

Relazione fine II anno: XXXI Ciclo

"Search for resonances in muons decay with CMS at LHC"

dott. Filippo Errico

Tutor: Anna Colaleo

11/05/2017

Overview

- PhD project goal: search for resonances in dimuon channel:
 - ★ high mass resonances: Z' and graviton
 - ★ medium mass resonance: Standard Model Higgs, 125 GeV
- School & conferences

Beyond Standard Model

- Many models developed beyond Standard Model:
 - **★** Supersymmetry (SUSY)
 - **★** Grand Unified Theory (GUT)
 - ★ Warped Extra Dimensions (WED)
- New bosons are introduced (mass > 1 TeV):
 - ★ Spin 1:
 - → Z'_{SSM} with SM-like coupling
 - → Z'_ψ GUT with E₆ group
 - ★ Spin 2:
 - ◆ Kaluza-Klein graviton

- Updated analysis has been approved on the 2nd of November:
 - improved statistics (36.2 fb⁻¹)
 - improved selection 3

Muon selection

Resonance search in the dimuon channel: μ+μ-

- Muon selection:
 - ★ At trigger level, muon candidates selected with traverse momentum (p_T) above 50 GeV
 - ★ Muons reconstructed associating tracks in the inner detector and in the muon system and considering a dedicated algorithm developed for high-p_T (~1 TeV) candidates.
 - ★ Offline reconstruction: $p_T > 53$ GeV and $|\eta| < 2.4$
 - ★ Dedicated high p_T muon selection and isolation.
- Dimuon selection:
 - ★ vertex constrain and comics rejection
 - ★ opposite charged
- Analysis split in two eta categories (improve sensitivity and isolate problems):
 - ★ Barrel Barrel: both muons in the barrel (best mass resolution and momentum scale; small uncertainties)
 - ★ Barrel Endcap & Endcap Endcap (at least one muon in the endcap)

Background estimation

Accurate simulation and estimation of the background:

- Drell-Yan (DY) production (Z/γ^*) of $\mu^+\mu^-$ pairs: it is the dominant and irreducible SM background
- Top antitop quark (ttbar), single top quark (tW), Drell-Yan τ⁺τ⁻ and diboson (WW, ZZ, WZ): two prompt leptons from different particles.
 These processes are estimated using Monte Carlo (MC) simulated events at the next-to-leading order (NLO) and corrected to the next-to-next-to-leading order (NNLO)
- W+jets, γ+jets and multijets: events in which at least one lepton candidate is a misidentified jet (small contribution); estimated from data.

Muon momentum scale

Muon momentum is sensitive to the detector alignment: large effect for high-p_T muons

Generalized end point method used to determine the momentum bias. Bias injected in simulated events in order to match the q/p_T distribution measured in data (as a function of η and ϕ).

Bias that minimize the differences in bins of η and ϕ between simulation and data.

 $p_T > 200 \text{ GeV for } |\eta| < 2.1$

 $p_T > 100 \text{ GeV for } |\eta| > 2.1$

Muon momentum scale

To estimate the effect of the q/p_T bias to the dimuon mass:

- in simulation a bias is applied to each muon and shift is done according to a Gaussian
- in data a shift is applied to each muon

Dimuon mass distribution fit

- Fit the dimuon mass distribution in order to have probability density function for limit extrapolation.
- Fit in the mass range [150, 5000] GeV, split at 500 GeV

$$f_{bkg}(m|a_{L,H}, b_{L,H}, c_{L,H}, d, k_{L,H}) = \begin{cases} e^{a_L + b_L \times m + c_L \times m^2} \times m^{k_L}, & \text{if } m < 500 \text{ GeV} \\ e^{a_H + b_H \times m + c_H \times m^2 + d \times m^3} \times m^{k_H}, & \text{if } m > 500 \text{ GeV} \end{cases}$$

Limit

The limits are set on the parameter R_{σ} which is the ratio of the cross section for dilepton production through a Z' boson to the cross section for dilepton production through a Z boson.

For the Z'_{SSM} particle and for the superstring inspired Z'_{ψ} particle, 95% confidence level lower mass limits are found to be 4.3 TeV (previous 4 TeV) and 3.75 TeV (3.5 TeV). The corresponding limits for Kaluza-Klein gravitons (GKK) arising in the Randall - Sundrum model of extra dimensions depends on k/ MpI and ranges from 1.9 TeV to 3.85 TeV.

Within Dark Matter searches, the existence of a mediator produced from proton collision decaying into leptons has been also tested for the first time.

First look at 2017 Data

- 2016 MC Samples (2017 not yet available)
- 2017 Data:
 - /SingleMuon/Run2017(B/C/D)-PromptReco-(v1/v2/v3)/MINIAOD
- JSON File
 - ★ Cert_294927-303825_13TeV_PromptReco_Collisions1 7_JSON_MuonPhys.txt
 - ★ 18.701 fb⁻¹

H->µu search

Standard Model Higgs search: H—>µµ

- It is a probe for:
 - ★ constraints on the proportionality of the couplings to fermions of different generations and of leptons with different masses
 - ★ lepton flavor-violating

H: signal strengths

Decay channel	Branching ratio	Rel. uncertainty
$H \rightarrow \gamma \gamma$	2.27×10^{-3}	$^{+5.0\%}_{-4.9\%}$
H o ZZ	2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \rightarrow W^+W^-$	2.14×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$	$6.27 \times \! 10^{-2}$	$^{+5.7\%}_{-5.7\%}$
$H o b ar{b}$	5.84×10^{-1}	$^{+3.2\%}_{-3.3\%}$
$H \to Z \gamma$	1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$^{+6.0\%}_{-5.9\%}$

H->µu search

Cut based analysis in VBF and ggH channel:

- Muon selection:
 - ★ At trigger level, muon candidates selected p_T above 24 GeV
 - ★ Offline reconstruction: $p_T > 30$ GeV and $|\eta| < 2.4$
- Main backgrounds:
 - ★ Drell-Yan in µµ
 - ★ leptonic ttbar decay
- Recent results: $\mu_{OBS} = \sigma/\sigma_{SM} = 0.9 \pm 0.9$

VBF H—>µµ: new strategy

Innovative idea: use MVA distribution to improve limits

Looking at only VBF channel

 $\sigma_{VBF\rightarrow H} = 3.78 \text{ pb at } 13 \text{ TeV}$

 $BR = 2.2 \times 10^{-4}$

 $2016 Data = 35.9 fb^{-1}$

30 events expected

Future plans

- Analysis of 2017 data for high massive resonances search
- Analysis of 2016 and 2017 data for Standard Model Higgs search

School & Conferences

- I won a position as CoAs starting from July (SimilFellow) for one year at CERN
- School:
 - ★ CMSPhysics Object School, 4 8 September, Bari. (as facilitator) https://indico.cern.ch/event/615859/
 - ★ INFN School of Statistics 2017; 7 -11 May, Ischia. https://agenda.infn.it/conferenceDisplay.py?confld=12288

Conferences:

- ★ EPS-HEP2017: EPS Conference on High Energy Physics, 5-12 Jul 2017, Venice (Italy) http://eps-hep2017.eu
- ★ IFAE2017: XVI Incontri di fisica delle alte energie, 19-21 Apr 2017, Trieste (Italy)
 https://ocondo.infp.it/oconforcescopionles/psychology/ps
 - https://agenda.infn.it/conferenceDisplay.py?confld=12289
- ★ Posters@LHCC: Students' Poster Session at the 2017 Winter LHCC meeting, 22 Feb 2017, CERN, Geneva (Switzerland) https://indico.cern.ch/event/608530/

Thank you for your kind attention

Backup

Systematic uncertainties

Source	Uncertainty (BB)	Uncertainty (non-BB)	Affects
Momentum Resolution	15%		Sig
Momentum Scale	1%	3%	Sig
Selection and Reconstruction	-1.5% (at 4 TeV)	-6.5% (at 4 TeV)	Sig+Bk
Trigger	0.3%	0.7%	Sig+Bk
Scale and Resolution (bkg shape)	8% (at 3 TeV)		Bkg
lon-DY Background 7%		%	Bkg
DY PDF (From AN-16-053)	6% (at 4 TeV)		Bkg
Jets	50%		Bkg
Z Normalisation 1%		%	Bkg

Momentum resolution

- The convolution of a BW+Cruijff function models the signal shape+experimental resolution
- Calculated as the residual of the mass at various mass points in DY MC
- The resolution in MC is smeared to match the resolution of boosted DY events measured in data
 - 10% barrel; 20% endcap

◆ DATA ◆ Simulation CMS

BB

 A systematic uncertainty is calculated to be 15% by comparing the fit of the residual to that from a Crystal-Ball function

Analysis strategy

 We perform the statistical analysis on the ratio of the cross-sections:

> Our signal yield depends on the detector resolution, estimated in MC and verified in data along with a sys. uncertainty; and the momentum scale which is estimated through injecting bias into MC to match data, along with a sys. uncertainty

$$R_{\sigma} = \frac{\sigma(\text{pp} \to Z' + X \to \mu^{+}\mu^{-} + X)}{\sigma(\text{pp} \to Z + X \to \mu^{+}\mu^{-} + X)} = \frac{N(Z' \to \mu^{+}\mu^{-})}{N(Z \to \mu^{+}\mu^{-})} \times \frac{A(Z \to \mu^{+}\mu^{-})}{A(Z' \to \mu^{+}\mu^{-})} \times \frac{\varepsilon(Z \to \mu^{+}\mu^{-})}{\varepsilon(Z' \to \mu^{+}\mu^{-})}$$

To increase the yield of Z bosons we use a prescaled trigger which has the same performance as our signal trigger in the plateau

The efficiency between the control region and signal region varies; we estimate the trigger, reconstruction and selection efficiency in the signal region along with a systematic uncertainty using TnP without mass restrictions

Limits

$$\mathcal{L}(\mathbf{m}|\boldsymbol{\theta},\boldsymbol{\nu}) = \frac{\mu^N e^{-\mu}}{N!} \cdot \prod_{i=1}^N \left(\frac{\mu_{sig}(\boldsymbol{\theta},\boldsymbol{\nu})}{\mu} f_{sig}(m_i|\boldsymbol{\theta},\boldsymbol{\nu}) + \frac{\mu_{bkg}(\boldsymbol{\theta},\boldsymbol{\nu})}{\mu} f_{bkg}(m_i|\boldsymbol{\theta},\boldsymbol{\nu}) \right)$$

The Poisson mean of the signal yield is $\mu_S = R_\sigma \mu_Z R_\varepsilon$, where:

- R_{ε} is the ratio of the selection efficiency times detector acceptance for the Z' decay relative to that for the Z boson decay
- μ_Z is the Poisson mean of the number of Z > II events.

To obtain the limit for a dilepton mass point, the amplitude of the background shape function is constrained using data within a mass window ±6 times the mass resolution about the mass point. The observed limits are robust and do not significantly change for reasonable variations in the limit-setting procedure (mass intervals, background shape).

CMS Phase-II

