XXXI CICLO DI DOTTORATO

INTONTI ROSARIA ANNALISA:

'Ricerca di interazioni di υ e υ nel gas delle TPC dell'esperimento T2K'

Tutor proposti: PROF. BERARDI VINCENZO DOTT. RADICIONI EMILIO

09/11/2015

T2K EXPERIMENT

sea level

\$1,000m

295km

T2K (Tokai to Kamioka) è un esperimento di oscillazione di neutrino di tipo "Long Baseline".

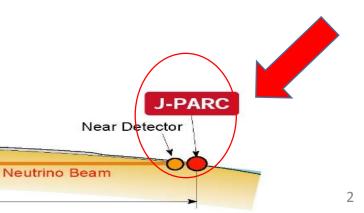
In tali esperimenti i neutrini prodotti in un determinato luogo, vengono rivelati a centinaia di chilometri di distanza, per osservare la trasmutazione di una parte di neutrini di un definito genere in un altro (oscillazione). Il fascio di neutrini utilizzato dall'esperimento, è prodotto dal protosincrotrone a Tokai in Giappone. Si tratta di protoni di 30GeV su un bersaglio di carbonio.

Si cerca l' "apparizione" di v_e in un fascio quasi puro di v_μ .

Mt.Ikenovama

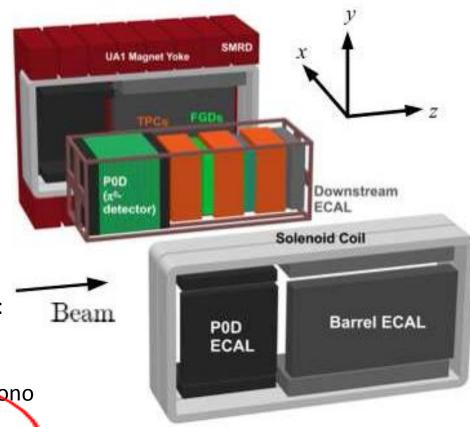
1,360m

Il fascio di neutrini, adeguatamente monitorato da un insieme di rivelatori posti nel complesso di J-PARC, viene inviato a 295 km di distanza (calcolata ad hoc vista l'energia media dei neutrini di circa 600MeV) dove viene intercettato dal rivelatore Super-Kamiokande collocato all'interno delle miniere di Kamioka vicino alla costa ovest del Giappone.

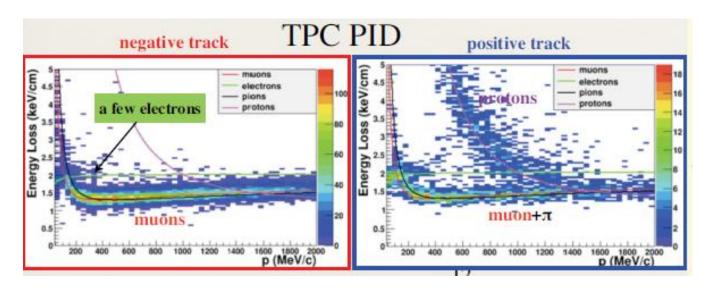

Super-Kamiokande

Mt.Noguchi-Goro Dake

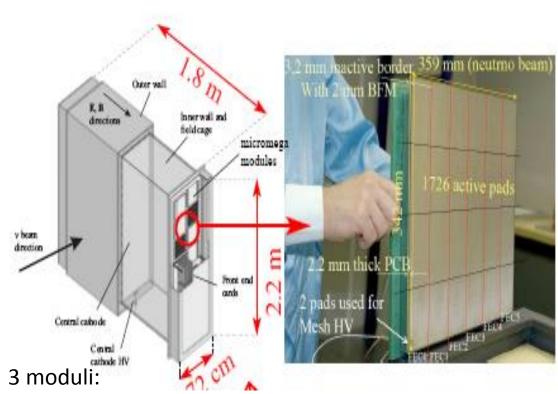
2.924m



ND280: 1) Misura del flusso di neutrini prima dell'oscillazione 2) Sezioni d'urto di neutrini a bassa energia

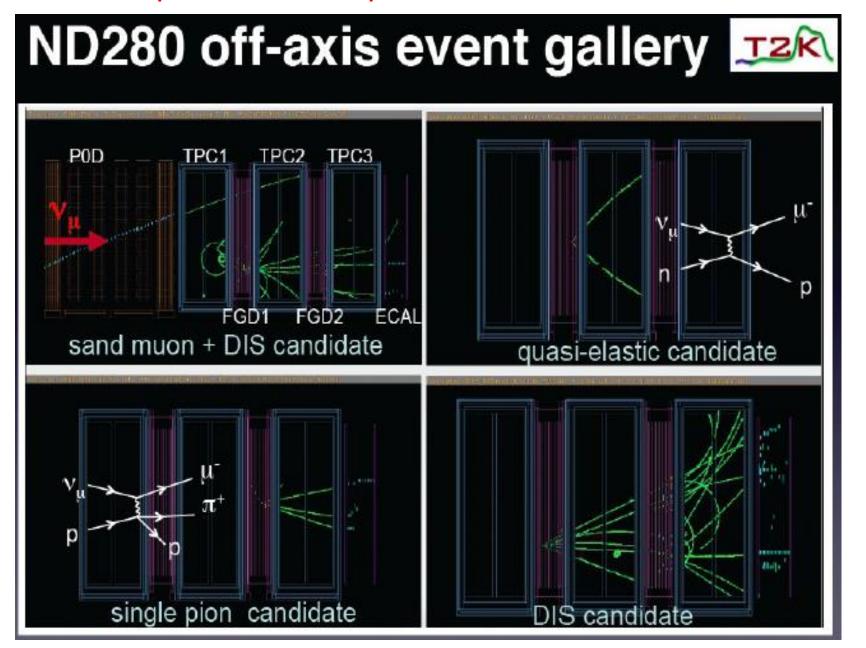

Oltre al magnete, il rivelatore si compone dei seguenti elementi:

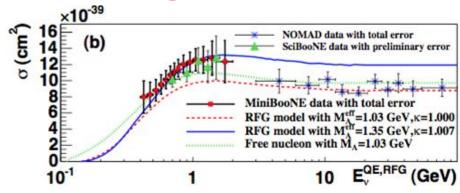
- ullet Pi-Zero Detector (P0D): posto nella parte iniziale del rivelatore permette di misurare la quantità di $\pi 0$ prodotti
- Calorimetro elettromagnetico (ECAL): circonda sia il POD che il tracker e misura i fotoni /elettroni che non convertono in questi due rivelatori. E' di vitale importanza per la ricostruzione dei decadimenti dei π0;
- Side Muon Range Detector (SMRD): gli interspazi tra le lastre di ferro del magnete UA1 sono riempiti con scintillatori in modo da misurare per range l'energia dei i muoni che escono dai lati dell'ND280.
- Tracker formato da:
 - 1. Bersagli attivi ad alta granularità-Fine Grained Detectors (FGDs): che forniscono la massa bersaglio per le interazioni di neutrino
 - 2. Tre camere traccianti a proiezione temporale (TPCs) che compiono la misura più accurata dello spettro di energia dei neutrini. La misura dell'energia depositata permette inoltre di distinguere tra muoni, pioni ed elettroni.


Prima TPC di grandi dimensioni basata su rivelatori a micro-pattern come tracciatore

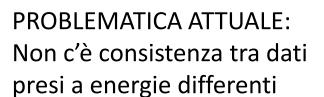
- Miscela di gas Ar:CF₄:iC₄H₁₀ (95/2/3 a pressione atmosferica): alta velocità e bassa diffusione
- Informazioni sulla perdita specifica di energia dE/dx della particella: in particolare viene misurato l'impulso delle particelle cariche prodotte nelle interazioni per determinare lo spettro energetico del fascio di neutrini.

Le TPCs di T2K:

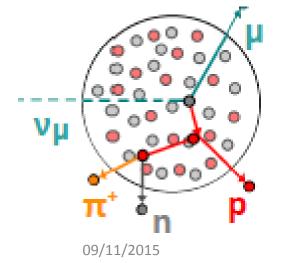

- Risoluzione spaziale eccellente (≈0.3mm) indipendente dalla direzione delle tracce
- Risoluzione dE / dx inferiore al 10%
 (per la distinzione tra elettroni e muoni entro 3sigma)
- Leggerezza, indispensabile per i secondari di bassa energia

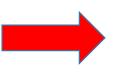

parallelepipedi delle dimensioni di 2.2 m x 1.8m x 72 cm

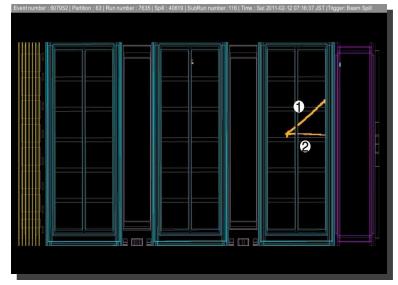
09/11/2015


Esempi di tracce di particelle cariche nelle TPC

Interazioni di υ_{μ} e $\overline{\upsilon_{\mu}}$ in Argon




Per studiare questo tipo di eventi è indispensabile ottimizzare la risposta del rivelatore per la misura dei vertici in gas e dei protoni di bassa energia (pochi MeV) con un'accettanza sull'intero angolo solido.

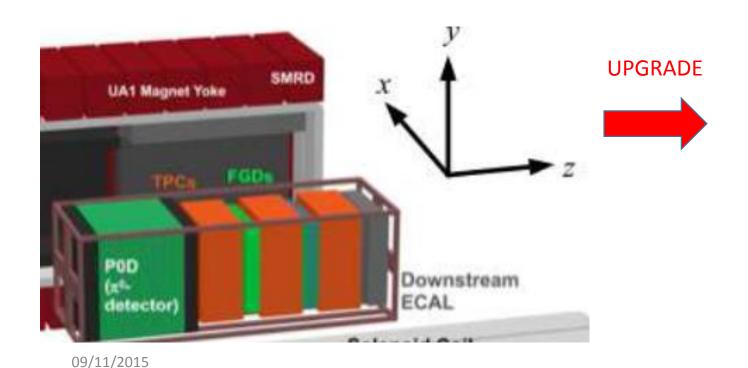


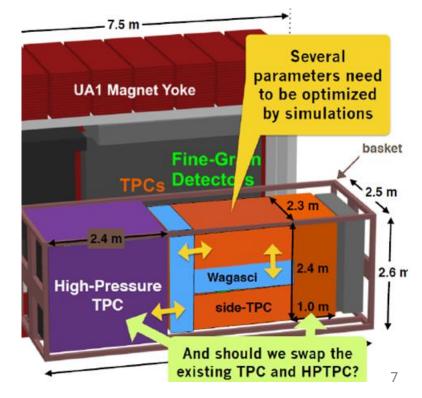
IPOTESI DA VERIFICARE: Interazioni di questo tipo

Detector	Kinetic energy threshold	
ND280	0.5 MeV	
ArgoNeuT (liquid Ar)	21 MeV	

Statistica attesa:

υμ≈ 600


<u>υ</u>_μ≈ 150


6

VANTAGGI ULTERIORI DI QUESTO TIPO DI MISURE

CONSIDERANDO CHE IL RIVELATORE LONTANO (Super-Kamiokande) E' COMPOSTO DI ACQUA:

- è importante misurare tutti i tipi di interazione nel gas al fine di avere un'accettanza il più possibile simile;
- si sta considerando la possibilità di utilizzare diverse miscele di gas per avvicinarsi il più possibile alla misura di sezione d'urto in acqua;
- queste misure saranno un'ottima base per meglio impostare un upgrade con una TPC ad alta pressione (per incrementare la statistica di un fattore 10).

ATTIVITA' PREVISTA DEL PROGETTO DI RICERCA

- Calibrazione della risposta in funzione delle tracce corte e altamente ionizzanti
- Studio delle soglie e di efficienza di rivelazione
- Individuazione vertici nel gas e selezione di un campione di eventi
- Misura dell'impulso per range
- Valutazione di eventuali miscele alternative
- Possibili studi di performance ad alta pressione

09/11/2015