle approach has been also
largely used in other contexts, to simulate, for example,
the self-organization of cytoskeleton filaments described
as semiflexible filaments [36].

Different approaches aiming at a coarse-grained de-
scription based on general symmetry arguments and con-
servation laws have been developed for capturing essential
or universal large scale behavior of active systems and for
studying their material properties. The first continuum de-
scription in terms of density and polarization field, with
interactions favoring alignment with polar order, was pro-
posed in [37]. In this model, as in others where nematic
interactions were considered [38–40], the medium in which
particles are supposed to move does not contribute with
its own dynamics to the evolution of the system. Hence
the environment of the active system can be considered as
a momentum-absorbing substrate and momentum is not
conserved. On the other hand, there are systems in which
the dynamics of the solvent can be relevant in a certain
interval of length scales [41] and must be incorporated
in the description. This was first done in [18], and devel-
oped for active filaments or orientable particles in [42,43].
Here the action of the active components on the solvent is
taken into account by introducing an active stress into a
generalized form of the Navier-Stokes equation. The total
stress will also include elastic contributions, depending on
the polar or nematic character of the system, stemming
from an appropriate free-energy expression, as in the pas-
sive or equilibrium counterpart of the systems in exam. A
complete dynamical description of this complex fluid, usu-
ally called active gel, often includes convection-relaxation
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equations governing the physics of suitable order param-
eters describing, for instance, the orientation of the ac-
tive material (nematic or polar) or its concentration. To
solve the dynamics described by these non-linear coupled
partial differential equations, numerical methods are re-
quired. A suitable approach, largely used to study mul-
ticomponents and complex fluids whose dynamics obey
such equations [44–49], is the Lattice Boltzmann Method
(LBM) [50], a computational fluid dynamics scheme which
solves the Navier-Stokes equation. Among its features, this
method is found to correctly capture the coupling between
hydrodynamics and orientational order of liquid crystals
(often known as backflow [51–53]), a crucial requirement
to simulate the dynamics of active gels [13,54].

In this article we will review the way LBM can be used
to describe collective properties of active fluids, describ-
ing also recent developments concerning few issues where
hydrodynamics plays a relevant role.

We will initially review the thermodynamics of active
fluids whose internal constituents are orientable objects,
such as active liquid crystals. After shortly introducing
the order parameters and the free-energy usually adopted
to describe their properties, we will show how the active
behavior enters the model and how hydrodynamic equa-
tions can be written to correctly capture the physics. This
will be done in Section 2.

Afterwards we will discuss different LBM strategies
used to study simple and structured fluids. For a sim-
ple fluid, LBM solves a minimal Boltzmann kinetic equa-
tion governing the evolution of a single set of variables
(the distribution functions), in terms of which hydrody-
namic quantities can be written [55, 56]. A detailed de-
scription of the LB methods for a single fluid can be found
in [50, 57, 58]. For structured fluids, a full LBM approach
can be followed by introducing a further set of distribu-
tion functions for the order parameter that follow the dy-
namics of appropriate lattice Boltzmann equations that
add to those describing the dynamics of the density and
velocity of the fluid [44]. Then, interactions can be im-
plemented by specific collision rules introduced on a phe-
nomenologically ground or by making reference to a spe-
cific free-energy model that sets the thermodynamics of
the system [44, 59, 60]. The first approach, in numerous
variants, has been largely used in the context of binary
mixtures, due to its practical convenience, with the colli-
sion step designed in order to favor separation of the A
and B components of the mixture [61]. When the fluid
structure becomes more complex the second approach be-
comes almost mandatory. The characteristics of a specific
system will enter the lattice dynamic equations through
a chemical potential and a pressure tensor that can be
obtained by a given free-energy functional. Liquid crys-
tals [49], but also ternary mixtures with surfactant [46] or
other kinds of complex fluids [62], have been largely stud-
ied in this way. Finite difference methods, with possible
numerical advantages, can be also applied to simulate the
order parameter dynamical equations [48] and have been
implemented in hybrid approaches coupled to LBM used
as a solver for Navier-Stokes equations. These different

options with details on possible algorithms and numerical
implementation will be reviewed in Sect. 3.

The following sections will be dedicated to discuss some
relevant topics in active fluids in which LBM has played
an essential role. In Section 4 the main numerical results
concerning the hydrodynamic instabilities generated by
spontaneous flows [63, 64] will be reviewed. Understading
how this occurs is fundamental, for instance, to assess the
dynamics of topological defects as well as the physics of
self-propelled droplets, objetcs which can capture some
relevant features of motile cells [65, 66]. Section 5 will be
devoted to review the most important results about such
system. A field of research still in its infancy concerns the
study of the rheological response of an active fluid to an
external perturbation, such as a shear flow. In Section 6
we will review the most recent and pioneering achieve-
ments in this promising field, in which, for example, an
active gel has been predicted to have either a solid-like or
super-fluid-like behavior depending on the nature of the
hydrodynamic instability [67]. As a further topic we will
illustrate the results obtained via LBM simuations to in-
vestigate “active” turbulence [10, 68–70], a turbulent-like
behavior observed in active fluids at low Reynolds num-
bers.

The versatility of LBM as a solver for hydrodynamics
has been also used to study the flow generated by different
kinds of swimmers, treated as discrete particles coupled to
the surrounding fluid by proper boundary conditions [71].
In this case the solvent is described as a simple fluid whose
dynamics can be solved by LBM. Although the study of
the collective properties of these systems can be difficult
within this approach due to the complicated structure of
the flows induced by the swimmers, in a few cases this
shortcoming has been overcame by using a mixed particle-
continuum description . Section 7 will be briefly dedicated
to describe how LBM has been extended to include active
particles.

Mixtures of active and passive components are a new
subject of research with new fascinating perspectives. These
systems can be potentially realized by dispersing sticky
bacteria [72] or self attractive cytoskeleton gels [73, 74]
in water, or encapsulating an active nematic gel within a
water-in-oil emulsion [73,74]. In these systems the behav-
ior due to active properties can be controlled not only by
the strength of activity but also by fixing the amount of
active fluid in the system. LBM have been largely applied
to study fluid mixtures of several types and can be gen-
eralized to the case where one of the component is active.
In the last section we will describe the most recent results
obtained in this context.

2 Active fluid models

In this section we will focus on fluids whose internal units
have an orientable character, a feature that crucially af-
fects their reciprocal interactions, especially when a high
density sample of active units is considered. In such cases
the emerging orientational order on a macroscopic scale
can be captured by proper order parameters, such as the
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polarization vector P (r, t) and the tensor Q(r, t), often

used to describe ordering in liquid crystals. These quanti-
ties will be introduced in 2.1.

The thermodyamics of these systems is usually de-
scribed via a Landau-like free energy functional, depend-
ing upon powers of the order parameter and its gradi-
ents respecting the symmetries of the disordered phase.
The different free-energy terms describing bulk and elas-
tic properties of the active fluid will be discussed in 2.2,
while 2.3 will be dedicated to describe how active terms
are introduced in continuum models. In 2.4 we briefly dis-
cuss the thermodynamics of a fluid mixture with an ac-
tive component, with and without alignment interaction.
The latter case has been recently considered for the study
motility induced phase separation in wet matter [75].

Finally the hydrodynamic equations describing both
the evolution of the order parameter and of the velocity
field will be shown in 2.5.

2.1 Order parameters

Active fluids whose internal constituents have an anisotropic
shape (such as an elongated structure) encompass diverse
systems ranging from bacterial colonies and algae suspen-
sions [3] to the cytoskeleton of eukatyotic cells [76]. De-
pending upon the symmetries of such microscopic agents
and upon their reciprocal interactions, these active fluids
generally fall into two wide categories. The first one is
the active polar fluid composed of elongated self-propelled
particles, characterized by a head and a tail, whose in-
teractions have polar symmetry. Such systems may order
either in polar states, when all the particles are on average
aligned along the same direction, or in states with nematic
symmetry, when interactions favour alignment regardless
of the particle’s polarity. Examples range from actin fil-
amens subject to polymerization and cross-linked with
myosin [65, 76–78] to bacteria self-propelled along the di-
rection of their head [10] to microtubule filaments coupled
with kinesin motors [7, 73, 79]. Fig. 1 shows, for example,
the aggregated phase of a system of self-propelled Brow-
nian polar dumbbells which, depending on the strength
of the self-propulsion force, may arrange in a polar state
(right) or in an isotropic state (left). Figura Isabella
DA Riconsiderare. The second class includes head-tail
symmetric, or apolar, particles that may move back and
fort with no net motion, and order in nematic states. Ex-
amples of realizations in nature include melanocytes [80],
i.e. melanin producing cells in human body, and fibrob-
lasts [81], cells playing a central role in wound healing,
both spindle-shaped with no head-tail distinction.

The continuum fields describing polar and nematic or-
der are the vector field P (r, t) and the tensor fieldQαβ(r, t)
respectively (Greek subscripts denote the Cartesian com-
ponents). They emerge either from a coarse grained de-
scription of a microscopical model [83] or from a theory
based on general symmetry arguments [52,53]. Following,
for instance, the former approach, for a system of rodlike

particles the polarization field can be defined as

P (r, t) = 〈ν(r, t)〉 =

∫
dΩfP (ν, r, t)ν, (1)

where fP (ν, r, t) is the probability density, encoding all
the information coming from the microscopical model, of
finding a particle at position r at time t oriented along
the direction ν, and the integration is carried out over the
solid angle Ω. The polarization can be also written as

P (r, t) = P (r, t)n(r, t), (2)

where n(r, t) is a unit vector defining the local mean orien-
tation of particles in the neighborhood of r, and P (r, t) is
a measure of the local degree of alignment, ranging from 0
(in an isotropic state) to 1 (in a perfectly polarized state).

Differently, the nematic phase cannot be described by a
vector field as, due to the head-tail symmetry of their con-
stituents, both orientations ν and −ν equally contribute
to the same ordered state. For a system of rodlike par-
ticles, the order is described by a nematic tensor which,
in the uniaxial approximation (i.e. when a liquid crystal
is rotationally symmetric around a single preferred axis),
can be defined as

Qαβ(r, t) = 〈νανβ−
1

d
δαβ〉 =

∫
dΩfQ(ν, r, t)(νανβ−

1

d
δαβ).

(3)
Again fQ(ν, r, t) is the probability density to find a ne-
matic particle oriented along ν at position r and time t,
while d is the dimensionality of the system. As for the po-
larization field, the nematic tensor can be also written in
terms of the versor n (usually called director field) defin-
ing the local mean orientation of the particles

Qαβ(r, t) = S(r, t)

[
nα(r, t)nβ(r, t)− 1

d
δαβ

]
1. (4)

Note that, by defining the nematic tensor in this way,
one can separate local anisotropic features out of isotropic
ones. Indeed, the only scalar quantity that can be derived
from a tensorial object, i.e. its trace, is identically null. In
Eq. (4) S(r, t) plays the same role of P (r, t) in defining the
degree of alignment of the molecules in the nematic phase.
In fact, by multiplying Eq. (3) by nαnβ and then summing
over spatial components, one gets (in three dimensions)

S(r, t) =
1

2
〈3 cos2 θ − 1〉, (5)

where θ is the angle between the local preferential direc-
tion and the orientation of the particle. The scalar or-
der parameter S achieves its maximum in the perfectly
aligned state, where 〈cos2 θ〉 = 1, while it falls to zero
in the isotropic phase where the probability density fQ
is uniform over the solid angle and 〈cos2 θ〉 = 1/3. As-
suming n to be parallel to a cartesian axis, one can soon
verify from Eq. (4) that Qαβ has two degenerate eigenval-
ues λ2 = λ3 = −S/3 (whose associated eigenvectors lie in

1 See Appendix A for its extension to biaxial nematics.
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Fig. 1. System of self-propelled Brownian dumbbells for different values of the self-propulsion force corresponding to
the Péclet number Pe = 10 and Pe = 40 respectively in the left and right panels. For the definition of the model
and the meaning of parameters see [82]. Dumbbells have a tail and a head; the blue vectors represent the directions
of self-propulsion of each dumbbell, related to the tail-head axis. Snapshots represent small portions of larger systems
with total covered fraction area φ = 0.5, corresponding in both cases to points in the phase diagram where phase
separation between a dilute and a more dense aggregated phase is observed. Note that for small Péclet number (left
panel) polar order is not present in the aggregated phase that only shows hexatic order, while for higher Péclet (right
panel) the hexatic phase is globally polarised.

Fig. 2. Sketch of (a) half-integer topological defects in 2D
nematic liquid crystals, and (b) integer topological defects
in polar liquid crystals. These can only host defects with
integer topological charge.

the plane normal to the particle axes) and a third non-
degenerate one λ1 = 2S/3, greater in module than λ2 and
λ3 and related to the director itself. Such formalism can
be also extended to threat the case of biaxial nematics,
i.e. liquid crystals with three distinct optical axis. Unlike
an uniaxial liquid crystal which has an axis of rotational
symmetry (such as the director n), a biaxial liquid crystal
has no axis of complete rotational symmetry. As such the-
ory is out of the scope of this review, we briefly mention it
in Appendix A, focussing, in particular, on how biaxiality
is included in the tensor order paramater and on the role
it plays in the localization of topological defects.

2.1.1 Topological defects

Topological defects (often termed disclinations in liquid
crystals) are regions where the order parameter cannot be
defined [83,84]. A crucial difference between polar and ne-
matic systems really lies on the nature of the topological
defects allowed. As they play a relavant role in the dy-

namics of the velocity field in active fluids (as we shall see
later), we provide here a brief introduction about the the-
ory of topological defects and remind the reader to more
specialized books (such as [84]) for further details.

A topolgical defect can be characterized by looking
at the configuration of the order parameter far from its
core. This can be done by computing the winding number,
which is a measure of the strength of the topological defect
and is defined as the number of times that the order pa-
rameter turns of an angle of 2π while moving along a close
contour surrounding the defect core. Hence possible values
of defect strengths critically depend upon the nature of the
order parameter: indeed polar systems only admit topolog-
ical defects with integer winding numbers (Fig. 2b), while
nematic systems offer a wider scenario; in fact by virtue of
the restored head-tail symmetry, the headless nematic di-
rector can give rise to disclination patterns that also allows
for half-integer winding numbers (Fig. 2a). Fig. 3 shows,
for example, two defects of charge ±1 in an active con-
tractile polar system: their mutual attracting interaction
couples to the hyrodynamics generating a backflow [85,86]
that moves the two defects closer and leads to their anni-
hilation. On the contrary, if the system is extensile, back-
flow drives defects of opposite topological charge apart
and suppresses pair annihilation [73, 86]. In simulations
the correct position of a topological defect can be tracked
either by looking at the polarization (or director for ne-
matics) field profile or, only for nematics, by locating the
regions where the scalar order parameter of the tensor field
drops down. In the latter case, a further method, based on
computing the degree of biaxiality around the defect core
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Fig. 3. Defect dynamics in active polar systems. The left panel shows the superposition of velocity streamlines to the
polarization field, represented by arrows; red/long arrows correspond to ordered regions, while blue/short arrows are
associated with the presence of topological defects, surrounded by regions with strong deformations of the polarization.
Note that defects act as a source of vorticity: indeed most of the closed streamlines wrap the core of a defect. This
is also shown in the right panel, showing the polarisation field superimposed to vorticity contour plot in the region
highlighted by the white box in the left panel. Here two defects of charge ±1 are interacting. In proximity of the
defect cores the polarization magnitude is approximately null, as order is locally lost. These simulations have been
performed using a LBM method for the model descirbed by the free energy in Eq. (9), considering only the polarization
contributions.

is briefly discussed in Appendix A. In fact regions close to
the defect core display biaxiality [87].

Note that, although defects appearing in the active
fluid of Fig. 3 are points, other structures are possible. De-
fects are said to be topologically stable if a non uniform
configuration of the order parameter cannot be reduced
to a uniform state by a continuous transformation. A gen-
eral criterion to establish whether a defect is topologically
stable or not, is to look at the dimension n of the order
parameter. In a d-dimensional space, the condition that
all the n components of the order parameter must vanish
at the defect core defines a “surface” of dimension d− n.
Hence defects exist if n ≤ d. In Fig. 3, for example, we have
a two-dimensional system (d = 2) and an order parameter
(the polarization P ) with two components (n = 2), and
the defects allowed are points (or vortices). However point
defects can be unstable in quasi-2d systems, i.e. when the
order parameter fully lives in the three-dimensional space,
as in such case one would have n > d: indeed the vector
field in proximity of a vortex is always capable of escape
out of the plane aligning with itself, thus removing the de-
fect. In three-dimensional systems (d = 3) one may have
either point defects (if n = 3) or lines (if n = 2).

2.2 Free energy

In this section we will shortly review the free-energy ex-
pressions generally used to describe polar and nematic sus-
pensions and often employed for active fluids, built from
the order parameters discussed in the previous section.

Bulk properties and order-disorder phase transitions
can be derived by a free energy functional with terms re-
specting the symmetries of the disordered phase, in the
spirit of Landau approach. Free-energy F will only contain
scalar terms invariant under space rotations, proportional
to the order parameters and their powers. For a vector
order-parameter scalar objects of the form P 2m can be
considered, with m positive integer, usually arresting the
expansion to the fourth order. For the nematic order pa-
rameter scalar quantities are objects of the form Tr(Qm);
note that there is no impediment here to odd power terms,
by virtue of the invariance of Qαβ under inversions, but
no linear term will appear in the expansion since TrQ is
identically null by definition. The presence of a third order
term will lead to a first order nematic-isotropic transition
through the establishment of metastable regions in the
phase diagram [84]. Table 1 summarizes the bulk contri-
butions to free energy for both polar and nematic systems;
note that the uniaxial free energy can be derived from the
biaxial case by writing the Q tensor through Eq. (4).
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Table 1. The table summarizes bulk and elastic contributions to free energy for polar and nematic, both uniaxial
and biaxial (see Appendix A), systems. Splay, twist and bending contributions have been written explicitly in terms
of different elastic constants ki (i = 1, 2, 3) for both polar and uniaxial nematic gels, while in the most general case
of a biaxial nematic we did not distinguish between different contributions. The last line in the Table shows how the
elastic contribution looks like assuming that the medium is elastically isotropic, i.e., k1 = k2 = k3.

Free energy contributions Polar Gel Nematic Gel

Uniaxial Biaxial

Bulk aP 2 + bP 4 rS2 − wS3 + uS4 r̃QijQji − w̃QijQjkQki + ũ(QijQji)
2

Elastic
Splay

k1
2

(∇ · P )2
k1
2

(∇ · n)2

Twist
k2
2

(P · ∇ × P )2
k2
2

(n · ∇ × n)2
L1

2
(∂kQij)

2 +
L2

2
(∂jQij)

2 +
L3

2
Qij(∂jQij)(∂jQij)

Bend
k3
2

(P ×∇× P )2
k3
2

(n×∇× n)2

Single constant
approximation

k(∇P )2 k(∇n)2 L1(∂kQij)
2

In order to take into account the energetic cost due to
continuous deformations of the order parameters, elastic
terms are also introduced in the free energy functional. In
both polar and nematic systems three different kinds of
deformations can be identified: splay, twist and bending,
gauged to the theory through (in general) different elas-
tic constants k1, k2, k3. While splay fosters the formation
of fan-out patterns of the director and polarization field,
bending favors rounded circular patterns. Instabilities as-
sociated to such deformations underlie the establishment
of defects of different strength. Twist is forbidden in pure
bidimensional systems, since this kind of deformation im-
plies the director to coil around an axis, normal to the di-
rector itself. Table 1 also provides a picture of the energetic
cost due to different kinds of deformations in terms of P
and n, respectively for polar systems and uniaxial nemat-
ics, under the assumption of uniform ordering (S = cost).
The most general case is provided by the elastic contribu-
tions in biaxial nematics and still applies to the uniaxial
case with S = S(r). In order to exploit which terms are
related to which deformations, one should expand the Q

tensor into the elastic biaxial free energy in terms of the
director through Eq. (4); doing so and grouping splay,
twist and bend contributions one finds after some algebric
effort that

L1 =
k3 + 2k2 − k1

9S2
,

L2 =
4(k1 − k2)

9S2
,

L3 =
2(k3 − k1)

9S3
.

In many practical situations it is convenient to adopt the
single constant approximation, consisting in setting all
elastic constants equal to the same value, leading to a
much simpler form for the elastic free energy [84].

Fig. 4. Cartoon of (a) extensile and (b) contractile flow
(black lines), and force dipoles (red arrows).

2.3 Active Forces

Sofar we reviewed well-known theoretical description for
liquid crystals and fluids with anisotropic order parame-
ter. We will see now how the active behavior of the con-
stituents of the fluid can be expressed into the theoreti-
cal framework. The most direct way to develop the equa-
tions of motion for active systems at continuum level is
by explicitly coarse-graining more detailed particle-based
models [3, 39]. Hence, before starting the theoretical de-
scription, we spend few words in describing the swimming
mechanism of some microorganism.

In general, the propulsive motion of active agents dis-
persed in a fluid creates a circulating flow pattern around
each swimmer. The specific swimming mechanism of bac-
teria, for example, causes fluid to be expelled both for-
wards and backwards along the fore-aft axis, and drawn in-
wards radially towards this axis, creating an extensile flow
pattern (Fig. 4). In some cytoskeleton extracts (such as
the actomyosin protein complex), motor proteins can pull
the filaments together, causing them to contract length-
wise and giving rise to a contractile flow opposite to that
of the previous example (Fig. 4)2. Typically, activity cre-
ates a flow pattern that can be complicated in the near
field, but whose far field is generically equivalent, at the

2 A more detailed description of the hydrodynamics of swim-
mers is given in [2, 3, 88].
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lowest order, to the action of a force dipole [89] and can be
represented as such. By summing the contributions from
each force dipole and coarse-graining [18], it is possible to
show that the stress exerted by the active particles on the
fluid has the form

σactive
αβ = −ζφQαβ , (6)

where ζ is a phenomenological parameter that measures
the activity strength, being negative for contractile sys-
tems and positive for extensile ones, while φ represents the
concentration of the active material. Usually only terms
linearly proportional to ζ are considered. In the case of
polar active liquid crystals, the description can be carried
out considering only the polarization field, re-expressing
Q as a function of P. The active stress in terms of the
dynamical variable P(r, t) takes the form

σactive
αβ = −ζφ

(
PαPβ −

1

d
|P|2δαβ

)
. (7)

The expressions Eq. (6) and Eq. (7), as we will see later,
have been largely applied in the study of active fluids.

Many biological systems also display a local chiral-
ity [90, 91]. Actin filaments, for example, are twisted in
a right-ended direction [92] so that myosin motors tends
also to rotate them while pulling, creating a torque dipole.
A concentrated solution of DNA has long been known to
exhibit a cholesteric or blue-phase in different salt condi-
tions [93, 94]. Such system may be rendered motile if in-
teracting with DNA or RNA polymerases or with a motor
protein. The effect of torque dipoles can be incorporated
in the description adding to the active stress a term of
the form ζ2εαβµ∂νφ(PµPν) [95], whose divergence is the
force density associated with an ensemble of microscopic
torque dipoles. The sign of the second activity parameter
ζ2 determines whether the system is right (ζ2 > 0) or left
(ζ2 < 0) handed. These terms drive the system out of equi-
librium by injecting energy into it, and, as those of Eq. (6)
and Eq. (7), cannot be derived from a free energy func-
tional. In this approach the active stress tesnor enters in
the hydrodynamic equations governing the motion of the
self-propelled particles suspension. These are constructed
from general principles, by assuming that an active gel
is described by (a) “conserved” variables, which are the
fluctuations of the local concentration of suspended par-
ticles and the total (solute plus solvent) momentum den-
sity, and (b) “broken-symmetry” variables, which, in the
nematic phase, is the deviation of the director field from
the ground state.

A more general way to construct the equations of mo-
tion at a coarse-grained level, is to generalize forces-and-
fluxes approach [96] to active systems [42]. Considering
for example an active gel characterized by polarization P
and velocity v, or equivalently by the strain rate tensor
uαβ = (∂αvβ + ∂βvα)/2, the generalized hydrodynamic
equations are derived using Onsager relations, thus ex-
panding fluxes ∂tP and the stress tensor in terms of their
conjugate forces −δF/δP and uαβ respectively, with F po-
larization free energy. Active dynamics is obtained hold-

ing the system out of equilibrium by introducing a fur-
ther pair of conjucate forces, namely the chemical poten-
tial difference between ATP and hydrolysis products and
the rate of ATP consumption [42]. This approach can be
further generilized [97]including thermal fluctuations, re-
casting the forces-and-fluxes approach in the language of
coupled generalized Langevin equations [98].

Finally, we mention a more phenomenological model
used to show self organization and scale-selection for the
flow pattern in active matter. This approach is inspired
by the use of the Brazowskii model [99, 100] for describ-
ing system with periodic order parameter and by related
dynamical approaches in studies regarding the role of hy-
drodynamic fluctuations [101] in the onset of convection
instability in Raylegh-Benard problem [102]. Higher order
derivatives of the velocity gradients are considered in the
stress tensor in addition to the usual dissipative terms:

σ = (Γ2∇2 + Γ4∇4)
[
∇v + (∇v)T

]
. (8)

If Γ2 is chosen to be negative, this corresponds to the in-
jection of energy in a definite range of wavelengths, while
Γ4 > 0 corresponds to hyperviscosity flow damping. This
is obtained by truncating a long-wavelength expansion of
the stress tensor [103]. The resulting generalized Navier-
Stokes equations have been proven to capture experimen-
tally observed bulk vortex dynamics of bacterial suspen-
sions and some rheological properties of active matter
[11,68,104].

2.4 Fluid mixtures with an active component

The active stress expressions of Eqs. (6) and (7) depend
on the concentration of the active material. This quan-
tity in turn can be a dynamical field if one would like to
take into account a inhomogeneous presence of the active
material in the solution. Different kinds of models for the
description of mixtures of self propelled and passive par-
ticles have been considered. For example, Brownian-like
simulations [105–107] focused on the role of activity in
separating the two components of the mixtures. In a con-
tinuum description, binary fluids with an active compo-
nent have been considered in [65,77,78,108] showing that
the active part may cause instabilities on active passive
interface. Here we only introduce, as an example among
the different models that can be used to describe fluid
mixtures with an active component, the free-energy for
a binary mixture where the active component is a polar
gel [77]. It is given by

F [φ,P] =

∫
dr { a

4φ4cr
φ2(φ− φ0)2 +

k

2
|∇φ|2 (9)

− α

2

(φ− φcr)
φcr

|P|2 +
α

4
|P|4 +

κ

2
(∇P)2 + βP · ∇φ} .

The first term, multiplied by the phenomenological
constant a > 0, describes the bulk properties of the fluid;
it is chosen in order to create two free energy minima,
one (φ = 0) corresponding to the passive material and the



Giuseppe Gonnella et al.: Lattice Boltzmann Methods and Active Fluids 9

other one (φ = 2) corresponding to the active phase. The
second one determines the interfacial tension between the
passive and active phase, with k positive constant. The
third and the fourth terms control the bulk properties of
the polar liquid crystal. Here α is a positive constant and
φcr = φ0/2 is the critical concentration for the transition
from isotropic (|P | = 0) to polar (|P | > 0) states. The
choice of φcr is made to break the symmetry between the
two phases and to confine the polarization field in the
active phase φ > φcr. The term proportional to (∇P )2 de-
scribes the energetic cost due to elastic deformation in the
liquid crystalline phase (see Table 1) in the single elastic
constant approximation. Finally, the last term is a dy-
namic anchorage energy and takes into account the orien-
tation of the polarization at the interface between the two
phases. If β 6= 0, P preferentially points perpendicularly
to the interface (normal anchoring): towards the passive
(active) phase if β > 0 (β < 0).

Such model can be also extended to study active ne-
matic gels, by using the nematic tensor in place of the
polarization field [86,108,109]. In this case the coefficients
of the expansion of Tr(Qn) in bulk free energy (see Table
1) would depend on the scalar field φ and the elasticity,
again written in the single elastic constant approximation,
would include a term of the form L∂αφQαβ∂βφ (with L
constant) to guarantee a perpendicular anchoring of the
liquid crystal at the interface.

We finally mention a recent generalization of such mod-
els where emulsification of the active component is favored
by the presence of surfactant added to the mixture [110].
This is done by allowing negative values of the binary fluid
elastic constant k and by including a term of the form
c
2 (∇2φ)2 (with c positive constant) to guarantee the sta-
bility of the free-energy. Results show, for example, that
when the active component is contractile, a high enough
activity favors the creation of passive droplets within an
active matrix, while, for extensile activity, an emulsion of
spontaneous rotating droplets in a passive fluid is found.

A different continuum model, specifically introduced
to study the motility induced phase separation (MIPS)
without direct appeal to orientational order parameters
P or Q, but only to the scalar concentration field φ, is
the so called Active-model H [75]. In the old classification
by Hohenberg and Halperin [111], the passive model H
considers a diffusing, conserved, phase separating order
parameter φ coupled to an isothermal and incompressible
fluid flow through the advection-diffusion equation that
will be introduced Sec. 2.5. The chemical potential that
enters the dynamic equation of the passive model H is
given by

µ =
δF

δφ
= aφ+ bφ3 − k∇2φ , (10)

with a, b, k constants appearing in the Landau free en-
ergy for binary mixtures [112] (with a negative in order
to have phase separation between the two fluid compo-
nents and b and k positive for stability). The same terms
appear in Eq. (9) without the polarization contributions.
The active model is then constructed by adding a lead-
ing order time-reversal breaking active term of the form

µa = λ (∇φ)
2

(with λ constant), not stemming from the
free energy functional [75]. The deviatoric stress σ, that
enters in the NS equations for the fluid flow, is, in d di-
mensions,

σaαβ = −ζ̂
(
∂αφ∂βφ−

1

d
(∇φ)

2
δαβ

)
, (11)

and can be obtained from the free energy, according to
the formula reported in the second row of Table 2, only if

ζ̂ = k. If ζ̂ 6= k this is not true anymore and Eq. (11) is
the sole leading-order contribution to the deviatoric stress
for scalar active matter. Again here, ζ < 0 describes con-
tractile systems while ζ > 0 the extensile ones. While µa
has been found to create a jump in the thermodynamic
pressure across interfaces and to alter the static phase
diagram [113], the active stress σa creates a negative in-
terfacial tension in contractile systems that arrests the
coarsening [75].

2.5 Hydrodynamic equations

We can now introduce the hydrodynamic equations for
active liquid crystals. Evolution equations for mass density
ρ(r, t) and velocity v(r, t) are given by

∇ · v = 0, (12)

ρ (∂t + v · ∇)v = −∇p+∇ · σtotal, (13)

with the energy balance equation generally neglected in
this context. The first one is the incompressible condition
for mass density, while the second one is the incompress-
ible Navier-Stokes equation, where p is the isotropic pres-
sure and σtotal is the total stress tensor [53] that can be
split into the equilibrium/passive and non-equilibrium/active
contributions:

σtotal = σpassive + σactive. (14)

The passive part is, in turn, the sum of three terms:

σpassive = σviscous + σelastic + σinterface. (15)

The first term is the viscous stress written as σviscousαβ =

η(∂αvβ +∂βvα) where η is the shear viscosity3 An explicit
form for the elastic and interface stress is reported for the
polar and nematic case in Table 2.

3 In the compressible case, the viscous stress tensor also in-
cludes a term proportional to the divergence of the velocity,
such that:

σviscousαβ = η(∂αvβ + ∂βvα) +

(
ζ̃ − 2η

d

)
∂γvγδαβ , (16)

where we denoted the bulk viscosity with ζ̃. Notice that this
term drops in the limit of an incompressible fluid by virtue of
Eq. (12).



10 Giuseppe Gonnella et al.: Lattice Boltzmann Methods and Active Fluids

Table 2. The molecular field Ξ is a vector, whose components are denoted with hα, for polar gels and a tensor H
for nematic gels. κ is the elastic constant of the liquid crystal and the parameters ξ and λ depend on the geometry of
the miscroscopic constituents(|ξ| > 0, |ξ| < 0 and |ξ| = 0 for rod-like, disk-like and spherical particles, respectively).
In addition these parameters establish whether the fluid is flow aligning (|ξ| > 1) or flow tumbling (|ξ| < 1) under

shear; D = (W +WT )/2 and Ω = (W −WT )/2 represent the symmetric and the antisymmetric parts of the velocity
gradient tensor Wαβ = ∂βvα.

Polar Gel Nematic Gel

σelasticαβ
1
2
(Pαhβ − Pβhα)− ξ

2
(Pαhβ + Pβhα)− κ∂αPγ∂βPγ

2λ
(
Qαβ − δαβ

3

)
QγνHγν − λHαγ

(
Qγβ +

δγβ
3

)

−λ
(
Qαγ +

δαγ
3

)
Hγβ − ∂αQγν δF

δ∂γQνγ
+QαγHγβ −HαγQγβ

σinterfaceαβ

(
f − φ δF

δφ

)
δαβ − ∂f

∂(∂βφ)
∂αφ

(
f − φ δF

δφ

)
δαβ − ∂f

∂(∂βφ)
∂αφ

S −Ω ·P + ξD ·P [λD +Ω]
(
Q+ I

3

)
+

(
Q+ I

3

)
[λD −Ω]− 2λ

(
Q+ I

3

)
(Q∇v)

The order parameter Ψ of the active liquid crystal
(that is Q for nematics and P for polar systems) evolves

accordingly to

(∂t + v · ∇) Ψ− S = ΓΞ , (17)

known as Beris-Edwards equations, within the theory liq-
uid crystal hydrodynamics described through theQ-tensor.
The term S accounts for the response of the orientational
order to the extensional and rotational components of the
velocity gradient and is reported for the polar [114] and
nematic [83] case in the third row of Table 2. The molec-
ular field Ξ = δF/δΨ governs the relaxation of the orien-
tational order to equilibrium, and is multiplied by a col-
lective rotational-diffusion constant Γ . The left-hand side
of Eq. (17) is commonly addressed as material derivative
of the order parameter Ψ, and can be formally derived
making use of Liouville equations. In fact one can write
DtΨ = ∂tΨ+{Ψ,H}, where {...} are the Poisson parethe-
sis and the Hamiltonian is H = F + 1

2

∫
ρv2.

A more phenomenological procedure to derive the ma-
terial derivative explicitly is based on the fact that order
parameters can be advected by the fluid. Here we outline
the procedure referring only to the polarisation field. We
first notice that the relative position r̃ of two close points
in the fluid evolves accordingly to the following equation:

Dtr̃ = ∂tr̃ + (r̃ · ∇)r̃ +D · r̃ +Ω · r̃. (18)

The first two contributions are the usual lagrangian deriva-
tive while the third and fourth ones account respectively
for rigid rotations and deformations of the fluid element.
Thus the material derivative for the polarisation field will
include the first three terms since a vector advected by the
flow is capable to follow any rigid motion; for what con-
cerns the last term in Eq. (18) this cannot enter directly
into the material derivative of a vector field, but it must
be weighted through an alignment parameter ξ, ruling the
dynamical behavior of the vector field under enlargement
and/or tightening of flow tubes. This allows us to obtain
the material derivative for the polarization field simply
substituting P in place of r̃.

Finally the time evolution of the concentration field
φ(r, t) of the active material is governed by a convection-
diffusion equation

∂tφ+∇ · (φv) = ∇ ·
(
M∇δF

δφ

)
, (19)

where M is the mobility and δF/δφ is the chemical po-
tential. A more generalized form of the material deriva-
tive has been used to model, for example, actin poly-
merization in motile eukaryotic cells [65], by substituting
∇ · (φv)→ ∇ · (φv + wP ), where w is a constant related
to the velocity of actin polymerization.

3 Lattice Boltzmann Method

A certain number of approaches are feasible when dealing
with the description of fluid systems; each of them can
be classified according to the level of spatial approxima-
tion. A molecular approach would hardly access the time
and space scales relevant for a complete hydrodynamic de-
scription of the systems here considered. At a mesoscopic
level, kinetic theory furnishes a description of irreversible
and non-equilibrium thermodynamic phenomena in terms
of a set of distribution functions encoding all necessary
informations related to space positions and velocities of
particles. Continuum equations give a description of irre-
versible phenomena by using macroscopic variables slowly
varying in time and space. This last approach has the not-
negligigle advantage that one has to deal with a few fields.
On the other hand, when considering continous equations,
one has to face some technical issues arising from the
stability of numerical implementation and discretization
schemes [115]. Moreover, many numerical methods aimed
at solving the continuous equations, exhibit criticalities in
the amount of computational resources, mostly in terms of
processing times and memory requirement, or in the im-
plementation of boundary conditions in complex geome-
tries. To avoid these issues lattice-gas-automaton (LGA)
models were first developed starting from the pioneering
work of Frisch et al. [116]. This kinematic approach to
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hydrodynamics is based on the description of the dynam-
ics of a number of particles moving on a suitable lattice.
Both mass and momentum conservation are imposed in
collisions between particles; moreover an exclusion princi-
ple is imposed to restrict the number of particles with a
given velocity at a certain lattice point to be 0 or 1. This
latter feature allows for a description of the local parti-
cle equilibrium through the Fermi-Dirac statistics [117].
Despite LGA proved to be very efficient in simulating
the Navier-Stokes equation from a computational point
of view and in managing boundary conditions, it suffers
from non-Galilean invariance, due to density dependence
of the convection coefficient and from an unphysical ve-
locity dependence of the preassure, arising directly from
the discretization procedure [57].

Lattice Boltzmann methods were then developed to
overcome these difficulties. Particles in the LGA method
are formally substituted by a discretized set of distribu-
tion functions, so that hydrodynamic variables are indeed
expressed at each lattice point in terms of such distribu-
tion functions. Despite the fact that Lattice Boltzmann is
a mesoscopic numerical method, it has a number of advan-
tages that resulted in the broad usage of this method in
many branches of hydrodynamics. Firstly LB algorithms
are appreciably stable and they are characterized by their
simplicity in the treatment of boundary conditions. Not
to be neglected is the fact that LB algorithms are partic-
ularly suitable to parallel approach.

In the following of this Section we will first provide a
simple overview of the method, without getting too tech-
nical, in order to convey to the reader the purpose of
this approach. In Section 3.1 we will first introduce LBM
for a simple fluid, while Section 3.2 will be devoted to
recover the continuum hydrodynamic equations, already
presented in Section 2.5, through a Chapman-Enskog ex-
pansion. In Section 3.3 we will describe some routes to
adapt LBM to the case of complex fluids through the in-
troduction of a forcing term; in Section 3.5 we will focus
on some algorithms that has been recently used in the
numerical investigation of active matter. Finally, in Sec-
tion 3.6 we will focus on the implementation of boundary
conditions.

3.1 General features of lattice Boltzmann method

The lattice Boltzmann approach to hydrodynamics is based
on a phase-space discretized form of the Boltzmann equa-
tion [50, 118–121] for the distribution function f(r, ξ, t),
describing the fraction of mass at position r moving with
velocity ξ at the time t. Since the discretization is per-
formed both in real and velocity space, the algorithm is
expressed in terms of a set of discretized distribution func-
tions {fi(rα, t)}, defined on each lattice site rα and related
to a discrete set of N lattice speeds {ξi}, labelled with an
index i that varies from 1 to N (see Fig. 5). In the case of
the collide and stream version of the algorithm, the evolu-
tion equation for the distribution functions has the form

fi(r + ξi∆t, t+∆t)− fi(r, t) = C({fi}, t), (20)

where C({fi}, t) is the collisional operator that drives the
system towards equilibrium and depends on the distribu-
tion functions; its explicit form will depend upon the par-
ticular implementation of the method. Eq. (20) describes
how fluid particles collide in the lattice nodes and move af-
terwards along the lattice links in the time step∆t towards
neighboring sites at distance ∆x = ξi∆t. This latter rela-
tionship is no more considered in finite difference lattice
Boltzmann models (FDLBM) which are directly based on
the Boltzmann equation [122–126]. In these kind of models
the discrete velocity set can be chosen with more freedom,
making possible to use non uniform grids, selecting lattice
velocities independently from the lattice configuration4.
This results to be extremely useful when it is necessary
to release the constraint of having a constant temperature
in the system [127,128]. This might be also helpful in the
case of LB models for multicomponent systems where the
components have different masses and this would result in
having different lattice speeds, one for each fluid species.
Beside the wider range of applicability of the FDLBM with
respect to the LBM, the latter furnishes a simple and effi-
cient way to solve the hydrodynamics equations; moreover
we are not aware of any implementation of the FDLB al-
gorithm developed to study active matter; for this reasons
we will avoid any further discussion on this topic.

In the case of a simple fluid, in absence of any exter-
nal force, assuming the BGK approximation with a single
relaxation time [129], one writes

C({fi}, t) = −1

τ
(fi − feqi ), (22)

where feqi is the equilibrium distributions and τ is the
relaxation time, connected to the viscosity of the fluid,
as it will be seen. The mass and momentum density are
defined as

ρ(r, t) =
∑

i

fi(r, t), (23)

ρ(r, t)v(r, t) =
∑

i

fi(r, t)ξi, (24)

where summations are performed over all discretized di-
rections at each lattice point. By assuming both mass and
momentum density to be conserved in each collision, it is

4 When dealing with FDLBM it is useful to introduce more
than only one set of distribution functions {fki}, where the
extra index k has been used to label each set to a group of de-
screte velocities {ξki}, while index i still denotes the streaming
direction. The evolution equation for distribution functions for
the FDLBM reads:

∂tfki + (ξki · ∇)fki = C({fki}, t). (21)

Here differential operators must be discretized: Runge-Kutta
or midpoint schemes can be used to compute the time deriva-
tive while there are several possibilities to compute the advec-
tive term on the left-hand side of the previous equation. For
the reader interested in the details of the implementation we
suggest to refer to Refs. [125,127].
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Fig. 5. Graphical representation of lattice speeds for ge-
ometries D2Q7 and D2Q9, respectively shown in the left
and right panels.

found that conditions in Eq. (23), (24) must hold also for
the equilibrium distribution functions:

ρ(r, t) =
∑

i

feqi (r, t), (25)

ρ(r, t)v(r, t) =
∑

i

feqi (r, t)ξi. (26)

Moreover, it is necessary to introduce further constraints
on the second moment of the equilibrium distribution func-
tions to recover continuum equations, as it will become
more evident in the following. Further constraints on higher
order moments may become necessary to simulate more
complex systems: for instance full compressible flows or
supersonic adaptation of the algorithm may require the
specification of moments up to the third, while for a com-
plete hydrodynamic description in which heat transfer is
also taken into account, even the fourth moment needs to
be specified [127]. Active matter systems such as bacterial
and microtubules suspensions reasonably fulfil the incom-
pressible condition, so that in the following we will only
impose constraints up to second order moments.

Another peculiar fact about LBM is that viscosity ex-
plicitly depends upon the choice of the lattice structure,
so that in order to deal with a specific form for the viscous
part of the stress tensor, we are forced to fix a particular
discretized lattice. Due to the fact that sufficient lattice
symmetry is required to recover the correct Navier-Stokes
equation in the continuum limit [116], not all the possible
lattice structures can be adopted. By denoting the space
dimensions by D and the number of lattice speeds by Q,
Table 3 shows the velocities {ξi} and the corresponding
weights in the equilibrium distribution functions (see next
Section) for the most frequent choices. Here the quantity
c = ∆x/∆t, connected to the speed of sound of the algo-
rithm, has been introduced as the ratio between the lattice
spacing ∆x and the time step ∆t. Figure 5 illustrates ex-
plicitly the lattice structures in the two-dimensional case.

3.2 Lattice Boltzmann for a simple fluid

In this Section we will present a basic lattice Boltzmann
algorithm to solve the hydrodynamic equations (12) and
(13) for a simple fluid; in this case the term on the right

Table 3. Lattice speeds with their weights ωi for spatial
dimensions D = 2 and D = 3 and number of neighboring
nodes Q.

Lattice ξi ωi

D2Q7 (0, 0) 1/2
c(cos(iπ/3), sin(iπ/3)) 1/12

D2Q9 (0, 0) 4/9
(±c, 0) (0,±c) 1/9

(±c,±c) 1/36

D3Q15 (0, 0, 0) 2/9
(±c, 0, 0) (0,±c, 0) (0, 0,±c) 1/9

(±c,±c,±c) 1/72

D3Q19 (0, 0, 0) 1/3
(±c, 0, 0) (0,±c, 0) (0, 0,±c) 1/18

(±c,±c, 0) (±c,±c, 0) (0,±c,±c) 1/36

D3Q27 (0, 0, 0) 8/27
(±c, 0, 0) (0,±c, 0) (0, 0,±c) 2/27

(±c,±c, 0) (±c,±c, 0) (0,±c,±c) 1/54
(±c,±c, 0) (±c,±c, 0) (0,±c,±c) 1/216

hand side of the Navier-Stokes equation (13) reduces to
the preassure gradient plus the mere viscous contribution
∂βσ

viscous
αβ , under the assumption that no external force is

acting on the fluid.
Conditions (25) and (26) can be satisfied by expanding

the equilibrium distribution functions up to the second
order in the fluid velocity v [57]:

feqi = As +Bsvαξiα + Csv
2 +Dsvαvβξiαξiβ , (27)

where the index s relates the i-th distribution function
to the square module of the corresponding lattice veloc-
ity, and the greek index denotes the Cartesian component.
This expansion is valid as far as the Mach number Ma =
v/cs is kept small, cs being the speed of sound, whose
explicit expression in turn depends upon the lattice dis-
cretization [130]. The present assumption has the impor-
tant consequence that LB models based on the previous
expansion of the equilibrium distribution functions have
great difficulty in simulating compressible Euler flows, that
usually take place at high Mach numbers. This issue arises
in standard LB approaches because of the appearence of
third order nonlinear deviations from the Navier-Stokes
equation [131]. Qian and Orzsag demonstrated in [132]
that such nonlinear deviations grow together with Ma2,
so that they can be neglected in the low Mach number
regime but become important in the compressible limit5.
For such reasons it is necessary to ensure that velocities

5 In order to overcome the limit posed by the low Mach
number regime many variations of the standard LBM have
been developed. Alexander et al. proposed a model where the
high Mach number regime could be achieved by decreasing the
speed of sound [117], discrete-velocity models [133, 134] were
later introduced allowing for simulation of the compressible
Euler equation in a wider range of Mach numbers. Other im-
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never exceed a critical threshold that can be reasonably
chosen such that Ma . 0.3 [132].

Besides constraints expressed by Eq. (25) and (26), an
additional condition on the second moment of the equilib-
rium distribution functions is imposed so that

∑

i

feqi ξiαξiβ =
c2

3
ρδαβ + ρvαvβ . (28)

This is a necessary condition to recover the Navier-Stokes
equation in the continuum limit. By substituting the ex-
pansion (27) in the constraints (25), (26) and (28), a suit-
able choice for the expansion coefficients is found to be

A0 = ρ− 20A2 A1 = 4A2 A2 =
ρ

36
(29)

B0 = 0 B1 = 4B2 B2 =
ρ

12c2
(30)

C0 = − 2ρ

3c2
C1 = 4C2 C2 = − ρ

24c2
(31)

D0 = 0 D1 = 4D2 D2 =
ρ

8c4
, (32)

where for the sake of clarity we have explicitly chosen
a D2Q9 lattice geometry. It is possible to show analyti-
cally [137], requiring isotropy of the fourth-order tensor
of velocities and Galilean invariance, that the equilibrium
distribution functions can be written in a more general
way as

feqi = ρωi

[
1 + 3

vαξiα
c2
− 3

2

v2

c2
+

9

2

(vαξiα)2

c4

]
(33)

where the weights ωi are given in Table 3.
Finally, we add for completeness that it is also pos-

sible to adopt a discretization in velocity space based on
the quadrature of a Hermite polynomial expansion of the
Maxwell-Boltzmann distribution [130]. One then gets a
lattice Boltzmann equation that allows us to exactly re-
cover a finite number of leading order moments of the
equilibrium distribution functions. In this case the quan-
tity c is fixed and given by c = 2 for the geometry D2Q7
and by c =

√
3 for the other geometries in Table 3. For

a detailed discussion the interested reader may refer to
Ref. [130].

Chapman-Enskog expansion The remaining part of this
Section will be dedicated to show that the algorithm pre-
sented here correctly reproduces continuum equations (12)
and (13). Two different approaches can be followed. The
first one starts from a Taylor expansion of the left-hand
side of Eq. (20) [138], whereas the second one, discussed
below, uses a multiscale expansion of distribution func-
tions and derivatives in the Knudsen number ε = λ/L,
a dimensionless number defined as the ratio between the
molecular mean free path λ and a characteristic length L

plementations are based on a Taylor expansion of the equilib-
rium distributions up to higher orders together with suitable
constraints on the third and fourth moments [130,135,136].

of the system. This number determines whether a macro-
scopic continuum mechanics or a microscopic statistical
mechanics formulation of fluid dynamics should be used.
For small values of ε (for instance if ε� 1) the mean free
path is much smaller than L and a contiuum theory is a
good approximation. In such case the Knudsen number
can be treated as a parameter of a multiscale expansion
in which spatial density fluctuations of order O(ε−1) relax
over time scales of order O(ε−2). A suitable expansion for
temporal and spatial derivatives as well as for distribution
functions is

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i , (34)

∂t = ε∂t1 + ε2∂t2 , (35)

∂α = ε∂α1
, (36)

built assuming that there is a diffusion time scale t2 slower
than the convection one t1.

We start by expanding the left-hand side of eqation
(20) to the second order in ∆t:

∆t(∂t + ξiα∂α)fi +
(∆t)2

2

(
∂2t + 2ξiα∂α∂t + ξαξβ∂α∂β

)
fi

= −1

τ
(fi − feqi ),

(37)

where we use Eq. (22) to express the collision operator.
By substituting Eq. (34), (35) and (36) into Eq. (37) we
obtain

∆t
[
(ε∂t1 + ε2∂t2) + ε∂α1

]
(f

(0)
i + εf

(1)
i + ε2f

(2)
i )

+(∆t)2
[

1

2
(ε∂t1 + ε2∂t2)2 + εξiα∂α(ε∂t1 + ε2∂t2)

+
1

2
ε2ξαξβ∂α1∂β1

]
(f

(0)
i + εf

(1)
i + ε2f

(2)
i )

= −1

τ
(f

(0)
i + εf

(1)
i + ε2f

(2)
i − feqi ). (38)

By retaining only terms of order ε2, the previous equation
reads

ε∆t
(
∂t1f

(0)
i + ξiα∂α1

f
(0)
i

)

+ ε2
[
∆t
(
∂t1f

(1)
i + ξiα∂α1

f
(1)
i + ∂t2f

(0)
i

)

+ ∆t2
(

1

2
∂2t1 +

1

2
ξiαξiβ∂α1∂β1 + ξiα∂α1∂t1

)
f
(0)
i

]

= −f
(0)
i − feqi

τ
− εf

(1)
i + ε2f

(2)
i

τ
. (39)

Finally, grouping terms of same order in ε, we get

f
(0)
i = feqi +O(ε), (40)

∂t1f
(0)
i + ξiα∂α1

f
(0)
i = − 1

τ∆t
f
(1)
i +O(ε), (41)

∂t1f
(1)
i + ξiα∂α1

f
(1)
i + ∂t2f

(0)
i

+
∆t

2

(
∂2t1 + 2ξiα∂α1∂t1 + ξiαξiβ∂α1∂β1

)
f
(0)
i

= − 1

τ∆t
f
(2)
i +O(ε). (42)
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In the following paragraphs we will use these relations to
recover continuum equations up to the second order in the
Knudsen number.

Recover Continuity Equation To recover the continuity
equation one can start by summing Eq. (40) over lat-
tice velocities with the constraints given in Eq. (25) and
Eq. (26). One then gets

∑

i

f
(0)
i = ρ,

∑

i

f
(1)
i =

∑

i

f
(2)
i = 0, (43)

and, by using Eq. (26), we obtain

∑

i

f
(0)
i ξiα = ρvα,

∑

i

f
(1)
i ξiα =

∑

i

f
(2)
i ξiα = 0.

(44)
By performing a summation over lattice velocities in Eq. (41),
one gets

∂t1ρ+ ∂α1
(ρvα) = 0 +O(ε), (45)

which is the continuity equation at first order in the Knud-
sen number. To recover the complete time derivative ac-
cording to (35), we need to compute the term ∂t2ρ. By
applying the differential operators ε∂t1 and εξiβ∂β1

to Eq.
(41) we get

∂2t1f
(0)
i + ξiα∂α1

∂t1f
(0)
i = − 1

τ∆t
∂t1f

(1)
i +O(ε2), (46)

ξiβ∂β1
∂t1f

(0)
i +ξiαξiβ∂α1

∂β1
f
(0)
i = − 1

τ∆t
ξiβ∂β1f

(1)
i +O(ε2),

(47)
and, by summing both equations, we get

(∂2t1 + 2ξiα∂α1∂t1 + ξiαξiβ∂α1∂β1)f
(0)
i

= − 1

τ∆t
(∂t1 + ξiβ∂β1

)f
(1)
i +O(ε2).

(48)

Note that the left-hand side of this equation is exactly the
term in round brackets of Eq. (42), that now becomes

∂t2f
(0)
i +

(
1− 1

2τ

)
(∂t1 − ξiα∂α1

)f
(1)
i

= − 1

τ∆t
f
(2)
i +O(ε).

(49)

By summing over lattice directions and using Eq. (43) and
Eq. (44), we get

∂t2ρ = 0 +O(ε2), (50)

that, together with Eq. (45), reads

(ε∂t1 + ε2∂t2)ρ+ ε∂α1
(ρvα) = 0 +O(ε2). (51)

Finally, after restoring the canonical differential operators
(through Eq. (35) and Eq. (36)), we get the continuity
equation

∂tρ+ ∂α(ρvα) = 0 +O(ε2) (52)

Recover Navier-Stokes Equations The procedure to re-
cover the Navier-Stokes equation is analogous albeit less
straightforward than that used for the continuity equa-
tion. We will proceed by calculating the first-order mo-
ment of Eq. (41) and Eq. (42). First multiply by ξiβ both
members of Eq. (41) and sum over index i, to get

∂t1(ρvα) + ∂β1

(
c2

3
ρδαβ + ρvαvβ

)
= 0 +O(ε). (53)

To get the Navier-Stokes equation to second order in the
Knudsen number we need to calculate the first-order mo-
ment of equation (42). We can then multiply Eq. (49) by
ξiγ to obtain

∂t2ξiγf
(0)
i +

(
1− 1

2τ

)
(∂t1 − ξiα∂α1

)ξiγf
(1)
i

= − 1

τ∆t
ξiγf

(2)
i +O(ε2),

(54)

and, by summing over lattice velocities, we are left with

∂t2(ρvα)−
(

1− 1

2τ

)
∂β1

[∑

i

f
(1)
i ξiαξiβ

]
= 0. (55)

Now we must determine an expression for the summation
in square brackets. From Eq. (40) and (41) we note that

∑

i

f
(1)
i ξiαξiβ = −τ∆t(∂t1 + ξiγ∂γ1)

(∑

i

feqi ξiαξiβ

)

= −τ∆t
[
∂t1

(
c2

3
ρδαβ + ρvαvβ

)
+ ∂γ1

(∑

i

feqi ξiαξiβξiγ

)]

, (56)

where we have used Eq. (28) in the second equality. The
second term of the second line of Eq. (56) can be written
in terms of the equilibrium distribution functions given in
(33) and of the related coefficients (30)

∂γ1

(∑

i

feqi ξiαξiβξiγ

)
=
c2

3
∂γ1 [ρ(δαβvγ + δαγvβ + δβγvα)] ,

(57)

while the first round bracket in the second line of Eq. (56)
can be written by means of Eq. (45) and Eq. (53)

∂t1

(
c2

3
ρδαβ + ρvαvβ

)
= −c

2

3
∂γ1(ρvγ)δαβ

+vβ∂t1(ρvα) + vα∂t1(ρvβ)− vαvβ∂t1ρ

' −c
2

3
[∂γ1(ρvγ)δαβ + (vα∂β1ρ+ vβ∂α1ρ)] .

(58)

In the last line terms of order v3 were neglected, an ap-
proximation valid as far as the Mach number is kept small.
Now substituting Eq. (58) and Eq. (57) into Eq. (56) we
find, after some algebra, that

∑

i

f
(1)
i ξiαξiβ = −τ∆tc

2

3
ρ [∂β1vα + ∂α1vβ ] . (59)
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This term, in turn, enters Eq. (55), which now reads

∂t2(ρvα)−
(
τ − 1

2

)
∆t

c2

3
∂β1 [ρ (∂β1vα + ∂α1vβ)] = 0

(60)
Finally summing this equation with Eq. (53) and using
the canonical differential operators (i.e. Eq. (35) and Eq.
(36)), we obtain the Navier-Stokes equation

∂t(ρvα) + ∂β (ρvαvβ) = (61)

−∂αpi +∆t

(
τ − 1

2

)
c2

3
∂β [ρ (∂βvα + ∂αvβ)] , (62)

where pi = (c2/3)ρ is the isotropic pressure and the shear
viscosity is given by

η = ρc2s∆t

(
τ − 1

2

)
. (63)

3.3 LBM beyond simple fluids

So far we have implemented a lattice Boltzmann method
for a simple fluid in the absence of any forcing term, with
only viscous contributions to the stress tensor. On the
other hand when dealing with more complex systems, such
as multicomponents or multiphase fluids, the stress ten-
sor may include further contributions (such as elastic and
interfacial ones, see Table 2) which have a non-trivial de-
pendence on order parameters and on their derivatives. In
this Section we will show two different strategies adopted
to numerically implement such terms. Briefly, while in the
first they are included in a forcing term appearing in the
second moment equation of the equilibrium distribution
functions, in the second one they enter through an exter-
nal forcing added to the collision operator in the lattice
Boltzmann equation.

3.3.1 First method

To implement a general symmetric stress tensor contri-
bution in the Lattice Boltzmann scheme previously intro-
duced, we again impose the constraints of Eq. (25) and
Eq. (26) on the zeroth and on the first moment of the
equilibrium distribution functions, while the second mo-
ment (28) is modified according to the following relation

∑

i

feqi ξiαξiβ = −σαβ + ρvαvβ . (64)

Here σαβ stands for the total stress tensor including isotropic
contributions but deprived of viscous ones. Note that, due
to the symmetry of the left hand side of Eq. (64), this al-
gorithm can be applied to models that involve only sym-
metric contributions to the stress tensor. For instance, this
method is suitable to study binary mixtures, as the stress
tensor associated to the concentration contribution is in-
deed symmetric, but not for liquid crystals, as the anti-
symmetric part of the relative stress tensor does not van-
ish (see Table 2). This latter case will be discussed in the

following sections. To satisfy (64) [49,54], the equilibrium
distribution functions can be expanded as follows

feqi = As +Bsvαξiα + Csv
2

+Dsvαvβξαξβ +Gαβs ξiαξiβ ,
(65)

where an extra term term, quadratic in lattice velocities,
has been added to include a general stress tensor in the
model. As for a simple fluid, the coefficients of the expan-
sion can be calculated by imposing constraints of Eq. (25),
Eq. (26) and Eq. (64). For a D2Q9 geometry a suitable
choice is given by

A0 = ρ− 20A2 A1 = 4A2 A2 =
Trσ

24c2

B0 = 0 B1 = 4B2 B2 =
ρ

12c2

C0 = − 2ρ

3c2
C1 = 4C2 C2 = − ρ

24c2

D0 = 0 D1 = 4D2 D2 =
ρ

8c4

Gαβs = 0 Gαβs = 4Gαβ2 Gαβ2 =
σ0
αβ

8c2
,

(66)

where we denoted by σ0
αβ the traceless part of σαβ .

One can now proceed to recover the Navier-Stokes
equation by using a Chapman-Enskog expansion6. We will
also assume that the fluid is incompressible and ignore
third-order terms in the fluid velocity.

Taking the first moment of Eq. (41), one gets

∂t1(ρvα) + ∂β1
(ρvαvβ) = ∂β1

σαβ +O(ε), (67)

which is the Navier-Stokes equation at first order in Knud-
sen number. To recover the Navier-Stokes equation at sec-
ond order, we start from Eq. (55), where we need to eval-

uate the second moment of f
(1)
i

∑

i

f
(1)
i ξiαξiβ = −τ∆t(∂t1 + ξiγ∂γ1)

(∑

i

feqi ξiαξiβ

)

= −τ∆t
[
∂t1 (−σαβ + ρvαvβ) + ∂γ1

(∑

i

feqi ξiαξiβξiγ

)]
,

(68)

The first time derivative in square brackets is negligible
at the leading order under the assumption of incompress-
ibility [49], while

∂t1(ρvαvβ) = vα∂t1(ρvβ) + vβ∂t1(ρvα) (69)

that shows, together with Eq. (67), that this term gives a
null contribution. Finally, using Eq. (57) we get

∑

i

f
(1)
i ξiαξiβ = −τ∆tc

2

3
ρ [∂β1

vα + ∂α1
vβ ] , (70)

6 The second moment constraint on the equilibrium distribu-
tion functions is not necessary for the derivation of the conti-
nuity equation. Hence the procedure to recover this equation is
not affected by the modifications introduced in the new version
of the algorithm.
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the same result of Eq. (59) which allows one to restore the
Navier-Stokes equation.

3.3.2 Second method

An alternative route to the solution of the LB equation
(20) relies on the use of a pure forcing method [48, 139].
In this case the total stress tensor enters the model via a
forcing term Fi without any additional constraint on the
second moment of the equilibrium distribution functions,
as done in Eq. (64). The collision term Cfi assumes the
simple form of the BGK approximation supplemented by
a forcing term

C({fi}, t) = −1

τ
[fi(r, t)− feqi (r, t)] +∆tFi, (71)

where the equilibrium distribution functions feqi are again
expressed as a second-order expansion in the velocity v
of the Maxwell-Boltzmann distribution [137]. The fluid
momentum is now given by

ρvα =
∑

i

fiξiα +
1

2
Fα∆t, (72)

where Fα is the cartesian component of the force density
acting on the fluid. The choice of the equilibrium distribu-
tion functions and of their constraints is kept as in Section
3.2, with coefficients given by Eqs. (29)-(32) for a D2Q9
lattice. The term Fi can be written as an expansion at the
second order in the lattice velocity vectors [140]:

Fi = ωi

[
A+

Bαξiα
c2s

+
Cαβ(ξiαξiβ − c2sδαβ)

2c4s

]
, (73)

where coefficients A, Bα and Cαβ are functions of Fα. In
order to correctly reproduce hydrodynamics equation, the
moments of the force must verify the following relations

∑

i

Fi = A
∑

i

Fiξiα = Bα

∑

i

Fiξiαξiβ = c2sAδαβ +
1

2
[Cαβ + Cβα] ,

(74)

which lead to [141]

Fi =

(
1− 1

2τ

)
ωi

[
ξiα − vα

c2s
+
ξiβvβ
c4s

ξiα

]
Fα, (75)

To recover the continuity (12) and the Navier-Stokes (13)
equations it suffices to require that

Fα = ∂β(σtotalαβ − σviscousαβ ). (76)

From the Chapman-Enskog expansion (see Appendix B
for the details of the calculation) it results that the fluid
viscosity in Eq. (16) is η = ρ∆tc2s(τ − 1/2). No extra
contributions appear in the continuum equations (12) and
(13), apart from a term of order v3 which can be neglected

if the Mach number is kept small. With this formulation,
the effects of the stress tensor are not included in the
second moment of the equilibrium distribution functions,
as done in Section 3.3.1. The fluid momentum is measured
as the average between the pre- and post-collisional values
of the velocity v, as usually done when using a forcing
term [142,143].

Other approaches to the numerical solution of the LB
equation introduce spurious terms which cannot always
be kept under control. For a complete discussion the in-
terested reader may refer to Ref. [141]. The one presented
here has proved to be effective for simple fluids [141],
multi-component [144] and multi-phase fluid systems [145,
146] even though, as far as we known, a full external forc-
ing algorithmm has not been applied to active systems
yet.

3.4 Coupling with convection-diffusion equation

The scope of Lattice Botlzmann goes far beyond the treat-
ment of hydrodynamics; indeed it has proven to be a
fundamental tool to solve general conservation equations
[147]. Beside many implementations devoted to hydrody-
namics studies, such as the ones cited at the end of the pre-
vious section, recently a LB approach has also been used
to solve Einstein equations for gravitational waves [148].

To furnish an example of how LB can be generalized
to solve generic partial differential equations we devote
this section to report on two characteristic ways to solve
the dynamics of order parameters coupled to hydrody-
namics in a fluid system. Because of its semplicity, in
the following of this section we will focus on the treat-
ment of the convection-diffusion equation (19) for a con-
centration field. The first possibility is to develop a full
LBM approach in which the convection-diffusion equation
is solved by introducing a new set of distribution func-
tions {gi(r, t)} connected to the concentration field, be-
side the distribution functions {fi(r, t)} needed to solve
the hydrodynamics. Another route is to follow a hybrid ap-
proach where the convection-diffusion equation is solved
via a standard finite difference algorithm while hydrody-
namics is still solved through a LB algorithm.

Full LBM approach To solve the hydrodynamic equa-
tions for a binary system through a full LB approach
the introduction of a new set of distribution functions
{gi(r, t)} is needed. The index i again assigns each distri-
bution function to a particular lattice direction indicated
by the velocity vector ξi. The concentration field φ(r, t)
is thus defined as

φ(r, t) =
∑

i

gi(r, t). (77)

As in standard Lattice-Boltzmann model, these distribu-
tion functions evolve according to the following equation

gi(r + ξi∆t, t+∆t)− gi(r, t) = − 1

τφ
(gi − geqi ), (78)



Giuseppe Gonnella et al.: Lattice Boltzmann Methods and Active Fluids 17

where the BGK approximation for the collisional operator
has been used. A new relaxing time τφ has been introduced
since the relaxing dynamics of the concentration field may
consistently differ from that of the underlying fluid. In
Eq. (78) we have also introduced the set of equilibrium
distribution functions {geqi (r, t)} that fulfill the following
relation ∑

i

geqi (r, t) = φ(r, t). (79)

This ensures that the concentration field is conserved dur-
ing the evolution.

To recover the convection-diffusion equation in the con-
tinuum limit, it is necessary to impose the following con-
straints on the first and second moment of the equilibrium
distribution functions

∑

i

geqi ξiα = φvα, (80)

∑

i

geqi ξiαξiβ = φvαvβ + c2γ̃µδαβ . (81)

Here the mobility parameter γ̃ tunes the diffusion constant
M that appears on the right-hand side of the convection-
diffusion equation. A suitable choice of the distribution
function which fulfills Eq. (79), Eq. (80) and Eq. (81) can
be written as a power expansion up to the second order
in the velocity

geqi = Hs + Jsvαξiα +Ksv
2 +Msvαvβξαξβ , (82)

where again the index s = |ξi|2/c2 relates the i-th distri-
bution function to the corresponding lattice velocity, and
the coefficients of the expansion can be computed from
Eqs. (66) through the formal substitution

ρ→ φ σαβ → −c2γ̃µδαβ . (83)

The continuum limit of the convection-diffusion equation
can be performed through a Taylor expansion of the left-
hand side of Eq. (78) and by using Eqs. (79)-(81) [47]. This
leads to the following expression of the diffusion constant

M = γ̃c2∆t

(
τφ −

1

2

)
. (84)

This algorithm can be generalized to describe the evo-
lution of more complex order parameters, such as the ne-
matic tensor Qαβ , whose dynamics is governed by the
Beris-Edwards equation of motion (Eq. (17)). Since Qαβ
is a traceless symmetric tensor, in d dimensions, at least
d(d + 1)/2 − 1 extra distribution functions {Gi,αβ(r, t)}
are needed, which are related to Qαβ through

Qαβ =
∑

i

Gi,αβ . (85)

The rest of the algorithm can be thus developed as the
one presented for the concentration field. In Section 3.5 we
will go back to LBM for liquid crystal dynamics and we
will present another algorithm that employs a predictor-
corrector numerical scheme.

Hybrid LBM approach An alternative approach to solve
the Navier-Stokes equation and a convection-diffusion equa-
tion for an order parameter is based on a hybrid method,
in which a standard LBM solves the former while a finite-
difference scheme integrates the latter.

Let us consider, for instance, the evolution equation
(19) of the concentration field φ(r, t). Space r and time
t can be discretized by defining a lattice-step ∆xFD and
a time-step ∆tFD for which ∆xFD = ∆xLB (namely the
scalar field is defined on the nodes of the same lattice used
for the LB scheme) and ∆tLB = m∆tFD, with m positive
integer. At each time step the field φ evolves according to
Eq. (19) and is updated in two partial steps.

1. Update of the convective term by means of an explicit
Euler algorithm

φ∗(rα) = φ−∆tFD(φ∂αvα + vα∂αφ), (86)

where all variables appearing at the right-hand side
are computed at position rα and time t. Note that the
velocity field v is obtained from the lattice Boltzmann.

2. Update of the diffusive part

φ(rα, t+∆tFD) = φ∗ +∆tFD

(
∇2 δF

δφ

)

φ=φ∗
(87)

Such method, besides being relatively simple to imple-
ment, combines a good numerical stability with a reduced
computational cost with respect to the full LBM approach
[48]. In fact in this latter case, for each field to evolve,
one would need a number of distribution functions equal
to the number of lattice velocities, significantly increasing
the amount of memory necessary at runtime.

In addition the LB algorithm shows reduced computa-
tional costs with respect to other approaches. For instance,
while the number of floating point operations needed to
integrate the hydrodynamics equations on a L×L square
grid is ∼ LD for LBM (where D is the spatial dimen-
sion of the system), it is of order ∼ (lnL)LD for pseudo-
spectral models [149]. It is thus evident that on sufficiently
big computational grids the time performance of LB algo-
rithm is better than the equivalent pseudo-spectral meth-
ods.

3.5 LBM for Active Fluids

As outlined in Section 2, many properties of active matter
are captured by liquid crystal hydrodynamics. Here we
describe a LB method that solves both the Navier-Stokes
equation and the Beris-Edwards equation through a full
LB approach, a method often employed to numerically
investigate active matter [49,62].

As the liquid crystal stress tensor entering the Navier-
Stokes equation is generally not symmetric, one could ei-
ther (i) build an algorithm in which it is fully included
through an external forcing term (as described in Sec-
tion 3.3.2) or (ii) separate the symmetric part from the
antysimmetric one, by including the former in the sec-
ond moment of the equilibrium distribution functions and



18 Giuseppe Gonnella et al.: Lattice Boltzmann Methods and Active Fluids

treating the latter as an external forcing term. Although
the two procedures are equivalent, only the second ap-
proach, first introduced by Denniston et al. [49], has been
developed so far.

In this method two sets of distribution functions, {fi}
and {Gi,αβ}, are defined and are connected to the hy-
drodynamics variables (i.e. density, momentum and order
parameter) through Eqs. (23), (24) and (85). Their evolu-
tion equations are solved by using a predictor-corrector-
like scheme

fi(r + ξi∆t, t+∆t)− fi(r, t)

=
∆t

2
[C({fi}, r, t) + C({f∗i }, r + ξi∆t, t+∆t)] ,

(88)

Gi,αβ(r + ξi∆t, t+∆t)−Gi,αβ(r, t)

=
∆t

2
[C({Gi,αβ}r + ξi∆t, t)

+C({Gi,αβ}r + ξi∆t, t)] ,

(89)

where f∗i and G∗
i,αβ are respectively first order approxi-

mation to f∗i (r+ξi∆t, t+∆t) and G∗
i,αβ(r+ξi∆t, t+∆t)

obtained by setting f∗i ≡ fi and G∗
i,αβ ≡ Gi,αβ in Eq. (88)

and (89). The collisional terms are given by a combination
of the usual collision operator in the BGK approximation
plus a forcing term

C({fi}, r, t) = − 1

τf
(fi − feqi ) + pi, (90)

C({Gi,αβ}, r, t) = − 1

τG
(Gi,αβ −Geqi,αβ) +Mi,αβ , (91)

where τf and τG are two distinct relaxation times, and pi
and Mi,αβ are the two additional forcing terms.

In order to recover continuum equations one must im-
pose constraints on the zeroth, first and second moments
of the equilibrium distribution functions and on the forc-
ing terms. The local conservation of mass and momentum
is ensured by (25) and (26), while the second moment is
given by Eq. (64), in which the stress tensor on the right
hand side includes the sole symmetric part. The antisym-
metric contribution σantiαβ is introduced through the forcing
term pi, which fulfills the following relations

∑

i

pi = 0,
∑

i

piξiα = ∂βσ
anti
αβ ,

∑

i

piξiαξiβ = 0.

(92)
The remaining distribution functions Gi,αβ obey the fol-
lowing equations

∑

i

Geqi,αβ = Qαβ ,

∑

i

Geqi,αβξiγ = Qαβvγ ,

∑

i

Geqi,αβξiγξiδ = Qαβvγvδ,

while the forcing term Mi,αβ satisfies

∑

i

Meq
i,αβ = ΓHαβ + Sαβ ,

∑

i

Meq
i,αβξiγ =

(∑

i

Meq
i,αβ

)
vγ .

We finally note that the predictor-corrector scheme has
been found to improve the numerical stability of the al-
gorithm and to eliminate lattice viscosity effects (usually
emerging from the Taylor expansion and appearing in the
viscous term, in the algorithms discussed so far) to the
second order in ∆t. To show this, one can Taylor expand
equation (88) to get

(∂t + ξiα∂α)fi(r, t)− C({fi})

= −∆t
2

(∂t+ξiα∂α) [(∂t + ξiα∂α)fi − C({fi})]+O(∆t2).

(93)

The left-hand side is of O(∆t) and coincides with the term
in square brackets. One could then write at second order
in ∆t

(∂t + ξiα∂α)fi(r, t) = C({fi}) +O(∆t2). (94)

An analogous calculation for Gi,αβ shows that

(∂t + ξiγ∂γ)Gi,αβ(r, t) = C({Gi,αβ}) +O(∆t2), (95)

thus recovering the proper Lattice Boltzmann equations.
A hybrid version of the algorithm, widely employed

in the study of active matter, solves the Navier-Stokes
equation through a predictor-corrector Lattice-Boltzmann
approach and the Beris-Edward equation by means of a
standard finite-difference method [62,150].

Further models involving more than just one order pa-
rameter have been developed in recent years, such as the
theory discussed in Section 2.4, in which the liquid crys-
tal order parameter (the polarization field) is coupled to
the concentration field of a binary fluid mixture. Again a
hybrid approach, in which both equations of the concen-
tration and of the polarization have been solved through
finite difference methods, has been used [110,151].

3.6 Boundary conditions

In many practical situations, such as in a system under
shear flow, one may be interested in studying the physics
of the system within a confined geometry. In this section
we describe the implementation of boundary conditions
of a sheared bidimensional fluid defined on a lattice of
size Lx × Ly and confined between two parallel flat walls
located at y = 0 and y = Ly. Two key requirements are
necessary for a correct description of the physics:

– no flux accross the walls,
– fixed velocity v∗x along the walls.
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which correspond to the following relations on the wall
sites: ∑

i

fiξix = ρv∗x,
∑

i

fiξiy = 0. (96)

Assuming a D2Q9 lattice geometry (see Fig. 5) with the
walls located along the lattice links (i.e. along the lattice
vectors ξ1,ξ3), one can explicitly write the previous rela-
tions at y = 0 (the bottom wall):

f2 + f5 + f6 − f4 − f7 − f8 = 0, (97)

f1 + f5 + f8 − f3 − f6 − f7 = ρv∗x. (98)

Notice that after the propagation step, functions f0, f1,
f4, f7 and f8 are known, so that one can use relations
(97) and (98) to determine the three unknown distribution
functions f2, f5, f6. This system of equations can be closed
by adding the bounce-back rule:

f2 = f4. (99)

The two remaining distribution functions f5 and f6 are
then given by [152]

f5 =
1

2
(2f7 + f3 − f1 + ρv∗x) (100)

f6 =
1

2
(2f8 + f1 − f3 − ρv∗x). (101)

With this choice for inward-pointing distributions, the de-
sired momentum at the boundary is achieved. Unfortu-
nately this scheme does not allow for the local conserva-
tion of mass since, after the collision step, inward-pointing
distributions are not streamed. In [153] an improvement of
this scheme was proposed to overcome such a problem. In
the following we will use notation fpi to identify the out-
going distribution function in a wall lattice site at time
t−∆t, while fi denotes those streamed from neighboring
sites at time t. Besides conditions in (96) it is required that
the fraction of mass moving towards the wall or eventualy
still on a wall site at time t −∆t is the same that moves
from the wall or stay still on the walls at time t. This is
expressed for a bottom-wall site by the following relation:

fp0 + fp7 + fp4 + fp8 = f0 + f5 + f2 + f6, (102)

where f0 must be determined by solving the system of Eqs.
(96) and (102) together with the bounce-back condition
(99). This leaves unchanged the solutions for the unknown
f5 and f6 in Eqs. (100) and (101), but provides a new
expression for f0 that is thus given by:

f0 = ρ− (f1 + f3)− 2(f4 + f7 + f8). (103)

Such scheme can be easily adjusted to the case of the
pure forcing method presented in Sec. 3.3.2. The only dif-
ference lies in the momentum conservation relations [154]
that in such case read as follows,

∑

i

fiξix+
∆t

2
Fx = ρv∗x,

∑

i

fiξiy+
∆t

2
Fy = 0. (104)

Fig. 6. Sketch of instability and spontaneous symmetry
breaking mechanism for contractile systems. When the
system is completely ordered (left panel) force dipoles
compensate each other, while if a splay deformation is
present (middle panel) the density of contractile forces is
greater on the left than on the right. This determines a
flow that produces further splay (right panel), resulting in
a macroscopic flowing state.

The system of Eqs. (104) together with Eq. (102) admits
the following solutions:

f5 =
1

2

(
2f7 + f3 − f1 + ρv∗x −

∆t

2
(Fx + Fy)

)
, (105)

f6 =
1

2

(
2f8 + f1 − f3 − ρv∗x +

∆t

2
(Fx − Fy)

)
, (106)

f0 = ρ− (f1 + f3)− 2(f4 + f7 + f8) +
∆t

2
Fy, (107)

where the outward-pointing distribution f2 was fixed by
the bounce back condition (96).

4 Spontaneous flow

Many remarkable phenomena in the physics of active flu-
ids are hydrodynamical consequences of the presence of
active forcing in the dynamical equations of the fluid. The
first effect that was studied, to which this section is de-
voted, is the occurrence of spontaneous flow in fluids with
sufficiently strong activity. Numerical methods, and LBM
in particular, have been essential in the study of this prob-
lem, both for supporting theoretical analysis of instabili-
ties and for the understanding of non-linear regimes. Here
we will put the accent on numerical studies, while a more
complete review of analytical studies of instabilities in ac-
tive fluids can be found in [3].

The hydrodynamic description of suspensions of self-
propelled particles, described in Sect. 2.5 with Eqs. (6)
or (7), was first given in [18]. In this work the possi-
ble instabilities of different modes were also discussed:
contractile and extensile gels are unstable to splay and
bend respectively, giving rise to a macroscopic flow. It
has also been shown that orientational order is destabi-
lized by small wave number perturbations by splay of the
axis of orientation, with a velocity field oriented at 45 de-
grees with respect to this axis. Bend and twist waves are
also predicted that in absence of hydrodynamics would
reduce to simply diffusively decaying modes. To under-
stand the mechanism proposed in [18], let us consider the
case of contractile dipoles initially perfectly ordered, as in
the sketch on the left of Fig.6. In this situation the force
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Fig. 7. Instability and spontaneous flow in extensile mixtures. The polarization field is confined in one of the phases
of a binary mixture and satisfies hometropic anchoring both at the lower bound of the channel and at the interface
between the two fluid components; moreover the interface is modulated in a sinusoidal fashion, determining a weak
splay instability in the polarisation field, as shown in panel (a). Starting from this configuration and turning on the
extensile activity, two regimes are found. For weak active doping, shown in panel (b), the interface relaxes towards a
flat profile and the polarisation pattern undergoes bending deformations, while the velocity field, shown in the right
part of panel (b), is parallel to direction of the channel and confined in proximity of the interface. If activity is raised,
the bending deformations of the polarisation field are tightened (as clearly visible in panel (c)) and a unidirectional
flow field develops in centre of the polar fluid and mostly parallel to the walls (see the corresponding inset). When
active doping exceeds a critical threshold (see panel (d)) the polarisation field undergoes instabilities leading to the
formation of chaotic non-stationary polarisation patterns. In such condition the interface loses its flat profile, although
the velocity field remains roughly parallel to the channel direction.

dipoles balance each other and the net flow, obtained by
the sum of those due to the single dipoles represented in
Fig. 4, is null. However, if a small splay deformation is
present (middle panel in Fig.6), the density of contractile
forces on the left is larger than that on the right, and a
flow sets up. This flow causes further splay which desta-
bilizes the system that starts to flow macroscopically. For
extensile activity, under the same splay deformation the
initial flow (directed to the left in this case) would align
the dipoles and no net macroscopic flow would appear. By
repeating the same argument used for contractile fluids,
it can be shown that extensile fluids get unstable to bend
deformations.

The spontaneous flow instability for contractile sys-
tems was illustrated in [63] for the simple geometry of
a bidimensional thin film confined on a one-dimensional
substrate, with planar anchoring on the confining sur-
faces. For small thicknesses or small activity, boundary
effects are prevailing and the gel remains in an unper-
turbed, static, homogeneously polarized state. Above a
critical thickness or a critical activity, a polarization tilt
appears and the system flows with a finite shear gradi-

ent. The previously mentioned analysis has been later ex-
tended to films where undulations of the free surface are
also considered [3,155]. In particular Sankararaman et. al
[155] constructed dynamical equations for the concentra-
tion field, the polarization field and the height of the film
thickness. Activity was found to have two main effects on
the evolution of the height field: (i) a splay induced flow
that tilts the free surface and (ii) an active contribution
to the effective tension. The latter can be understood by
noting that active stresses pull or push the fluid along the
long axis of the particles, giving additional elastic contri-
bution to the stretching along that axis. Through stabil-
ity analysis they found that, for contractile stresses, splay
destabilizes the surface?, while the activity contribution
to tension stabilizes the surface. For extensile activity the
opposite happens.

The previous results are illustrated in Figs.7 and 8.
Here the onset of instability and spontaneous flow is shown
for the polar active binary mixture described in section
2.4, in which an active polar gel coexists with a pas-
sive component. Homeotropic anchoring is set both at the
lower bound of the channel and at the interface between
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Fig. 8. Splay deformation and defect formation in a
contractile mixture. Starting from condition presented in
panel (a) of Fig. 7, strong contractile activity is imposed
in the system. This leads to a catastrophic dynamics: the
splay deformation of the initial condition is tightened un-
til the initial sinusoidal shape in the interface between the
two fluids is completely lost and replaced with an ondu-
lated profile driven by splay deformations of the polarisa-
tion, as clearly visible in the center of the system. Notice
also the formation of two defects of opposite charge that
have been framed with two black squares. Defect forma-
tion strongly influences the hydrodynamics of the system,
as shown in the inset, where the velocity field develops a
quadrupolar backflow in their neighborhood.

the two fluid components. The system is numerically stud-
ied by means of a hybrid Lattice Boltzmann method which
combines a LB treatment for the Navier-Stokes equation
with a finite difference algorithm to solve the order pa-
rameters dynamics (Section 3.5). The interface is initially
modulated by a sinusoidal perturbation, determining a
weak splay pattern in the polarization field, as shown in
Fig. 7(a). As expected, for weak extensile activity, the
system is stable under splay deformations which are re-
placed by static bending patterns (see Fig. 7(b)). These
give rise to a macroscopic flowing state as it can be seen
by looking at the velocity field in the zooms of Figs. 7(b)
and 7(c), with the polarization field becoming unstable for
sufficiently high activity (Fig. 7(d)). Strong contractile ac-
tivity tightens splay deformations of the initial condition
until, by increasing the strength of activity, as shown in
Fig. 8, the initial sinusoidal shape of the interface between
the two fluids is completely lost and replaced by a irregu-
lar profile driven by splay deformations of the polarisation
field. Fig. 8 also shows the presence of two defects of oppo-
site charge (+1 and −1), framed with two black squares.
They strongly influence the velocity pattern of the system,
as shown in the inset where a quadrupolar backflow can
be observed in their neighborhood.

The first papers where spontaneous flow was systemat-
ically studied numerically were [13,156]. A two-dimensional
nematic gel confined between two walls with different an-
choring conditions was studied by a hybrid version of LBM.
The model is the same of that described in Section 2 for
active nematic liquid crystals. The dynamics of the order
parameter Q is governed by Eq. (17), with Ξ replaced by
Q and S given in the last row of Table 2, with an ex-

Fig. 9. Phase diagram from [13] in the two activity pa-
rameters plane (λ, ζ) for an active nematic liquid crys-
tal. The lines define regions of passive immotile state, and
active, macroscopic motile state for two different system
sizes.

tra active term, besides the active stress term in the NS
equations, of the form λQ. This term was suggested on
the basis of symmetry considerations and also obtained
by a microscopic derivation in [39]. λ is positive for sys-
tems with self alignment effects [63], like concentrated ac-
tomyosin suspensions, and negative for dilute suspensions.
The main results concerning the occurrence of sponta-
neous flow are summarized in Fig. 9 for two different sys-
tem width L = 100,200, which confirm the presence of a
transition between a passive and an active phase as pre-
dicted analytically. For small L or small ζ there is no flow
and the polarization field is homogeneous. In the active
phase instead a spontaneous flow is observed. Alongside
the activity parameters ζ and λ, the other key parameter is
the flow alignment parameter ξ. In fact the transition is at-
tained for sufficiently extensile suspensions, in the case of
flow-aligning (|ξ| > 1) liquid crystals, and for sufficiently
contractile ones for flow-tumbling materials (|ξ| < 1). In
the flow-aligning case the velocity profile is characterized
by the presence of bands, i.e. areas of constant shear, sep-
arated by narrow regions where the shear gradient reverse,
similar to shear bands in non active materials [157] with
the number of wavelengths in the channel increasing with
ζ. Flow tumbling materials rearrange themselves so that
only the two boundary layers flow in steady state. Two-
dimensional simulations, with periodic boundary condi-
tions, show additional instabilities, with the spontaneous
flow appearing as patterns made up of convection rolls.
Boundary conditions for the model in [13] are described
in detail in [158], while the numerical method in [159].
The complete phase diagram was studied, for a quasi-1D
system, in [160], extending previous works to the com-
plete (ξ, ζ) plane, varying also the initial orientation of
the the director field.

A detailed numerical study of the dynamical sponta-
neous flow transition in polar active films (not by LBM
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but directly integrating dynamic equations) is presented
in [161]. In this work the effects of varying concentration
were explicitly taken into account. The free-energy of the
model is similar in spirit to that of Eq.(9) but only one
phase for the concentration of the active fluid is consid-
ered (the free-energy is at most quadratic in the concen-
tration field and no phase separation phenomena can oc-
cur). The phase diagram in a plane of two variables related
to activity ζ and a parameter that controls self-advection
of the polarization field, shows the transitions to sponta-
neous flow and, for high activity and self-advection, to a
spontaneous periodic oscillatory banded flow. The latter,
accompanied by strong concentration inhomogeneities, is
not present in active nematic systems. We finally mention
another LBM study on spontaneous flow, where the effects
of a phenomenological term λ̃v in the dynamic equation
for the polarization field P(Eq. (17)), favouring the align-
ment between the polarization field and the velocity, were
studied [110]. It was shown that the interplay between
alignment and activity gives rise to very different behav-
iors under different boundary conditions and depending on
the contractile or extensile character of the fluid. Due to
the competition between alignment and activity-induced
spontaneous flow, which would tend to favour misaligned
patterns, stationary active patterns are transformed into
continuously moving ones that can be either chaotic or os-
cillatory according to the strength of the alignment term.

The occurrence of spontaneous flow may also be ac-
companied by the formation of topological defects. In fact
the dynamics of the order parameter field and the veloc-
ity field are interconnected through a feedback loop. The
hydrodynamics instabilities give rise to lines of distortions
in the order parameter field that are unstable to the for-
mation of defect pairs [86]. In [162,163] an extensile active
nematic has been considered and the dynamics of defects
characterized. Two main stages have been identified: first
ordered regions undergo hydrodynamic instability gener-
ating lines of strong bend deformation that relax by form-
ing oppositely charged pairs of defects. Annihilation of
defect pairs of different charge restores nematic ordered
regions wich undergo further instabilities. In passive liquid
crystals the coupling between the order parameter and the
flow has significant effect on the motion of defects, gener-
ating a more intense flow around positive charged defects
than for negative charged ones [85]. This phenomenon is
still present in active liquid crystals, as suggested by the
quadrupolar flow centered around the +1 defects in the in-
set of Fig.8. The presence of activity gives rise to an even
richer phenomenology. Full defects hydrodynamics in 2D
polar active fluids was studied by lattice Boltzmann simu-
lations with a hybrid scheme in [164]. In this paper it was
found that extensile activity favours spirals and vortices,
like the defect highlighted by a blue square in Fig. 7d,
while contractile activity favours aster-like defects in the
polarization field like the ones boxed in Fig. 8. The defect-
defect interactions are also described. In a contractile fluid
two asters repel each other reaching a steady state with
a fixed distance, that increases increasing activity. In the
extensile case two asters turn into two rotating spirals,

leading to a final state where the rotation continues at
approximately constant rotational velocity. For low activ-
ity the angular velocity increases with ζ, while above a
critical value an oscillatory behavior is observed, where
half clockwise rotation is followed by half an anticlock-
wise one, consistently with the previous cited oscillatory
and chaotic behaviors appearing in spontaneous flow tran-
sition for high activity [13].

Defects dynamics is particularly rich in drops of active
fluids. This is not surprising given the complexity of defect
topology known for passive liquid crystals [165]. So far,
numerical studies available are mostly concerned with two-
dimensional systems, and we will give a review in the next
section.

5 Self-propelled droplets

We have already discussed in the previous section the im-
portance of boundary conditions and how they effects the
hydrodynamics of an active fluid. In general geometrical
constraints greatly affect the defects patterns in passive
liquid crystals and this suggest a very rich phenomenol-
ogy also in confined active fluids. In an active nematic
droplet on a substrate for example, imposing no normal
componetn of the orientation field at any bounding surface
leads to inhomogeneities in the active stress that generate
flows driving the spreading process with novel growth laws
and drop shapes. This was first studied alatically in [166],
under conditions of partial wetting with small equilibrium
contact angle, and local polarization anchored parallel to
the surface of the drop. In 1+1 dimensions the shape of the
standing drop is determined primarily by the interplay of
active stresses and surface tension, with the liquid- crystal
elasticity of the ordered filaments playing a role near the
contact line. In a three-dimensional drop, the anchoring
conditions impose the existence of defects in the polar-
ization field, and the nature of the active stresses play a
central role, as extensile active stresses lead to flat drops
whereas contractle droplets are fatter than passive ones.
Diffeerent defects also determine different kinetics and fi-
nal states. Aster-like defect line at the centre of the drop
lead to a linear growth law of the the radius in time, while
for a vortex defect, spreading is arrested at long enough
times and the final height profile of the drop is a non-
monotone function of radius.

Two-dimensional active droplet endowed with internal
nematic or polar order and surrounded by an isotropic
Newtonian fluid has been used as a minimal set up to
try to mimic the basic mehacnis of crawling cells, cel-
lular motility in bulk, intracellular movemnt, and trans-
port [3]. The minimal models developed have helped to
understand whether cell motion is sustained by continu-
ous action of cells complex biochemical networks or subsist
an autonomous physical mechanism of motility.

With this aim the motility and the spontaneous di-
vision of an active nematic droplet, described by a set
of equations similar to Eqs. (13)-(17)-(19), was studied in
[109] by finite difference methods. The initial configuration
consists of a circular droplet of radius R, with director field
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uniformly aligned, and forced to be normal at the inrface,
and the flow velocity identically zero. The normal anchor-
ing condition at the interface and the disk topology, would
alone create in passive nematic droplets two +1/2 discli-
nation(like the ones dipslayed in Fig. 2(a) ) repelling each
other. The repulsion is balanced by the surface tensions,
leading to an elongation of the droplet along the line join-
ing the defects [167].As explained in the previous section,
in bulk systems, contractile and extensile active stresses
favor, respectively, splayed and bent configurations of the
nematic director through feedback mechanisms mediated
by the flow. As aconsequence, a uniformly oriented refer-
ence configuration becomes unstable once the internal ac-
tive stress exceeds a critical value. For a contractile droplet
with homeotropic boundary, the axisymmetric structure
of the director drives a typical quadrupolar straining flow,
causing repulsion between the defects,

At sufficiently high contractile activity the interior of
the droplet becomes unstable to splay and the no longer
axially symmetric backflow causes the droplet to move.
This motility mechanism is classified as a particular form
of swimming: the droplet generates a flow in an ambient
fluid and uses this to propel itself. Motility occurs as the
combination of two processes: the initial elongation of the
droplet, driven by the straining flow produced by the de-
fects, and the instability of this configu- ration to splay.
The existence of the intermediate elongated configuration
is guaranteed by the fact that viscous and pressure forces
exerted by the flow on the droplet are balanced by the
resistance due to interfacial tension forces.

For large capillary numbers, the capillary forces are no
longer sufficient to achieve this balance, the droplet con-
tinuously stretches and eventually divides before the splay
instability can develop. Because of the interplay between
the active stresses and the defective geometry of the ne-
matic director, the system is able to mimic two of the
defining functions of living cells: spontaneous division and
motility.

The generic mechaniscm of motility of active polar
dropelts was investigated in [65]. When the activity pa-
rameter exceeds a given threshold, an initially circular
or spherical droplet spontaneously breaks that inversion
symmetry, leading to an elastic splay of the polarity field
and to motion along ±P. This spontaneous symmetry
breaking manifests itself as a supercritical Hopf bifurca-
tion, which can alternatively be viewed as a continuous
nonequilibrium phase-transition.

Spontaneous motility of passive emulsion droplets in
polar active gels was studied in [168]. When the polarisa-
tion of the active gel is anchored normal to the droplet at
its surface, the formation of a hedgehog defect drives an
active flow which propels the droplet forward. In an exten-
sile gel, motility can occur even with tangential anchoring,
which is compatible with a defect-free polarisation pat-
tern??. In this case, upon increasing activity the droplet
first rotates uniformly, and then undergoes a discontinu-
ous nonequilibrium transition into a translationally motile
state, powered by bending deformations in the surround-
ing active medium.

Finally, we mention one of the few three-dimensional
studies concerning the dynamics of active droplets. The
effects of microscopic chirality on the motility of active
droplets were considered in [95]. Some of the features
of the motility modes observed resemble those of some
single-celled protozoa.

We have seen that spontaneous flow is particularly rel-
evant for droplets since it is at the origin of their motile
character. Therefore it is quite natural to have extended
the previous studies to the description of biological cells.
A minimal model capturing the behavior of crawling cells
was introduced in [78].

The dynamics of cell motility and division and was
also put in relation with the results found in [169]. Here
active fluid droplets immersed in a two-dimensional ex-
ternal fluid are simulated using an Immersed Boundary
method to describe the fluid droplet interface as a La-
grangian mesh.

6 Rheology

The flux generated by the presence of activity can interact
with external flows to modify the rheological response of
their suspension.

Many experimental studies have confirmed a decrease
in viscosity for pushers and an increase for pullers. Sokolov
et al. [16] confined Bacillus subtilis bacteria, which are
pushers, in a quasi-2D liquid film. Their experiments yielded
viscosity estimates below that of the solvent at low con-
centrations. At higher densities the viscosity was found
to increase and exceed that of the solvent. More precise
measurements using E. coli bacteria were obtained by
Gachelin et al. [170] and Lopez [171]. In the former bacte-
ria are indeed found to decrease the viscosity below that
of the solvent for low shear rates. However the relative
viscosity increases with the shear rate, reaching a maxi-
mum above unity before shear thinning again. Lopez per-
formed their experiments in a conventional Tailor Couette
rheometer specifically build to handle low torques and vis-
cosities. The relative viscosity in their case displayed sim-
ilar trends with shear rate, with a low-shear-ate plateau
with relative viscosity less than one caused by activity,
followed by shear thickening. Increasing the density of
bacteria was found to decrease the value of the plateau
towards zero, that means that the relative viscosity goes
to zero. The measured viscosity, within experimental un-
certainty, actually vanishes in oxygenated suspensions for
volume fractions in excess of 1. This surprising superfluid-
like behavior should not be seen as a violation of ther-
modynamic principles, as the bacteria consume chemical
energy. Rather, it suggests that the viscous dissipation in
the flowing suspension is macroscopically balanced by the
input of energy from swimming, thus allowing for a sus-
tained flow without any applied torque. The case of puller
swimmers has been addressed by Rafai et al. [172], who
measured the viscosity of a suspension of Chlamydomonas
reinhardtii in a Taylor-Couette flow. The suspension vis-
cosity was always found to exceed that of the medium and
to increase with concentration.The effect of activity was
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Fig. 10. Sketch of shear flow profile in a channel(cyan
arrows on the left panel) compared to contractile (center
panel) and extensile(right panel) flow.

spotted comparing the results between dead bacteria an
living ones, with the suspension of leaving bacterial always
being significantly more viscous than the dead one. Weak
shear thinning was also reported for high shear rates. A
direct comparison of three different types of swimmers
was recently performed by McDonnel et al [173], consider-
ing Dunaliella tertiolecta E. Coli and mouse sprematozoa.
In each case they compared live and dead cells. The vis-
cosities measured were always above those of suspending
medium, with living cells algae suspensions more viscous
than dead ones, while both E. Coli and spermatozoa ap-
peared less viscous when alive than dead.

Most experimental measurements and theoretical mod-
els have focused on the steady-flow rheology, but the com-
petition between flow alignment and orientational real-
ization produces viscoelastic behavior in unsteady flows.
Lopez’s experiments using E. Coli bacteria also analyzed
the transient stress response upon startup and cessation
of shear flow. They observe a platau at the steady viscos-
ity measured two transient regime corresponding respec-
tively to the switch on and the switch of the applied shear
characterized by positive and negative peaks respectively
appear. This stress overshoots followed by relaxation in-
dicate elasticity. In [174] the superfluidic behavior has
been experimentally investigated. They found that bac-
terial superfluids under shear exhibit unusual symmetric
shear bands, defying the conventional wisdom on shear-
banding of complex fluids, where the formation of steady
shear bands necessarily breaks the symmetry of unsheared
samples. The basic mechanism for viscosity modification
by a suspension of microswimmers was first explained by
Hatawalne et. al. [175]. They studied theoretically the rhe-
ology of SPP, making several predictions for the rheol-
ogy of such systems. The main mechanism is sketched in
Fig.10. Under an applied shear profile (left panel) extensile
systems (middle panel) enforce the applied flow, decreas-
ing the viscosity of the suspension, while the flow gener-
ated by contractile systems opposes to the external flow
thus resulting in an increase of the apparent viscosity.

They first derive the coarse-grained equations govern-
ing the rheology of suspensions of active particles, and
derived several predictions later validated by simulations
and experiments. Liverpool et al. [176] did the same kind
of study for polar active gels. They start form a molecular
model, and they derive the constitutive equations for the
stress tensor in the isotropic phase and in phases with liq-

uid crystalline order. The stress relaxation in the various
phases is discussed.

In [177] the behavior of a suspension of active polar
particles under shear was analyzed. An extremely rich va-
riety of phenomena was found, including the effective re-
duction or increase of the apparent viscosity predicted by
Hatawlne, depending on the nature of the active stresses
and the flow-alignment properties of active particles. The
analytical treatment of the linear regime, where the stress-
strain relation is linear, demonstrates that activity lowers
the linear viscosity of both extensile, rod-shaped particle
and contractile, disk-shaped particle suspensions, while it
increases the viscosity of contractile, rod-shaped particle
and extensile, disc-like particle suspensions. Increasing ac-
tivity the rheological response becomes on linear. In this
regime both stability analysis and numerical integration of
the equations of motion, suggest, depending on the value
of activity and strain rate, the possibility of more exotic
scenarios including non-monotonic stress-strain behavior,
hysteresis, yield-stress behavior and a superfluid phase
with vanishing viscosity. The linear viscoelastic properties
of an active suspension can be derived applying spatially
uniform oscillatory shear flow at frequency ω in the x− y
plane obtaining, at linear order in the fields, the x − y
component of the stress tensor [3]

σxy =

[
η +

(αQ − ζ∆µ) ξ

−iω + τ−1
Q

]
vxy , (108)

with vx,y = 1
2 (∂xvy+∂yvx), τQ ∼ 1/αQ relaxation time

of the order parameter and η viscosity of the suspending
medium. We see that viscosity, which is obtained taking
the limit ω → 0, can be either enhanced or reduced de-
pending on the sign of ζ, giving rise to shear thickening
or thinning respectively. In addition nothing rules out a
negative viscosity [3].

Lattice Boltzmann methods have been used to con-
firm numerically most of the theoretical and experimental
predictions on the rheological properties of active suspen-
sions, and in particular to spot out the role of hydrody-
namics. We will now review some of the numerical work
done with LB.

Cates et al. [178] studied, by the already cited hybrid
LBM the rheological the properties of a slab of active gel
close to the isotropic-nematic(I/N) transition. For con-
tractile gels and free-boundary conditions, they found a
divergence of the apparent viscosity at the I-N spinodal.
Extensile gels, in contrast, enter a zero-viscosity phase of
N/N shear bands as the spinodal is approached. In the
nonlinear regime, both extensile and contractile materi-
als show nonmonotonic effective flow curves, with details
strongly dependent on initial and boundary conditions. Fi-
nally, extensile (contractile) activity stabilizes (sup-presses)
I/N shear banding.

In [67] a 2D extensile nematic gel was studied in more
detail, comparing results between planar anchoring(fixed
boundary conditions) and the case in which the director is
free to rotate at the boundary planes(free boundary con-
ditions). In the case of free boundary conditions, at low
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activity, the static roll pattern observed in confined gels
without shear is destroyed even at low shear rates, while
at high shear rates a homogeneous flow is recovered. The
flow pattern at very low shear rates is unsteady and is
spatially nonuniform. In this case the shear stress take
both positive and negative values. Enlarging activity the
system displayed a clear evidence of a finite viscosity at
low shear rates, while at high shear rates the laminar flow
is again reestablished. For very high activity the chaotic
patterns observed without applied shear are only slightly
perturbed at small strain rates, with the appearance of
a noticeable upward curvature in the flow curve (stress
σ over shear rate γ̇). In the case of fixed boundary con-
ditions, at low activity and shear rates the flow curves
display a linear regime, while for high shear rates or high
activity the results are in line with previous case.

Foffano et al. [14] attempted to link micro and macro-
rheology of active nematics. To do so they compared macro-
scopic shear numerical experiments with the results of
simulations where a spherical probe particle was dragged
through the active fluid. The bulk rheology shows that
in sheared nematics the effective viscosity differs for dif-
ferent anchoring conditions at the container walls given
the anisotropic nature of the fluid. They also addressed
the question of the role played by the anchoring condi-
tions on the walls and by the system size L. To do so they
considered both normal anchoring and planar anchoring
at the walls. They found that the effective viscosity in-
creases with L in contractile active fluids and decreases
with L in extensile ones. Normal anchoring also enhances
the apparent viscosity.

When a spherical particle is dragged through the ac-
tive fluid, the drag force does not depend linearly on the
probe radius, violating the Stokes law. When the direc-
tor field is anchored tangentially to the particle surface
contractility increases the drag, while extensile activity
reduces it in line with the macrorheology results. In the
case of normal anchoring at the probe surface, pulling or-
thogonally to the far-field director leads to results similar
to the tangential anchoring, while dragging the particle
along the director leads the particle to move faster in the
contractile neamatics than it does in extensile nematics.

7 Active turbulence

Spontaneous flow in active suspensions evolves, for suf-
ficient strength of the active component, into complex
patterns for the velocity field that, at qualitative level,
look chaotic resembling those of simple fluids in the pas-
sage from laminar to turbulent behavior, as suggested by
streamlines of the velocity field in Fig. 3. This observation,
as mentioned in the introduction, first came from experi-
ments conducted on highly concentrated bacterial suspen-
sions, where the velocity field was found to develop co-
herent vortical structures as well as jets at high velocities
[10,179,180]. Transient jet-like fluid motion was found [10]
with the speed of the jets > 100µm/s significantly larger
than the speed of an individual bacterium (∼ 10µm/s).
The fluid pattern observed on length scales of 100-200 mm

is reminiscent of a von Karman vortex street, which arises
in fluids when the Reynolds number is much larger (∼ 50)
than that of a single bacterium cell (∼ 10−4). This justi-
fies the terms bacterial turbulence and active turbulence,
used to denote this kind of flow [10]. Similar behaviors
have been also reported in experiments on suspensions
of both puller and pushers bacteria [10, 181, 182], as well
microtubules bundles [73] or acto-myosin systems and
microalgae [183].

A theoretical description of this complex behavior was
first presented by a phenomenological model based on the
Stokes equations, adapted to take into account the swim-
ming mechanism of bacteria, each acting as a dipole stress
on the fluid [184]. This model, solving the equations in
two dimensions using realistic parameters, empirically re-
produces the observed velocity fields.

The first attempt of a quantitative analysis of turbu-
lent behavior was first done by Wensink et al. in [68],
with a combination of experiments, simulations of self-
propelled rods (SPR) and continuum theory aimed at iden-
tifying the statistical properties of self-sustained meso-
scale turbulence in dense suspensions of Bacillus subtilis.
Experimental and numerical data coming from SPR sim-
ulations for the energy spectrum, exhibit power law scal-
ing regimes better observed in two dimensions for both
small (k5/3) and large (k−8/3) wave numbers; however the
power-law exponents differ from the characteristic k−5/3

decay of 2d high Reynolds numbers turbulence, as it will
be discussed later. Similar results were also found mak-
ing use of the continuum theory of Toner and Tu [185],
supplemented with the Swift-Honenberg stress tensor pre-
sented in Eq.(8), containing higher order derivatives of
the velocity gradient. Experimental data in 3d look qual-
itatively similar but show an intermediate plateau region
not present in two-dimensional systems, to indicate the
spreading of kinetic energy over a wider range of scales.
The same model was used in a subsequent paper [11] to
consistently reproduce velocity statistics and correlations
in a highly concentrated 3d suspension of B.subtilis, while
in [104] the linear stability analysis was presented.

Beside bacteria, eukariotic cells with self-motile prop-
erties also show self-sustained flows. In [69] a suspension
of spermatozoa was found to develop a directed energy
cascade characterized by a power scaling law k−3 at high
wave numbers, a behavior that is found in quasi-2d turbu-
lent flows. Recently, active turbulence features were also
found in a system of self-assembled ferromagnetic Nickel
microparticles dispersed at the water-air interface, while
subjected to an external oscillating magnetic field [186].
Self-assembled spinners locally inject energy in the sol-
vent via generation of local vortex flows, thus leading to
the subsequent energy cascade towards larger scales. The
hydrodynamic state is characterized by a power-law de-
cay k−5/3 of the energy spectrum at low packing frac-
tions, but when this increases, steric and magnetic inter-
actions become important so that even the the exponent
start to deviate while the system undergoes a transition
toward a new phase where spinners are replaced by non-
rotating clusters. The experimental observation were qual-
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itatively reinforced through numerical simulations of discs
suspended in 2d geometries whose dynamics was solved
using the Multi-Particle-Collision approach.

The model of Wensink et al. [68], previously discussed,
has the advantage of simplicity with respect to the active
gel theory of sect 2.5. In that model the scale of variation
for the velocity field is set phenomenologically, by varying
the ratio between coefficient in (8), thus the explicit dy-
namics of the active components is neglected, so that one
cannot derive any information on the relations between
the velocity, the active component fluctuations, and the
order parameter patterns with its inherent defect dynam-
ics. A more complete analysis of these features can be per-
formed by considering the nematic gel theory of Section
2.5 as first done in [187]. Here decay spectra for kinetic
energy and enstrophy were calculated for a quite small 2d
system with periodic boundary conditions. Always using
finite differences methods to solve the Beris-Edwards and
the Navier-Stokes equations of Section 2.5, Giomi care-
fully analyzed the statistics of vortices in [188], finding
that their areas are exponentially distributed and giving
insights into the relations between the topological proper-
ties of the nematic director and the geometry of the flow.
In particular he found that the chaotic regime is due to
a feedback mechanism between the advection of nematic
±1/2 disclinations and vortical flows, whose structure is
in turn closely related to presence of disclinations in their
neighborhood, as demonstrated in refs. [85,189]. The num-
ber of both +1/2 disclinations and vortices is found to be
linearly proportional to the strength of the active injec-
tion, while creating and annihilation rates of oppositely
charged defects exhibit a quadratic dependence. Moreover,
not only the statistics but also the disclination dynamics
is highly dominated by vortical flows: indeed defects are
found to be transported by the fluid along the edge of
vortices at an angular velocity that is again linearly de-
pendent from activity. As a consequence the annihilation
lifetime of disclinations is inversely proportional to the an-
gular velocity hence, to the active parameter. The energy
and enstrophy spectra were respectively observed to decay
as k−4 and k−2, in the limit of high wave numbers, with
no significant dependence neither on the value nor on the
kind of activity (extensile or contractile).

The importance of relations between defects and vor-
ticity has also been highlighted in ref. [70] where a phe-
nomenological continuum theory for overdamped active
nematic liquid crystals is introduced. Three different non-
equilibrium steady states are found according to the mu-
tual effects of active torques and active convection: when
the first is dominant over the second a defect order ne-
matic is developed, where the comet tail of +1/2 discli-
nations are aligned throughout the system; when instead
active convection dominates over torques an undulated
nematic free-of-defect state is formed. Nevertheless when
these contributions are equally important a turbulent ne-
matic state emerges, being characterised by a sharp in-
crease both in vorticity and in the number of defects.

The growing interest in active turbulence over the last
decade is motivated by some peculiar aspects: firstly fluid

active systems mostly evolve in the low Reynolds num-
ber regime, so that the development of a turbulent state
is highly surprising, secondly the search for an univer-
sality class for this phenomena is extremely challenging,
due to the breadth of the actual scenario. Moreover even
the physical mechanism that drives active systems toward
the turbulent state is remarkable: energy injection takes
place on small scales l of the same order of the length
of microswimmers, setting an upper bound for the spec-
tral range of energy injection kl ∼ 2π/l, while the typical
wavenumbers k over which the turbulent flows take place,
namely those regions where energy spectra exhibit power-
law decay, are such that k/kl < 1. Hence, energy, that has
been injected by the active components on micro scales, is
transported on much bigger scales, through complex hy-
drodynamics mechanisms. This is somehow reminescent
of two-dimensional classical turbulence in which energy
pumped into the system by an external force at a certain
scale lf is not dissipated by viscosity, but tranferred to
larger scales giving rise to an inverse energy cascade [190].
By requiring a scale independent energy-flux, one finds
the Kolmogorov solution for the energy spectra ∼ k−5/3,
in the inertial range k � kf = 2π/lf . Yet another iner-
tial region is expected in the direct-cascade range k � kf ,
where the requirement of constant enstrophy flux gives a
solution for the spectrum ∼ k−3.

In spite of the effort taken up to now, a complete char-
acterization for the variety of behaviors observed in the
scope of bacterial turbulence is still lacking. Indeed beside
the qualitative similarity between bacterial and classical
turbulent flows, it is evident, from the wide phenomenol-
ogy presented before, that arguments valid for the classical
high-Re turbulence do not hold for active matter systems,
because of the plurality of behaviors observed, nor any al-
ternative theory has already been able to fully provide a
consistent explanation of such phenomena.

An insight into the mechanism due to energy injec-
tion and dissipation has been outlined by Bratanov et al.
in [191]. In this work the spectral properties of the same
model as in [68] are analyzed. They found a power-law en-
ergy spectrum at large scales, even in absence of an inertial
range, namely a region of constant energy flux. Moreover
the exponents are not universal but they depend on the
energy parameters and exhibit system size dependence.
They notice that the presence of further non-linearities in-
troduced in the model, with respect to the only advective
term in the Navier-Stokes equation (13), provides addi-
tional freedom to the energy exchange between different
scales, leading to the scale-by-scale balance between linear
forcing and energy consuming terms and non linear terms.

Recently a connection between bacterial and classical
turbulence has been established by Doostmohammadi et
al. in [192] and by Shendruk et al. [193] , where contin-
uum equations for the active nematic theory of Section 2.2
were solved through a hybrid lattice Boltzmann method.
Shendruk found that by confining active nematics in a mi-
crochannel, the system exhibits various morphological be-
haviors in dependence of the intensity of active doping; for
small activities they found an unidirectional spontaneous
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flow regime, followed by an oscillating laminar flowing
state, that becomes turbulent for enough intense values of
the activity parameter. One of the results presented in this
work is the appearence of an intermediate state between
the laminar regime and the turbulent one, addressed as
Ceilidh dance. This represents the motion of paired discli-
nations in the nematic pattern moving along the channel,
that, advected by the vortical flow, exchange partners,
producing a dynamical ordered state that is reminescent
of Ceilidh dancing. The transition to the turbulent state is
fully analyzed in the work of Doostmohammadi: here vor-
ticity puffs are used to characterize the transition. Unlike
the inertial puffs that drive high-Re systems toward a full
turbulent state and are initiated by external forcings, in
this case these are driven by the internal injection of en-
ergy on small scales. Far from the turbulent transition, the
turbulent fraction, namely the area fraction occupied by
the active puffs, is almost null, since they often vanish be-
fore splitting, but when the active doping becomes more
intense while approaching the turbulent threshold, their
lifetime grows and splitting becomes more likely. When
the turbulent threshold is exceeded the turbulent fraction
grows with a power-law ∼ (A−Acr)0.275±0.043, where the

adimensional active number A =
√
ζh2/K, being h the

channel width and Acr the turbulent threshold. The ex-
ponent characterizing the transition closey matches the
universal critical exponent of the (1 + 1) directed perco-
lation (β = 0.276). Moreover this is in turn very close to
the exponent measured in Couette flows for inertial tur-
bulence [194] (since in that case β = 0.28± 0.03).

The works of Shendruk and Doostmohammadi had so
shed light on the route to follow to fully charachterize the
turbulent behavior, but still a number of questions has to
be answered: which mechanism drives the system towards
the turbulent state? How energy is exchanged between
different lengthscales? Is it possible to confine and tune
the turbulent behavior? These questions have still to be
answered and are still open to firther research.

8 Colloids

In this last section we briefly review the simulation studies
investigating the physics of particle suspensions (such as
colloids) dispersed in a fluid, in the context of active mat-
ter and performed via Lattice Boltzmann methods. The
systems studied so far can be divided in two broad classes.
The first one, on which large part of the recent research
has been addressed, encompasses those made up of active
particles dispersed in a passive fluid, while the second one,
whose physcics remains still largely unexplored, includes
those in which passive particles are dispersed in an active
medium.

In recent years several models, pertaining to the first
group, have been proposed to simulate microscopic swim-
mers interacting with a fluid at low Reynolds number. Ra-
machandran et al. [195], for instance, described a swimmer
by extending the method introduced by Ladd [140, 196,
197] to model solid passive particles to the active ones.

This is done by adding an active force distributed at the
boundary between the fluid and a solid particle, where
stick boundary conditions, bouncing back the incoming
fluid at the particle surface, are implemented. Particle’s
self-propulsion is triggered when an asymmetric force dis-
tribution is applied, while a symmetric one only perturbs
the fluid in the surrounding of the particle without gen-
erating any net motion. The former case describes the
movers (or polar particles) while the latter one the shak-
ers (or apolar particles). A complementary mechanism
promoting particle’s self-propulsion was proposed in Ref.
[198], and consisted in adding a constant amount of mo-
mentum with fixed magnitude to the particle, and then,
to restore momentum conservation, to subtract the same
amount to the fluid nodes connected to the solid ones. This
approach has been used to study the collective dynam-
ics of self-propelled particles dispersed in a fluid solvent,
and was found to reproduce, for instance, the formation of
transient particles’ aggregates as well as the transition of
the particle mean square displacement from diffusive to-
wards ballistic motion at low concentration [199]. A sim-
ilar mechanism has been also used to investigate the hy-
drodynamics of active rotators [200], systems capturing,
for example, the rotating motion of molecular motors on
the cell membrane [201].

An alternative approach has been afterwards used to
simulate suspensions of swimming particles (again built
using the Ladd method) starting from the squirmer model
introduced by Lighthill [202, 203], in which particle’s mo-
tion is triggered by a predefined axisymmetric tangential
velocity distribution imposed on the surface of the parti-
cle. By using such velocity distribution as boundary con-
dition of the Stokes and the continuity equations (as the
inertia of the fluid is neglected), the mean fluid flow in-
duced by a minimal squirmer can be computed

u(θ) = B1 sin(θ) +
B2

2
sin(2θ), (109)

where only the first two terms of an expansion with Leg-
endre polynomials have been kept on the right hand side
of Eq. (109). Here θ is a polar angle and θ = 0 defines the
swimming direction of the squirmers. The dimensionless
parameter ε = B2/B1 defines the type of squirmer: ε > 0
describes a puller (or contractile squirmer) while ε < 0
describes a pusher (or extensile squirmer). The case with
ε = 0 corresponds to an apolar squirmer (or shaker).

Lattice Boltzmann has been also proven to be a pow-
erful method to investigate the hydrodynamics of active
three-bead linear swimmers [204], a system in which an
analytic solution is available [205]. Here the swimmer is
constituted of three spheres of predefined radius linked
with sufficiently thin rods to neglect hydrodynamic in-
teractions. Lengths and angles between the rods can be
modified in a periodic and time irreversible manner by the
action of internal forces and torques, which favour change
in the swimmer shape and potentially motion when cou-
pled to the fluid. Unlike the Ladd approach, in this model
there is no net interface separating the fluid from the bead,
whose interior is then essentially fluid. Although less re-
alistic, this condition is acceptable as intertial effects are
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negligible. The swimmer-fluid interaction is incorporated
through three steps, the first of which computes the total
linear and angular momenta of the swimmer. Afterwards
position and shape of the swimmer are updated with re-
spect to the original one (such that linear and angular
momentum are conserved) and finally the motion of the
swimmer is coupled to the fluid to obtain updated fluid
velocities used to calculate the equilibrium distribution
functions of the LBM [71, 204]. Such approach was found
to reproduce analytical results with sufficient accuracy, in
particular when swimmers with a high number of beads
(even more than three) and close to each other or near a
surface are considered, although with less computational
efficiency than other methods (such as the Oseen tensor
approach) due to the increasing of lattice resolution [204].
An alternative and computationally simpler way to model
solid object on a grid was suggested by Smith and Dennis-
ton [206]. Here the surface of the swimmer is represented
by a large number of point particles, which ensure a non-
slip condition by introducing a drag force between the par-
ticles and the nodes of the lattice Boltzmann mesh [71].
Although this method was found efficient in simulating
the swimming velocity of a single swimmer, it suffered of
large discretization errors affecting inter-swimmer hydro-
dynamic interactions.

Due to a limited computational efficiency, the mod-
els described so far have been rarely applied to simulate
highly anisotropic particles. This drawback has been re-
cently circumvented by de Graaf et al. [207, 208], that
modeled active colloids of arbitrary shape as clusters of
spheres coupled to the LB fluid through the scheme intro-
duced by Ahlrichs and Düenweg [209]. Unlike the Ladd
method, in this approach particles are described as points
coupled to the fluid through a frictional force, acting both
on the solvent and on the solute, which depends on the
relative velocity. When a high enough number of points
is coupled to the fluid, the LB fluid inside the particle
co-moves with the coupling points and models a hydrody-
namically solid object [210,211]. Self-propulsion is achieved
by means of a persistence force applied along a direction
vector assigned to the particle, while an equal and op-
posite counter force is applied to the fluid [212–214]. Its
location sets the nature of the swimmer (whether contrac-
tile or extensile) and the structure of the fluid flow in its
surrounding. Besides being a facile approach, this method
has the advantage to incorporate hydrodynamic interac-
tions with higher order multipole moments, in addition
to the usual dipole ones, and to well reproduce far-field
theoretical results in system with periodic boundary con-
ditions and in a spherical cavity with no-slip walls [215]. A
likewise computationally efficient method, in which swim-
mers are described using the point-force implementation
developed by Nash et al. [212], has been used to perform
unprecedented large-scale LB simulations of ∼ 106 hy-
drodynamically interacting swimmers in a cubic box with
periodic boundary conditions [216]. In this work the au-
thors show that swimmers move in a correlated fashion
well below the transition to the bacterial turbulence, and
elaborated a novel kinetic approach capturing such behav-

ior with results in quantitative agreement with LB simu-
lations.

More recently Lattice Boltzmann methods have been
extended to simulate more complicated physical systems
in which active particles play once more a relevant role.
A remarkable example is the process of cross-streamline
migration (often called margination [217]) of stiff active
particles (such as synthetic nanoparticles used for drug-
delivery) in blood flows, studied in Ref. [218]. Such phe-
nomenon is attributed to hydrodynamic interaction of red
blod cells with stiff particles, and disappears when red
blood cells are absent. Active particles are modeled by tri-
angulated spheres whose internal grid nodes are massless
points flowing with the local fluid velocity and connected
each other through stiff harmonic springs and bending po-
tential to preserve the grid arrangement. This approach is
often referred as immersed boundary method [219,220]. A
force is then applied to the center of mass of the particles
(which become active) and along the opposite direction
with respect to the fluid flow.

A much less investigated system is that in which a
passive particle is embedded in active fluid. This has been
done in Ref. [14, 15], where LB simulations show a viola-
tion of the Stokes’ law when a particle (modeled by using
the Ladd’s method) is dragged in an active fluid and, even
more strikingly, a negative viscous drag in the steady state
of a contractile fluid for large enough particles. Such sim-
ulated microreological experiment, in principle realizable
in the laboratory, highlights the fact that, although at
its infancy, the study of these systems may unveil novel
and intriguing physics, potentially useful for the design of
novel active soft materials.

Clearly many efforts have been addressed to model sys-
tems which (i) correctly describe the hydrodynamics of
active particles and (ii) capture new dynamical and me-
chanical properties of great importance for future practical
applications. Several directions of research can be envis-
aged starting from the results achieved so far. A largely
unexplored field is that of the active rheology, in which
suspensions of particles (e.g. passive) are subject to an
external perturbation (such as a shear flow) in an active
liquid crystal. Here the nature of the active system (ei-
ther contractile or extensile) as well as the particle vol-
ume fraction and the shear stress may dramatically affect
the rheological response. In addition the presence of topo-
logical defects, due to the conflict anchoring of the liquid
crystal with that on particle’s surface, may foster the for-
mation of turbulent-like velocity patterns, whose physics
is still under investigation. LB simulations performed so
far usually neglect thermal fluctuations, which may how-
ever be crucial especially when the particle’s size decreases
up to nanometers. Even more intriguing seems the possi-
bility of a multiscale coupling of the LB with other simul-
tation methods, such as dissipative particle dynamics or
immersed boundary method, to capture, for instance, the
near-contact interaction of active colloids at the interface
of a binary fluid.
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7. T. Surrey, F. Nédélec, S. Leibler, and E. Karsenti. Physi-
cal properties determining self-organization of motors and
microtubules. Science, 292:1167, 5 2001.

8. P.M. Bendix, G.H. Koenderink, D. Cuvelier, Z. Dogic,
B.N. Koeleman, W.M. Brieher, C.M. Field, L. Mahade-
van, and D.A. Weitz. A quantitative analysis of contrac-
tility in active cytoskeletal protein networks. Biophys. J.,
94:117960, 04 2008.

9. J. Howard. Mechanics of motor proteins and the cy-
toskeleton. BioEssays, 25, 2003.

10. C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Gold-
stein, and J.O. Kessler. Self-concentration and large-
scale coherence in bacterial dynamics. Phys. Rev. Lett.,
93:098103, 8 2004.

11. J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink,
M. Bär, and Raymond E. Goldstein. Fluid dynamics of
bacterial turbulence. Phys. Rev. Lett., 110:228102, May
2013.

12. Y. Hatwalne, S. Ramaswamy, M. Rao, and R.A. Simha.
Rheology of active-particle suspensions. Phys. Rev. Lett.,
92:118101, 3 2004.

13. D. Marenduzzo, E. Orlandini, M.E. Cates, and J.M. Yeo-
mans. Steady-state hydrodynamic instabilities of ac-
tive liquid crystals: Hybrid lattice boltzmann simulations.
Phys. Rev. E, 76:031921, Sep 2007.

14. G. Foffano, J.S. Lintuvuori, A.N. Morozov, K. Stratford,
M.E. Cates, and D. Marenduzzo. Bulk rheology and mi-
crorheology of active fluids. Eur. Phys. J. E, 35:98, 10
2012.

15. G. Foffano, J.S. Lintuvuori, K. Stratford, M.E. Cates,
and D. Marenduzzo. Colloids in active fluids: Anoma-
lous microrheology and negative drag. Phys. Rev. Lett.,
109:028103, 2012.

16. A. Sokolov and I.S. Aranson. Reduction of viscosity
in suspension of swimming bacteria. Phys. Rev. Lett.,
103:148101, 9 2009.

17. M.E. Cates, S.M. Fielding, D. Marenduzzo, E. Orlan-
dini, and J.M. Yeomans. Shearing active gels close
to the isotropic-nematic transition. Phys. Rev. Lett.,
101:068102, 8 2008.

18. R.A. Simha and S. Ramaswamy. Hydrodynamic fluc-
tuations and instabilities in ordered suspensions of self-
propelled particles. Phys. Rev. Lett., 89:058101, 7 2002.
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A Biaxial nematics

In this Appendix we briefly discuss how to extend the uni-
axial order parameter to biaxial nematics and how biaxi-
ality provides information about the localization of topo-
logical defects in nematic liquid crystals.

A biaxial nematic is a nematic liquid crystal with three
distinct optical axis and, unlike an uniaxial liquid crystal,
it does not have any axis of complete rotational symmetry.
Hence one can define three perpendicular axes n, m and
l (two are sufficient, as the third one would be perpen-
dicular to the others), or director fields, for which there
is a reflection symmetry. The order parameter in three
dimensions is then

Qαβ = S(nαnβ −
1

3
δαβ) + η(mαmβ −

1

3
δαβ), (110)

where S and η are called scalar order parameters. This
representation of Q is a traceless symmetric second or-

der rank tensor with five independent components. If the
smaller of the two scalar order parameters is very small
(like in many systems), one recovers the Q tensor in the

uniaxial approximation.
For a biaxial nematic the three eigenvalues are in gen-

eral different, and the diagonal representation of the Q

tensor is

Q = Diag

(
2

3
S , −1

3
S + η , −1

3
S − η

)
(111)

where η 6 S, with η gauging the degree of biaxiality.
The investigation of nematic defects in the context of

a Landau-de Gennes theory has shown that their core
presents a heavy degree of biaxiality [221]. By following
the approach of Ref. [222], this can be measured by com-

puting three scalars, cl = λ̃1 − λ̃2, cp = 2(λ̃2 − λ̃3) and
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cs = 3λ̃3, where λ̃1, λ̃2 and λ̃3 (with λ̃1 ≥ λ̃2 ≥ λ̃3)
are three eigenvalues of the diagonalised matrix Dαβ =
Qαβ + δαβ/3. These parameters fulfill the following prop-
erties: 0 ≤ cl, cp, cs ≤ 1 and cl + cp + cs = 1. An ordered
unixial nematic will give cl ' 1, while the isotropic state,
where both S and η are approximatively null, corresponds
to cs ' 1. Finally the biaxial case implies cp ' 1.

B Recovering continuum equations for the
algorithm described in Section 3.3.2

In this Appendix we show the calculations to recover the
continuum equations obtained by means of the forcing
method algorithm discussed in Section 3.3.2.

We start with a Chapman-Enskog expansion of the
distribution functions and of the derivatives according to
relations (34)-(36), and for the forcing term we assume
that

Fi = εFi1. (112)

. By Taylor expanding the evolution equation (20), we get

∆t(∂t + ξiα∂α)fi +
∆t2

2
(∂2t + 2ξiα∂α∂t + ξiαξiβ∂α∂β)fi

= ∆tFi −
fi − feqi

τ
. (113)

We now substitute Eq. (34)-(36) and (112) in Eq. (113)
and, after grouping terms of the same order in ε, we get

f
(0)
i = feqi +O(ε), (114)

(∂t1 + ξiα∂α1
)f

(0)
i = − 1

τ∆t
f
(1)
i + Fi1 +O(ε), (115)

∂t1f
(1)
i + ξiα∂α1

f
(1)
i + ∂t2f

(0)
i

+
∆t

2

(
∂2t1 + 2ξiα∂α1

∂t1 + ξiαξiβ∂α1
∂β1

)
f
(0)
i

= − 1

τ∆t
f
(2)
i +O(ε).

(116)

From these equations one gets the zeroth-order moments
of the distrubution functions

∑

i

f
(0)
i =

∑

i

feqi = ρ
∑

i

f
(1)
i =

∑

i

f
(2)
i = 0, (117)

the first-order ones

∑

i

f
(0)
i ξiα =

∑

i

feqi ξiα = ρvα, (118)

∑

i

f
(1)
i ξiα = −∆t

2
F1α, (119)

∑

i

f
(2)
i ξiα = 0. (120)

and the zeroth, first and second moments of the forcing
term

∑

i

Fi = 0, (121)

∑

i

Fiξiα =

(
1− ∆t

2τ

)
Fα, (122)

∑

i

Fiξiαξiβ =

(
1− ∆t

2τ

)
(vαFβ + vβFα). (123)

These relations can be explicitly calculated by using Eq.
(75). Now combining the zeroth-order moment of Eq. (115)
with Eqs. (117) and (121), one gets

∂t1ρ+ ∂β1
(ρvβ) = 0, (124)

the continuity equation at first order in the Knudsen num-
ber. To recover it at second order we apply the differential
operators ∂t1 and ξiα∂α1

to Eq. (115) and then, by per-
foming the difference between the two resulting equations,
one has

∂2t1f
(0)
i = ξiαξiβ∂α1∂β1f

eq
i −

1

τ∆t
(∂t1 − ξiγ∂γ1)f

(1)
i

+ (∂t1 − ξiγ∂γ1)Fi1. (125)

Now we substitute the latter into Eq. (116) and, by using
Eq. (115), we obtain

(∂t1 + ξiα∂α1
)f

(1)
i + ∂t2f

(0)
i − 1

2τ
[∂t1 + ξiγ∂γ1 ] f

(1)
i

= − 1

τ∆t
f
(2)
i − ∆t

2
(∂t1 + ξiγ∂γ1)Fi1. (126)

Finally summing this one over index i and by means of
Eqs. (114)-(122), we get

∂t2ρ = 0, (127)

which represents the continuity equation at second order
in the Knudsen number.

To reproduce the Navier-Stokes equation, we start by
computing the first moment of Eq. (115) that, after using
Eqs. (117)-(123), reads

∂t1(ρvα) + ∂β1

(
c2

3
ρδαβ + ρvαvβ

)
= Fα. (128)

Following the same procedure for Eq. (126) we get

∂t2(ρvα) =
c2

3
∆t

(
τ − 1

2

)
∂β1

[ρ(∂β1
vα + ∂α1

vβ)] . (129)

Finally, summing these two equations, one can restore the
Navier-Stokes equation

∂t(ρvα) + ∂β (ρvαvβ) = ∂βσαβ

+
c2

3
∆t

(
τ − 1

2

)
∂β1 [ρ(∂β1vα + ∂α1vβ)] , (130)



36 Giuseppe Gonnella et al.: Lattice Boltzmann Methods and Active Fluids

where we require that

Fα = ∂β

[
σαβ +

c2

3
ρδαβ

]
, (131)

and the kinematic viscosity is

ν =
c2

3
∆t

(
τ − 1

2

)
. (132)
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