


Evaluation of the role played by physical 

parameterizations, by grid resolution and by 

uncertainty on the initial condition in 

meteorological medium term forecasting 

(predictions of wind, PBL height and Wind 

Days).

Introduction
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WHAT ARE THEY?

• NWP models are algorithms that solve systems of differential equations that represent

the Atmosphere

• They allow short (nowcasting - to 6h), medium (to 3 or 5 days) and long-term

(seasonal) forecasting

• Depending on the spatial and time resolution NWP models are meant to be Global (as

GFS, ECMWF) and Regional (as WRF, COSMO)

NEED OF

INITIAL and BOUNDARY conditions + OROGRAPHY

NUMERICAL WEATHER PREDICTION MODELS
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Complex
interpolation

algorithms
+ 

Global Model

Regional
Model

Forecasts on regular 
spatial and temporal grid, 

with resolutions of:
Dx: 16km : 50 km 

Dt: 3h :6h

Forecasts on regular 
spatial and temporal grid, 

with resolutions of:
Dx: 0,5km : 1 km
Dt: 1 minute : 1h

GENERAL SCHEME …
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PROBLEMS

1. Initial and boundary conditions are not exactly known

Measurements are:

• Inhomogeneous (different instruments for the same variable)

• Asynchronous (not at the same time)

• Not uniformly distributed

• Measurements are not available for each point of the spatial domain

• Instrumental errors

2. Moreover, the real domain is continuous but the computational domain is

discrete;

3. In order to solve numerical equations, physical approximations are needed

(parameterizations).

ISSUES
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In order to take into account the uncertainty in the initial conditions and to 

improve the deterministic prediction

in the last few years “probabilistic” forecasting systems have been developed: 

EPS

(Ensemble Prediction System) 

STATISTICAL APPROACH: the ensembles
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In the “Chaos theory” of  E. Lorenz1, 

the Atmosphere is defined as “chaotic system”,  

i.e. 

very small changes in the initial state could greatly affect

the evolution of system.

1Lorenz, E. N. (1995). The essence of chaos. University of Washington Press.



PROVIDES

Evaluation of 

the quality and 

reliability of 

the forecast Prediction with 

associated 

probability of 

occurrence

Better 

predictions

STATISTICAL APPROACH: the ensembles

7/24



Analysis 1: Ensemble of parameterizations

[Predicted atmospheric variables: WS10, WD10, height of PBL]

a) Performance evaluations of 5 different parameterization used in WRF model.

b) Post-processing technique to improve deterministic predictions.

Analysis 
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Analysis 2: Ensemble of perturbations

[Wind Day prediction]

a) Role evaluation of the grid resolution

b) Comparison of deterministic and probabilistic forecasts

c) Comparison of categorical and probabilistic approach

d) Evaluation and validation of a new method to estimate the probability of

occurrence



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WS10 TIME OF ANALYSIS

08/2015-03/2016

DATA

WRF A 4 KM CON INPUT GFS
+72H (49TH-72TH) 

Prevision time
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Average

Weighted Average Linear RegressionANNs & ANN

KF & ANN ANN



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WS10

Taylor Diagram

Conditional Quintile Plot



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WD10 TIME OF ANALYSIS

08/2015-03/2016

DATA

WRF A 4 KM CON INPUT GFS
+72H (49TH-72TH) 

MODELL 1



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WD10 Method
Partial Average & Linear Regression



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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HEIGHT PBL: 
TIME OF ANALYSIS

12 DAYS

LIDAR DATA

ON

TARANTO CITY



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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HEIGHT PBL TIME OF ANALYSIS

08/2015-03/2016

RADIOSOUNDING

ON

BRINDISI CITY



ANALYSIS 2: ENSEMBLE OF PERTURBATIONS

15/24

1. GFS;

2. ECMWF;

3. c00 (control member);

4. ensemble mean

GEFS – GFS ensembles

• Percentage of ensemble 

members predicting 

Wind days

• Ensemble distribution 

percentiles

• Ensemble density 

function (new approach)

Wind Day 

Predictions

ProbabilisticCategorical
Grid resolution

1. Global simulations

2. Regional simulations:

d01:   16 Km 

d02:     4 Km 

d03:     1 Km 



We propose an 
alternative method to 

estimate the occurrence 
probability

𝑃(𝐸ℎ) = 1 − 𝐶ℎ(  𝑥)

𝐶ℎ  𝑥 =  
−∞

 𝑥

𝑥ℎ 𝑢 𝑑𝑢

)𝑃 𝐸ℎ ∩ 𝐸ℎ+1 ∩ 𝐸ℎ+2 = 𝑃 𝐸ℎ+2 𝐸ℎ ∩ 𝐸ℎ+1 ∙ 𝑃 𝐸ℎ+1 𝐸ℎ ∙ 𝑃(𝐸ℎ

𝑊𝐷𝑃𝑝𝑑𝑓 = 𝑚𝑎𝑥ℎ=49
70 𝑃 𝐸ℎ+2 𝐸ℎ ∩ 𝐸ℎ+1 ∙ 𝑃 𝐸ℎ+1 𝐸ℎ ∙ 𝑃(𝐸ℎ)

ANALYSIS 2: ENSEMBLE OF PERTURBATIONS
D

en
si

ty
 f

u
n

ct
io

n

reference 

value

Ensemble 

PDF
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OUR PROPOSAL



The conditional probabilities are 
empirically estimated 

𝑃 𝐸ℎ+2 𝐸ℎ ∩ 𝐸ℎ+1

Percentage of members larger than 7m/s for 

both first and second hours, again larger than 7 

m/s in the third hour [3/4]

𝑃 𝐸ℎ+1 𝐸ℎ

Percentage of members larger than 7m/s at the 

first hour, again larger than 7 m/s in the second 

hour [4/5]
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ANALYSIS 2: ENSEMBLE OF PERTURBATIONS

OUR PROPOSAL
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ANALYSIS 2: ENSEMBLE OF PERTURBATIONS

GFS GFS

(GFS, ensMean)

WRF 

(Regional model)

Probabilistic approach

Categorical approach

Training and Test analysis:
34 possible WD in 2016

MATERIALS

Validation analysis:

66 possible WD in 2017



RESULTS FOR TRAINING
DATA BIAS POD FAR TS ETS accuracy

GFS 1.88 1.00 0.47 0.53 0.12 0.59

ECMWF 0.75 0.50 0.33 0.40 0.16 0.65

control member (GEFS) 1.50 0.94 0.38 0.60 0.27 0.71

ensemble mean (GEFS) 1.69 1.00 0.41 0.59 0.23 0.68

Expected value 1 1 0 1 1 1

Probabilistic method BIAS POD FAR TS ETS accuracy BS AUC

percentile 1.31 0.94 0.29 0.68 0.42 0.79 0.24 0.80

Quantile 1.19 0.88 0.26 0.67 0.42 0.79 0.22 0.78

Expected value 1 1 0 1 1 1 0 1

reference of true value distribution BIAS POD FAR TS ETS accuracy BS AUC

deterministic GFS Normal 1.63 1.00 0.38 0.62 0.27 0.71 0.33 0.69

deterministic GFS Gamma 1.19 0.75 0.37 0.52 0.22 0.68 0.35 0.69

control member (c00) Normal 1.31 0.94 0.29 0.68 0.42 0.79 0.25 0.77

control member (c00) Gamma 1.25 0.94 0.25 0.71 0.48 0.82 0.25 0.80

Average(GFS,c00) Normal 1.56 1.00 0.36 0.64 0.32 0.74 0.29 0.73

Average(GFS,c00) Gamma 1.44 1.00 0.30 0.70 0.43 0.79 0.29 0.78

Average(GFS,ensMean) Normal 1.50 1.00 0.33 0.67 0.37 0.76 0.30 0.73

Average(GFS,ensMean) Gamma 1.38 0.94 0.32 0.65 0.37 0.76 0.27 0.75

Expected value //    // 1 1 0 1 1 1 0 1
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Casual

Error
ANALYSIS 2: ENSEMBLE OF PERTURBATIONS

Global model



RESULTS FOR TRAINING

CATEGORICAL PROBABILISTIC
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Casual

Error
ANALYSIS 2: ENSEMBLE OF PERTURBATIONS



RESULTS FOR TRAINING

BY CHANGING THE WIND DAY DEFINITION

data or method accuracy

7m/s-3h

new

threshold 

[m/s]

new

# hours

Best

accuracy

accuracy

gain

[%]

GFS 0.59 9 4 0.82 39
ECMWF 0.65 6 3 0.76 17

control member (GEFS) 0.71 8 5 0.88 24
Ensemble mean (GEFS) 0.68 8 3 0.85 25

percentile 0.79 8 3 0.88 11
quantile 0.79 9 5 0.88 11

PDF-deterministic GFS Normal 0.71 9 3 0.88 24
PDF-deterministic GFS Gamma 0.68 9 4 0.88 29

PDF-control member (c00) Normal 0.79 8 5 0.88 11
PDF-control member (c00) Gamma 0.82 9 2 0.88 7

PDF-Average(GFS,c00) Normal 0.74 8 5 0.94 27
PDF-Average(GFS,c00) Gamma 0.79 8 5 0.94 19

PDF-Average(GFS,ensMean) Normal 0.76 8 5 0.94 24
PDF-Average (GFS,ensMean) Gamma 0.76 9 5 0.91 20

New WD definition: change wind speed threshold and number of consecutive hours.
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Systematic 

Error

ANALYSIS 2: ENSEMBLE OF PERTURBATIONS



New WD definition: change wind speed threshold and number of consecutive hours.
CATEGORICAL

PROBABILISTIC
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RESULTS FOR TRAINING

BY CHANGING THE WIND DAY DEFINITION

Systematic 

Error

ANALYSIS 2: ENSEMBLE OF PERTURBATIONS



data or method

Accuracy 

7m/s-3h

(classical WD definition)

Best

accuracy

(no classical WD definition)

Training

(34 case 

studies -

2016)

Test

(Leave-one-

out

2016)

Validation

(66 case 

studies -

2017)

Training

(34 case 

studies -

2016)

Test

(Leave-one-out

2016)

Validation

(66 case 

studies - 2017)

GFS 0.59 0.59 0.68 0.82 0.82 0.79

control member (GEFS) 0.71 0.71 0.70 0.88 0.88 0.79

Ensemble mean (GEFS) 0.68 0.68 0.68 0.85 0.85 0.80

percentile 0.79 0.72 0.71 0.88 0.82 0.79

quantile 0.79 0.74 0.77 0.88 0.85 0.80

PDF-deterministic GFS Normal 0.71 0.68 0.76 0.88 0.85 0.86

PDF-deterministic GFS Gamma 0.68 0.64 0.74 0.88 0.82 0.86

PDF-control member (c00) Normal 0.79 0.79 0.80 0.88 0.85 0.82

PDF-control member (c00) Gamma 0.82 0.79 0.80 0.88 0.85 0.82

PDF-Average(GFS,c00) Normal 0.74 0.75 0.79 0.94 0.85 0.85

PDF-Average(GFS,c00) Gamma 0.79 0.77 0.79 0.94 0.85 0.85

PDF-Average(GFS,ensMean) Normal 0.76 0.75 0.80 0.94 0.85 0.85

PDF-Average (GFS,ensMean) Gamma 0.76 0.75 0.80 0.91 0.88 0.83

RESULT COMPARISON: 
TRAINING, TEST AND VALIDATION

For test and validation analysis the best probability threshold, the best wind speed 

threshold and the best number of consecutive hours were estimated on the training set.
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CONCLUSION AND FUTURE WORKS
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CONCLUSION
1. The 5 considered parameterizations show a positive hourly mean bias in the WS10 prediction.

2. Among different post-processing techniques, the singular ANN shows better performance to combine the 5 

considered simulations

3. The partial average and  the linear regression is a good approach to reduce the error in the wind direction 

prediction.

4. The 5 parameterizations do not affect the PBL height prediction.

5. In general, the probabilistic approaches show better performances in the Wind Day prediction respect to the 

categorical approach.

6. Probabilistic predictions show better performances in the Wind Day prediction respect to the deterministic ones.

7. The new probabilistic  method here proposed shows the best performances compared to the classical probabilistic 

approaches.

FUTURE WORK
In the last years, the data assimilation is used to improve the weather predictions. 

I think interesting to test this approach on Taranto city in the Wind Day context.
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CORSI ED ESAMI SOSTENUTI DURANTE IL PRIMO ANNO DI

DOTTORATO

Corso Docente 

Management and knowledge of

European research model and promotion of research results Prof.ssa  Alessia D'Orazio 

How to prepare a technical speech in English Prof.ssa  Carmela White 

LabView introductory Course Prof.  Fabio Gargano 

Python course Prof. Domenico Diacono 

Complex Systems

Prof. 

Gianni Ferraro 

Optical Sensors

Prof.  Vincenzo Spagnolo 

Statistical and computational models for physical data analysis Prof.ssa  

Sonia Tangaro

Experimental Data Analysis and Comparisons to Theoretical Models Prof. 

Alexis Pompili 
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PARTECIPAZIONE A SCUOLE DI DOTTORATO, CORSI E SEMINARI

 Partecipazione alla Scuola “International Summer School EUMETSAT”

 Corso intensivo sulle GPU

 Percorso Formativo 24 CFU

 Corso relativo agli interventi su emissioni radon
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ATTIVITÀ DIDATTICA

1. Cultore della materia e in Commissione d’esame per il corso di “Scienze e gestione attività

marittime (SGAM)” presso il Dipartimento Ionico (dal 2016 ad oggi).

2. Affiancamento per Laboratorio di Fisica Generale per Scienze Biologiche (referente del corso

prof.ssa Ligonzo Teresa)
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PARTECIPAZIONE A WORKSHOP E CONFERENZE
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PUBBLICAZIONI

 Fedele, F., Guarnieri calò Carducci, A., Ottonelli, S., Turnone, A., Menegotto, M., TATEO, A., ... & Bellotti, R. (2016). 

Ottimizzazione del modello a mesoscala WRF per l’individuazione dei Wind Days nell’area di Taranto (DSpace – Digital 

Repository ARPA).

 Bellotti, R., Lombardi, A., Amoroso, N., TATEO, A., & Tangaro, S. (2016). Semi-unsupervised prediction for mild TBI 

based on Both Graph and K-nn methods. In Proceedings of the International Workshop on Brainlesion: mTOP.                                                     

(attività collaterale)

 Allen, G. I., Amoroso, N., Anghel, C., Balagurusamy, V., Bare, C. J., Beaton, D., ... & Caberlotto, L. (2016). 

Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease. Alzheimer's & Dementia, 12(6), 645-

653.                                                            (attività collaterale)

 Maglietta, R., Amoroso, N., Boccardi, M., Bruno, S., Chincarini, A., Frisoni, G. B., ... & Bellotti, R. (2016). Automated 

hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Analysis and 

Applications, 19(2), 579-591. (attività collaterale)

 Tateo, A., Iurino, A., Settanni, G., Andrisani, A., Stifanelli, P. F., Larizza, P., ... & Bellotti, R. (2016). Hybrid x-space: a 

new approach for MPI reconstruction. Physics in Medicine & Biology, 61(11), 4061.                                            

(attività collaterale)
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PUBBLICAZIONI

 Tanzarella A., Morabito A., Schipa A., Intini F., Menegotto M., TATEO A., Pastor T., Tinarelli G., D’Allura A., Costa 

M.P., Giua R., Messa a punto di un Sistema modellistico previsionale della qualità dell’aria, progettato ad hoc sull’Area 

di Taranto per la previsione dei wind days. Rapporto Ambiente – SNPA, Ambiente in primo piano, 2017                   

(attività collaterale)

 Tateo, A., Miglietta, M. M., Fedele, F., Menegotto, M., Monaco, A., and Bellotti, R.: Ensemble using different Planetary

Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region, Adv. Sci. Res., 14,

95-102, https://doi.org/10.5194/asr-14-95-2017, 2017.

 La Rocca, M., Amoroso, N., Bellotti, R., Diacono, D., Monaco, A., Monda, A., ... & Tangaro, S. (2017). A multiplex 

network model to characterize brain atrophy in structural MRI. In Emergent Complexity from Nonlinearity, in Physics, 

Engineering and the Life Sciences (pp. 189-198). Springer, Cham. (attività collaterale)

 Tateo, A., Miglietta, M. M., Fedele, F., Menegotto, M., Pollice, A., & Bellotti, R. (2018). A statistical method based on 

the ensemble probability density function for the prediction of “Wind Days”. Atmospheric Research.
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Evaluation indices
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Performance 

diagram 
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34

Since there are different typologies of error, there are also different criteria for 

estimating the ensembles:

a) Use different processors;

b) Use the same NWP system with different parameterizations; 

c) Use different NWP systems;

d) Increase the spatial resolution (addressed in a previous work with the present case 

study).

STATISTICAL APPROACH: the ensembles



Toy model by Edward Norton Lorenz
(Lorenz, Edward N., and K. Haman. "The essence of chaos." Pure and Applied Geophysics 147.3 (1996): 598-599)

σ=10    b = 8/3      r = 28. 

X  rotational speed 

Y  horizontal temperature gradient of the cell 

extremes

Z  vertical temperature gradient of the cell 

extremes

System of 

differential 

equations 

Chaotic system simulation
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Causes of errors on the initial condition

Direct and indirect, inhomogeneous, asynchronous measures that provide only 

an estimate of the different real state [in the phase space, the distance from real 

and measured state is de]

Other sources of error

Parametrizations

Spatial and temporal resolution too low

SUMMARIZING 

Chaotic system simulation
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Parameterization schemes
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Fixed parameters

Variable 
parameters



Taylor Diagram

38/28

Centered RMSE

Correlation Coefficient

Standard Deviation of test model

Standard Deviation of reference model 



WS10 corrections: Kalman Filters & ANN
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Hourly Cyclic 

components



WS10 corrections: ANNs & ANN
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Hourly Cyclic 

components



WS10 corrections: Single ANN
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Hourly Cyclic 

components



WS10 corrections: Single ANN
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Average

Weighted Average

Linear Regression



WD10 corrections

43/28

Partial Average Linear Regression

Average among only 

members with a 

distance less then 1 

standard deviation 

from total mean

&



Height PBL: temperature profile 
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first thermal inversion



For the analysis only borderline WD are selected where 
borderline means difficult to predict 

SELECTION OF CASES
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ENSEMBLE DISTRIBUTION PERCENTILES

 %  day]  wind thepredicting curve percentilehourly lowest [100qWDP
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ENSEMBLE DISTRIBUTION PERCENTILE VS PERCENTAGE
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ENSEMBLE DISTRIBUTION PERCENTILE VS PERCENTAGE
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LINEAR DEPENDENCE OF TWO CONSECUTIVE HOURS
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SYSTEMATIC ERROR AFFECTING GLOBAL MODEL
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DEFINITION OF WIND DAYS   
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The Atmosphere is 
- a deterministic dynamical physic system  spatial and temporal evolution

- nonlinear non linear differential equation system

- many variables  multidimensional phase space

ε
0

t time

trajectory 1

trajectory 2

In the “Chaos theory” of  E. Lorenz1, 

the Atmosphere is defined as “chaotic system”,  

i.e. 

very small changes in the initial state 

could greatly change 

the evolution in the following days.

1Lorenz, E. N. (1995). The essence of chaos. University of Washington Press.

ATMOSPHERIC SYSTEM
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EPS’s consider many possible initial conditions (each global model uses a 

different approach) by perturbing the measured state. 

For each possible initial condition the deterministic runs are performed.

During the run, additional perturbations are considered. 

The statistical analysis provides a better prediction with an associated

uncertainty.

STATISTICAL APPROACH: the ensembles
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DEFINITION OF WIND DAYS

Apulia Government adopted a regional air quality plan (2012)
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WIND DAY

No

precipitation

Fixed N-NW 

wind direction

Wind speed 

greater than

7 m/s
Permanence

for 

3 consecutive 

hours



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WS10 TIME OF ANALYSIS

08/2015-03/2016

DATA

WRF A 4 KM CON INPUT GFS
+72H (49TH-72TH) 

Conditional Quintile Plot



ANALYSIS 2: ENSEMBLE OF PERTURBATIONS
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Currently,  the deterministic and probabilistic approaches are 
considered separately. 

The probabilistic forecast is given by the ensemble average or the 
median.

The occurrence probability is given by the percentage of 
ensemble members predicting the event. 



Training and Test analysis:
34 possible WD in 2016

MATERIALS

Validation analysis:

66 possible WD in 2017
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ANALYSIS 2: ENSEMBLE OF PERTURBATIONS



ANALYSIS 1: ENSEMBLE OF PARAMETERIZATION
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WS10 TIME OF ANALYSIS

08/2015-03/2016

DATA

WRF A 4 KM CON INPUT GFS
+72H (49TH-72TH) 

Prevision time

M
ea

n
 w

in
d

 s
p

ee
d

[m
/s

]



CONCLUSION

Training

Validation

Test

ACCURACY

Classical definition WD No Classical definition WD

Deterministic Proposed method Deterministic Proposed method

~60% ~82%

~60% ~80%

~68% ~80%

~82% ~94%

~82% ~85%

~79% ~85%
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