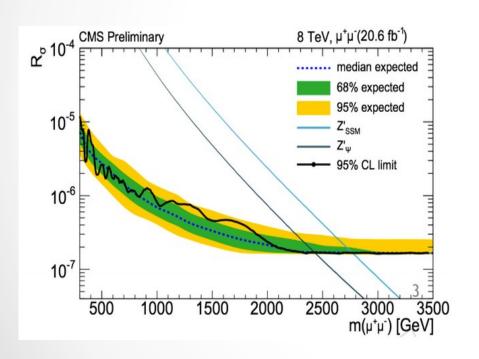


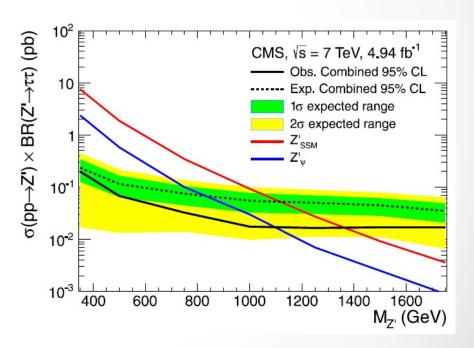
Ricerca di risonanze massive a LHC in decadimenti leptonici (μ, τ)

Scuola di Dottorato di Ricerca in Fisica XXXI ciclo

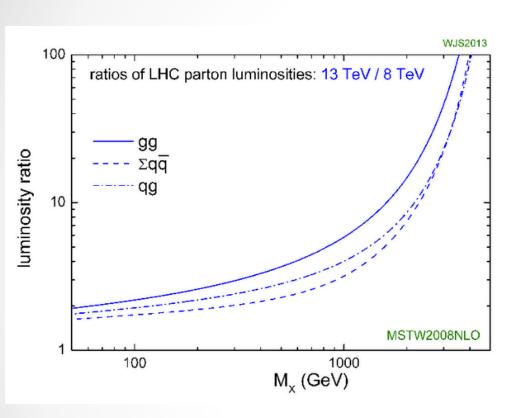
Dottorando: Filippo Errico

Motivazioni Fisiche

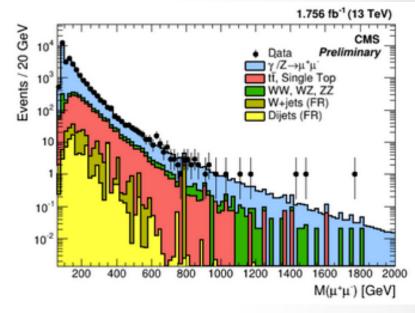

- Modello Standard (MS): descrive in maniera accurata molti processi che coinvolgono le particelle elementari ma è incompleto
- Problematiche:
 - 1. Non include forza gravitazionale
 - 2. Non prevede un candidato per la materia oscura
 - 3. Prevede parametri il cui valore non può essere dedotto dalla teoria
- Modo più semplice per estendere il MS: introduzione di un ulteriore gruppo, U(1), che richiede l'introduzione di un nuovo bosone neutro, chiamato Z' → vari modelli oltre il MS prevedono l'introduzione di un nuovo bosone (Z'_{SSM}, Z'₁₁), et al.)


• 2

Z'canali di studio

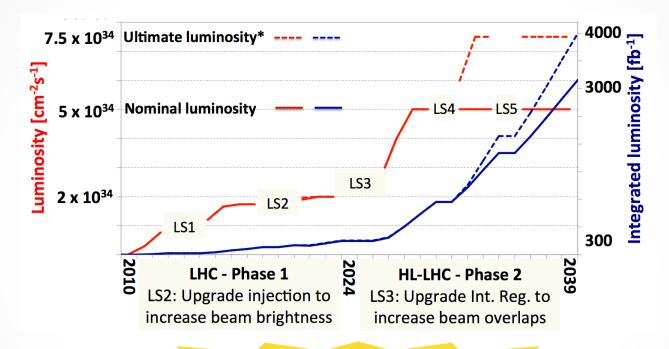

- Z' → µ⁺µ⁻: analisi dei dati raccolti durante il Run 2 ad LHC.
- Z'→τ_hτ_μ: implementazione del codice per la successiva analisi usando la statistica del Run 2

L'analisi effettuata sui data a 8 TeV (20.6 fb⁻¹) del Run 1 hanno escluso, al 95% di livello di confidenza, una Z'_{SSM} con massa minore di 2700 (1400) GeV/c² e una Z'_{ψ} con massa inferiore a 2430 (1100) GeV/c² per il decadimento in muoni (τ)



Il Run2 ad LHC permetterà di studiare nuove regioni di massa

Rapporto tra la luminosità partonica a 8 e 13 TeV in funzione della massa di una risonanza X



Distribuzione della massa invariante di due muoni di segno opposto con i primi dati a 13 TeV

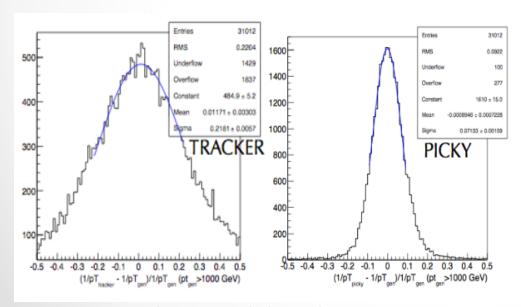
• 5

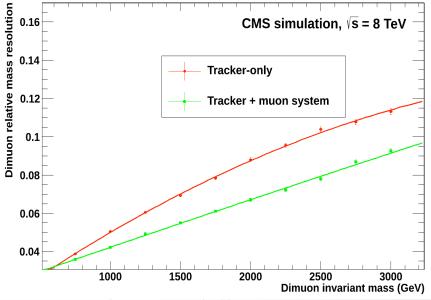
Upgrade di CMS a HL-LHC

Obiettivo è investigare scenari di nuova fisica a High Luminosity LHC

Goal mantenere le stesse performance del run 1

CMS Upgrades

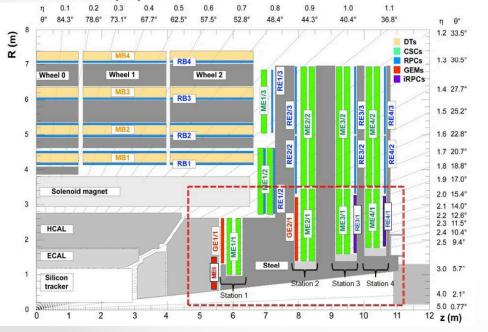

- Nuovo tracker (4 pixel layer + 3 disks), Trigger a Livello 1
- ·Calorimetria di alta granularità
- Sistema dei muoni nell'endcap


Upgrade del Sistema a Muoni in CMS

Zona dell'endcap con lo scopo di:

- Migliorare l'efficienza di ricostruzione
- Migliorare la risoluzione dell'impulso dei muoni di alta energia
- Migliorare l'assegnazione della carica

Particolarmente rilevante per l'analisi Z' con muoni nello stato finale


Risoluzione del p_T dei muoni per 1.7< $|\eta|$ <1.8

Upgrade del sistema a muoni

Detector:

GEM (Gas Electron Multiplier) e **RPC** (Resistive plate chamber)

- 2019: GE1/1 → approvato
- 2023: ME0 + GE2/1 + RE3/1 + RE4/1 → in fase di approvazione 2

Goal della ricerca: ottimizzazione delle prestazioni dei rivelatori e degli algoritmi di ricostruzione e identificazione dei muoni, e reiezione del fondo di perroneamente identificati come tau.

Programma di ricerca: suddivisione nei tre anni

1. Primo Anno:

- Ottimizzazione dell'algoritmo di ricostruzione dei muoni ad alta energia
- Analisi dati del Run 2 per il canale Z'→μμ
- Ottimizzazione rivelatori per l'upgrade del sistema a muoni per ricerca di Z'

2. Secondo Anno:

- Ottimizzazione dell'algoritmo di ricostruzione del τ adronico e del discriminatore μ τ e μ τ fake rate sia nel Run 2 che per l'upgrade
- Studio degli effetti del Pile Up sull'analisi e sua ottimizzazione per gli studi di upgrade

3. Terzo Anno:

o Analisi dati del Run 2 per il canale Z' $\rightarrow \tau_h \tau_\mu$